Electronic temperatures and electron-lattice relaxation in THz QCLs

Miriam S. Vitiello, Gaetano Scamarcio, Vincenzo Spagnolo

Regional Laboratory LIT 3, CNR - INFM - Physics Dept., University of Bari, Italy

- **MOTIVATION:** The detailed knowledge on the nature of the electronic distribution in THz QCLs is of paramount importance as a guide for the design of improved structures aiming at high temperature operation.

- **TECHNIQUE:** μ-photoluminescence spectroscopy as a function of voltage/current → probe of:
 - Conduction subband electronic temperatures (T_{e_j})
 - Local lattice temperature (T_L)
 - Electron-lattice energy relaxation rates
 - Population inversion
 - Leakage channels
Features of electronic distribution in THz QCLs:

- Many energy relaxation channels:
 - e-LO phonons
 - e-e
 - e-impurity
 - interface roughness
- Thermally induced electron leakage in the continuum due to the small band offset of GaAs/AlGaAs (x = 0.10-0.15)

Electronic temperature T_E → critical to validate theoretical models for optical gain:

- *Is T_E the same for all the subbands?*
- *How “hot” is the electronic distribution?*
Main results

- Assessment of the electronic temperature of individual subbands
- Electronic temperature of the upper laser level → non-radiative scattering time
- Simultaneous determination of the power dependence of the lattice and electronic temperatures → electron - lattice energy relaxation rate
- Population inversion
- Comparison between quantum designs: BTC, RP, interlaced design
- Role of the conduction band offset

Study of cw operating QCLs both below and well above laser threshold
Set-up schematics

- **Lattice temperature** → PL shift
- **Electronic Temperature** → high energy slope analysis
- Features of µ-PL spectra in THz QCLs
 - both ground and excited subbands (not observable in mid-ir)
 - band-to-band and/or excitonic transitions

Features of µ-PL spectra in THz QCLs

\[
I_{PL}(E) \propto \sum_{j=1}^{5} \sum_{k=1}^{4} A_{jk} E_{jk}^2 |\langle \psi_j | \psi_k \rangle|^2 L(E)
\]

\[
\Delta E = (E-E_p) \text{ (eV)}
\]

He-flow micro-cryostat

Kr+ Laser

Objective

Notch filter

Si CCD

X-Y control (100nm)

PL Intensity (arb. units)

Energy (eV)

Lattice temperature

Electronic Temperature

PL shift

High energy slope analysis

Features of µ-PL spectra in THz QCLs

- both ground and excited subbands (not observable in mid-ir)
- band-to-band and/or excitonic transitions
Bound-to-continuum THz QCLs - Excitons

![Diagram of PL Intensity vs. Energy Level Calculations]

Excitons
- Energy level calculations
- $b_{HH} - b_{LH} \sim 6$ meV coincident with the HH-LH splitting of excitons in large (170-180 Å) GaAs QWs
- Lorentzian lineshape
- Small linewidth (1.3-1.6 meV)

Equations

\[\Delta E = (E - E_p) \] (eV)

\[\lambda_D = \frac{\epsilon k_b T}{e^2 n} \]
Subband Electronic Temperatures

Resonant - phonon (2.8 THz)

- $R_L = 25.3 \text{ K/W}$
- $R_E = 28 \text{ K/W}$

Bound-to-continuum (2.9 THz)

- $R_L = 23.2 \text{ K/W}$
- $R_E = 17.3 \text{ K/W}$

$T_E > T_L$, both linear w/electric power

- $R_E \sim R_L \rightarrow$ efficient electron-lattice coupling

- $T_e^5 >> T_L$ of $\sim 100K \rightarrow$ fast non-radiative relaxation times $\tau_{5\rightarrow4,3} \approx 1.3$ ps \rightarrow key limiting factor for THz QCL high temperature operation

- $R_E > R_L \rightarrow$ electron-lattice coupling not strong

- The electrons in the active region share the same T_e
Subband Electronic Temperatures II
toward low frequencies

