Phase resolved stimulated emission from THz QCLs

J. Kröll, J. Darmo, A. Benz, G. Fasching and K. Unterrainer
Photonics Institute, Vienna University of Technology

A.M. Andrews, G. Strasser
Center for Micro- and Nanostructures, Vienna University of Technology

S. S. Dhillon and C. Sirtori
Matériaux et Phénomènes Quantiques, Université Paris 7

X. Marcadet and M. Calligaro
Thales Research & Technology, Domaine de Corbeville
Motivation

- Quantum cascade lasers
 - Lack of information regarding internal processes
 - Phase information lost by intensity measurements
- Only phase resolved transmission data includes:
 - Internal dynamics
 - Loss mechanisms
Few-cycle THz generation

short optical pulses of a Ti-Sapphire laser

rectification

few-cycle THz pulses

\[E(t) = E_{\text{env}}(t) \cos(\omega t) \]

\[P(t) = \varepsilon_0 (\chi^1 E(t) + \chi^2 E^2(t) + ...) \]

\[P_{\text{nl}}(t) = \frac{\varepsilon_0 \chi^2}{2} \left\{ E_{\text{env}}(t)^2 \cos[(\omega + \omega)t] + E_{\text{env}}(t)^2 \cos[(\omega - \omega)t] \right\} \]

- nonlinear crystals
- semiconductors

“half-cycle” electric pulse

100-10 fs long @10-100 THz
THz time-domain spectroscopy

Transmission THz-TDS setup with:
- Femtosecond laser (<85 fs, 20 nJ)
- Photoconductive THz emitter
- Electro-optic detection with GaP
- High dynamics & bandwidth
- Electric field + phase measured
- Power detection with Bolometer
THz-QCL Parameters

- MBE grown THz-QCL\(^1\) based on AlGaAs/GaAs bound-to-continuum design
- 90 cascade modules
- Threshold current \(\sim 400\) mA
- Emission at 2.87 THz (95 cm\(^{-1}\))
- Surface plasmon waveguide

Measurement technique

THz time-domain spectroscopy scheme

NIR 80 MHz

THz emitter

QCL

EO sensor

Bolometer

THz Probe signal

Transmission THz-TDS setup with:
- Femtosecond laser (<85 fs, 20 nJ)
- Photoconductive THz emitter
- Electro-optic detection with GaP
- High dynamics & bandwidth
- Electric field + phase measured

Power detection with Bolometer
Phase resolved spectroscopy of 2-level system

Density matrix

\[
\begin{pmatrix}
\rho_{aa} & \rho_{ab} \\
\rho_{ba} & \rho_{bb}
\end{pmatrix}
\]

\(\rho_{aa}, \rho_{bb} \sim \text{population}\)

\(\rho_{ab}, \rho_{ba} \sim \text{coherence}\)

- Standard spectroscopy \(\rightarrow\) sensitive only to probe intensity changes (\(\int E^2 dt \sim \rho_{aa} - \rho_{bb}\))
- Phase resolved measurement of the electric field \(\rightarrow\) \(\rho_{ab}\)
Coupling THz waves into QCL

Problems to solve:
- THz beam waist to large
- More than one ridge hit
- Optical leakage
- Aperture masks other ridges
- ‘Solid immersion’ lens focuses beam
- Optical leakage suppressed
- High coupling efficiency

Diagram showing coupling of THz waves into QCL with a 'solid immersion' lens, which focuses the beam and suppresses optical leakage, aiming for high coupling efficiency.

Graph showing amplitude (arb. u.) vs. frequency (THz) with a clear signal level, noise level, THz-QCL emission range, and THz beam alignment.

THzLab logo at the bottom right corner.
THz pulse amplification in THz-QCL

- First-time phase resolved measurement of QCL emission
- Stimulated QCL emission phase-locked to the THz seed pulse
- Modulation spectroscopy applied suppresses QCL heating effects
Spectral features

- Signal is combination of absorption, reduced losses & gain
- Separation by spectral filtering
- Oscillation centre frequency at 2.87 THz = Lasing line
Spectral feature

- Measured response does not contain Drude as component
- Additional frequency features: Injector inter-subband absorption?
Gain & Spectral hole burning

- Re-normalization shows real spectral gain shape
- Gain bandwidth 300 GHz (FWHM)
- Single pass gain >17 cm\(^{-1}\)
- Spectral hole burning @ 2.87 THz
- Observed gain region exceeds the region of lasing
- Gradual alignment of cascades and its break-up
Multi-pass signal in QCL

First internal reflection (3 waveguide passes \(\rightarrow\) shaping)
- Centre frequency shifted to region with highest gain
- Modulation gets longer \(\rightarrow\) linewidth narrowing

First round-trip signal

Spectrum of QCL signal
Longitudinal spatial hole burning in THz-QCL

- Visible under lasing conditions
- Current dependency matches with LI
- Lasing electric field forms a pattern
- Frequency selective scattering
 → Longitudinal spatial hole burning
Summary

- Phase resolved probing used for a gain medium
- Real gain bandwidth of a QCL determined
- Spectral & spatial hole burning observed
- Dynamics of starting lasing operation

European commission project TERANOVA (IST-511415)

Fonds zur Förderung der wissenschaftlichen Forschung
Thanks to:

J. Darmo
T. Müller
F. Schrey
G. Fasching
A. Benz
W. Parz
J. Kröll
V. Tamosiunas
R. Zobl
A.M. Andrews
T. Roch
W. Schrenk
G. Strasser

R. Kersting now at RPI, NY
J.N. Heyman, Macalester College
R. Bratschitsch --> NIST Boulder

S. S. Dhillon and C. Sirtori
Matériaux et Phénomènes Quantiques, Université Paris 7
X. Marcadet and M. Calligaro
III-V Lab Thales&Alcatel