Outline

• Brief AFRL overview
• THz QCL application areas
• Mid-IR QCL application areas
• Overview of related work within Sensors (time permitting)
AFRL Overview

2nd International QCL Workshop, Brindisi, Italy 5-10 September 2006
AFRL Missions

AFOSR
- Physics & Electronics
- Mathematics & Space Sciences
- Aerospace & Materials Sciences
- Chemistry & Life Sciences

Directed Energy
- Lasers
- High-Power Microwave
- Adaptive Optics & Imaging

Information
- Dynamic Planning & Execution
- Global Awareness
- Global Information Exchange

Human Effectiveness
- Warfighter Training
- Crew System Interface
- Bioeffects & Protection
- Deployment & Sustainment
AFRL Missions

Materials & Manufacturing

Structures & Propulsion
Sensors & Survivability
Sustainment & Deployment

Propulsion

RF and EO based
Sensors & Countermeasures

Automatic Target
Recognition

Sensor Fusion

Munitions

Interdiction Target Sets

Engaged Forces Target Sets

Single Munition Against All Targets & Scenarios

Sensors

Propulsion & Power for Space Platforms

Propulsion & Power for Air Platforms

Propulsion & Power for Weapons

2nd International QCL Workshop, Brindisi, Italy 5-10 September 2006
AFRL Missions

Air Vehicles
- Sustaining Today’s Fleet
- Unmanned Air Vehicles
- Space Access & Future Strike Technologies

Space Vehicles
- Space Systems Protection
- Spacecraft Payloads
- Spacecraft Vehicles
AFRL Research Breakout (2005)

By Directorate/Tech Area

- Directed Energy (7%)
- Human Effectiveness (8%)
- Munitions (5%)
- Space Vehicles (10%)
- Information (9%)
- Materials & Mfg (9%)
- Air Vehicles (8%)
- Basic Research (16%)
- Sensors (11%)
- Propulsion (17%)

By Platform

- Space (27%)
- Air (48%)
- Cyber (25%)

2nd International QCL Workshop, Brindisi, Italy 5-10 September 2006
Application Areas for QCLs in the THz
Nondestructive Evaluation of Air and Space Craft (AFRL/MLLP)

Motivation

- Want affordable means of finding defects, possible failure points of
 - Cracks in airframes
 - Thermal protection systems (TPS)
- Current methods utilize ultrasonic or X-ray technology
- THz demonstrated to pass through some relevant paints/coatings

Tech Drivers

- Portability, FOR vs. P_{OUT} (tradeoff), spatial resolution and accuracy, energy concentration at λ_{DESIGN}

Point of Contact

Mr. Adam Cooney, AFRL/MLLP
Adam.Cooney@wpafb.af.mil

Transmission through various films of interest in the THz region.

THz inspection of TPS structures

Karpowicz et al, APPLIED PHYSICS LETTERS 88, 054105 (2006)
Nondestructive Imaging in Engine Combustors (AFRL/PRTC)

Motivation

- Examine failure mechanisms & monitor engine performance in aircraft
- Examine moisture content in jet fuel
- Ceramic ports already in existence on such platforms transparent to THz radiation
- Low thermal noise background in this region

Tech Drivers

- Portability
- Intensity/output power
- Spatial resolution/beam control
- Cost, size, weight, and power (C-SWaP)

Point of Contact
Dr. James Gord, AFRL/PRTC
James.Gord@wpafb.af.mil

Transient-Grating Spectroscopy in a High-Pressure Combustor

![Graph showing relative absorption vs frequency with H2O line positions]
Scale-Model Radar Cross-Section
(AFRL/SN and UMass-Lowell)

Motivation
- Replace bulky, extremely inefficient molecular lasers with QCLs in the UML Sub-Millimeter Wave Laboratory
- Perform scale model radar cross section measurements for phenomenology and target recognition database formation

Tech Drivers
- Intensity (desire 10’s mW output power, > 5 GHz bandwidth tuning range, operation at ~ 3.5 THz)
- Wavelength of operation (scale common radar wavelengths by 1/16, 1/32, etc…)
- Good modal patterns of replacement lasers (must have beam on target)

Point of Contact
Dr. Thomas R. Nelson, AFRL/SNDP
Thomas.Nelson@wpafb.af.mil

Concealed “Gun” – 1.56 THz Image
RCS of 1/16 scale model tank
Application Areas for QCLs in the Mid-IR
Infrared Scene Generation

Motivation

• Replace bulky, slow-response “resistor banks” with tailored design QCLs (or even QC-LEDs?) to mimic the thermal background of a given scene

Tech Drivers

• Intensity
• Wavelength of operation (multi-spectral emission, broadband, tunable?)
• Modal patterns of replacement lasers
• Dynamic range (quiescent scene to lasing)
• Formation as a projection source

Point of Contact
Dr. Thomas R. Nelson, AFRL/SNDP
Thomas.Nelson@wpafb.af.mil

EO/IR threat simulations

Target Simulator
IR Missile

Laser IRCM Development Range

2nd International QCL Workshop, Brindisi, Italy 5-10 September 2006
Work within AFRL/SND
In collaboration with AFRL/MLLP and AFIT
AlGaAs/GaAs Based QCLs

Initially started with 2 tiered approach:

1. Collaboration with UMass-Lowell and Worcester Polytechnic Institute on interface-phonon mediated structures for THz emission

2. Try to mimic structures in the literature
 1. MIT/Sandia structures for THz (AFRL growth and processing, UML test)
 2. Northwestern U. designs for InP mid-IR devices (commercial growth, AFRL processing, UML test)
 3. Capasso/Faist/Sirtori/Gmachl structures for GaAs-based mid-IR (AFRL growth & processing, UML test)

To date, none of our structures have demonstrated lasing
Another new direction…

Use of multi-objective Genetic Algorithm approach for QCL design optimization

- Collaboration of AFRL/SNDP, MLLP (Cooney), and AFIT/ENG (Prof. G. Lamont)

- Utilizing in-house programs for
 - Bandstructure
 - Scattering rates (electron-electron, electron-phonon)
 - Self-consistency in Schrodinger-Poisson solver

- and integrating them with AFIT’s GenMOP Genetic Algorithm code for new designs.
Initial GenMOP Designs

THz QCL SOLUTIONS

MIT-type solutions

MIT has spent ~5 yrs optimizing this solution

GenMOP

Optimized QCL Solution (Gain, Temperature Performance)

New Family of solutions discovered

Improved solution

room for improvement?

Optimized QCL Solution

(a)

MIT solution

GenMOP MIT-type Solution

GenMOP phonon-injector

MIT has spent ~5 yrs optimizing this solution

Improved solution

room for improvement?

Optimized QCL Solution

(a)

MIT solution

GenMOP MIT-type Solution

GenMOP phonon-injector

Optimized QCL Solution (Gain, Temperature Performance)

New Family of solutions discovered

Improved solution

room for improvement?
Summary

• Many applications areas relevant to the USAF exist just at Wright-Patterson AFB for QCLs, including:
 – Mid IR: IR Scene generation (and the standard chem/bio hazard ID efforts)
 – THz
 • Sensors: Scale model radar cross section experiments
 • Propulsion: NDE of engine combustors and jet fuel
 • Materials lab: NDE of airframes
 – This doesn’t even touch on uses at other AFBs or surrounding community (Univ. Dayton, Ohio State Univ., Wright-State Univ.)
• In-house efforts have been slow but steady…
 – Recent acquisition of FTIR system for THz spectroscopy
 – MLLLP purchase of QCL driver circuitry
 – Promising outlook of GA approach to device designs