THz quantum-cascade lasers based on intra-well optical transitions

Giacomo Scalari

Institute of Physics, University of Neuchâtel, Switzerland
Acknowledgements

Jérôme Faist
Romain Terazzi
Christoph Walther
Lorenzo Sirigu
Marcella Giovannini
Nicolas Hoyler

Cavendish Laboratory, Cambridge
(UK) Harvey Beere
David Ritchie

Grenoble High Magnetic Field Laboratory
Marcin L. Sadowski

Financially supported by:

EU project TERANOVA
Overview

• Single quantum well: population inversion by resonant tunneling

• Excited states in single quantum well:
 – Multi color lasing (with & without B….)
 – …Vs Bound to continuum :localization in B field (probably no time….)

Single quantum well THz laser

\[E_{65} = 15.3 \text{ meV} \]
\[z_{65} = 6.6 \text{ nm} \]
\[f_{65} = 18 \]
\[F = 2.9 \text{ kV/cm} \]
\[L_p = 107.9 \text{ nm} \]
\[N_p = 140 \]
\[n_s = 3.8 \times 10^{10} \text{ cm}^{-2} \]

Single QW @ 80 µm: single plasmon WG
Double metal: pulsed operation 49 K

Optical rollover
≠
Injection resonance (NDR)

L=1.5 mm
W = 110 µm
CW operation: low threshold current

Double metal ridge waveguide

$T = 10 \text{ K}$

$L = 0.5 \text{ mm}$

$W = 60 \mu \text{m}$
Performance summary

• Threshold current density: 25 A/cm² @ 10 K
• T_{max}: 49 K pulsed, 40 K CW
• Low power consumption: 100-200 mW in CW at 10 K for an optical power of 10-50 µW (double metal) or 2-3 W dissipated for 1-2 mW output power (single plasmon)
• Nice model system: population inversion by sequential resonant tunneling
The model

- Density matrix at the injection and extraction doublets plus EM field (C. Sirtori et al. JQE 1998, H. Callebaut et al., JAP 2005)
- Tight-binding basis
- Recycle time

\[|2\rangle \quad \Omega_i \quad \tau_2 \quad \Omega_e \quad |1\rangle \]
Bandstructure (tight-binding)

\[\text{F} = 3 \text{ kV/cm} \]

Injection resonance

injector region

active well

injector region

resonant tunneling

intersubband transition

\[g, \tau_4 \]

\[107.9 \text{ nm} \]

\[0 \text{ [eV]} \]

\[0.135 \]

\[0.128 \]

\[0.05 \]

\[0 \]
Model results

\[\tau_2 - \tau_4 \approx 3.3 \text{ ps} \]

\[\tau_2 + \tau_4 \approx 22 \text{ ps} \]

\[\tau_2 \approx 12.65 \text{ ps} \]

\[\tau_4 \approx 9.35 \text{ ps} \]

\[\tau_i^\parallel \approx 2.4 \text{ ps} \]

\[\tau_e^\parallel \approx 1.3 \text{ ps} \]

\[\alpha_{\text{tot}} = 13 \text{ cm}^{-1}, \ 2\gamma_{21} = 1 \text{ meV}, \]
SQW conclusions

• Clear signature of population inversion by resonant tunneling: optical rollover depends on extraction resonance, far away from injection resonance

• Transport time and population of the lower state are crucial for the good agreement of the model
Intra-well transition: excited states

Gain in oscillator strength
multi-frequency operation

C. Sirtori et al., Opt. Lett. 23, 463
Two color THz laser

F=1.89 kV/cm

1.39 THz structure at higher bias:
alignment for 4->3 transition

$E_{43} = 8.7 \text{ meV}$

$z_{43} = 11.1 \text{ nm}$

$f_{43} = 29$

$L_p = 173.0 \text{ nm}$

$N_p = 95$

$n_s = 5.08 \times 10^{10} \text{ cm}^{-2}$

G. Scalari et al., *Appl. Phys. Lett.*, 88, 141102-
Two color in magnetic field

Current density [A/cm²]

Magnetic field [T]
Two color in magnetic field: 4 T section

\[
\begin{align*}
J_{th}^{130\mu m} &= 43 \text{ A/cm}^2 \\
V_{th}^{130\mu m} &= 9.5 \text{ V}
\end{align*}
\]
Two color in magnetic field: 11.5 T section

\[J_{th}^{215 \mu m} = 5 \text{ A/cm}^2 \]

\[V_{th}^{215 \mu m} = 2.5 \text{ V} \]

\[J_{th}^{130 \mu m} = 29 \text{ A/cm}^2 \]

\[V_{th}^{130 \mu m} = 12 \text{ V} \text{ (magnetoresistance)} \]
Double metal waveguide
Lasing at 2.3 THz w/out B field

\[
T_{\text{max}} = 67 \text{ K}
\]
\[
J_{\text{thresh}} = 50 \text{ A/cm}^2 @ 10 \text{ K}
\]

Peak power: \(~1-2\text{ mW}\)
Conclusions

• SQW: Very low $J_{\text{thresh}} = 25 \text{ A/cm}^2 @ 10 \text{ K}$, nice model system, low power consumption device

• Two color lasing at two well separate frequencies 2.3 and 1.35 THz

• Waveguide and design optimization: lasing without B field on both colors?