Resonant - phonon with one well injector
(1.9 THz)

BTC with phonon extraction
(1.7 THz)

\[R_L = 24.5 \text{ K/W} \]
\[R_E = 28.1 \text{ K/W} \]

\[R_L = 15.4 \text{ K/W} \]
\[R_E = 18.9 \text{ K/W} \]

\[T_e^4 >> T_L \text{ of } \sim 90K \rightarrow \text{still fast non-rad. relaxation rate } \tau^5 \rightarrow 4.3 \approx 1.9 \text{ ps} \]

\[T_e^b > T_L \text{ but of } \sim 50K \rightarrow \text{estimated thermally activated LO phonon scattering times } \approx 4.8 \text{ ps} \]
e\(^-\) - lattice energy relaxation rate

\[
N_e \cdot k_B \cdot \frac{dT_E}{dt} = P - \frac{N_e \cdot N \cdot k_B}{\tau_E} (T_E - T_L)
\]

\[
\tau_E^{-1} = [N_e N k_B (R_e - R_L)]^{-1}
\]

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\nu) (THz)</th>
<th>Design</th>
<th>(\tau_E^{-1}) (ps(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3</td>
<td>2.9</td>
<td>btc</td>
<td><0.28></td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>btc</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>btc</td>
<td>0.18</td>
</tr>
<tr>
<td>6</td>
<td>2.8</td>
<td>rp</td>
<td>4.90</td>
</tr>
<tr>
<td>7</td>
<td>3.2</td>
<td>rp</td>
<td>1.67</td>
</tr>
<tr>
<td>8</td>
<td>3.8</td>
<td>rp</td>
<td>1.05</td>
</tr>
<tr>
<td>9</td>
<td>1.9</td>
<td>rp-1w</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>1.7</td>
<td>btc+rp stage</td>
<td>2.68</td>
</tr>
</tbody>
</table>
Electron cooling

Bound-to-continuum

- e-e scattering → dominant channel for carrier thermalization
- cooling via e- LO-phonon scattering only for electrons that acquire sufficient energy by e-e or e-interface roughness scattering
- most of the electrons dissipate excess energy via the low efficient acoustic phonons assisted transitions

Resonant-phonon

Main depletion mechanism → LO-phonon assisted transitions → efficient cooling of the electronic ensemble.
Electronic Temperature influence of the band offset

Compare two “similar” btc THz QCLs with different barrier materials: $Al_xGa_{1-x}As$

<table>
<thead>
<tr>
<th>Sample</th>
<th>ν (THz)</th>
<th>Waveguide</th>
<th>τ_E^{-1} (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.9</td>
<td>sp</td>
<td>0.27</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>sp</td>
<td>0.17</td>
</tr>
</tbody>
</table>

τ_E^{-1} (B) $< \tau_E^{-1}$ (A):

- reduced band-offset in sample B
- The energy separation between the ground state level of the miniband M', and the top of the tunnel-injection barrier is ~ 2 times lower in sample B

- Increase of the thermally activated electrons leaking in the continuum
- Additional increase of the electronic temperature.
Relative laser level population in resonant-phonon THz QCLs

- \(n_5/n_4 > 1 @ P > 1W \)
- \(n_5/n_4 \sim \text{constant} \) during laser operation → clamping of the gain (expected)
- \(P > 2W \) → negative differential resistance → lasing ceases → \(n_5/n_4 \) reduced

![Diagram showing the relationship between \(n_5/n_4 \), electrical power, and Lasing]
Future development

• Assessment of the optimum active region → comparison of micro-PL spectra of mesa devices preliminary to laser fabrication
• Local probe of the uniformity of the electronic distribution in different stages of the active region both below and above the designed bias
• Exploiting pulsed I-CCD detection to fully separate the electronic and lattice contributions

References
Acknowledgements

MIT
Benjamin S. Williams
Sushil Kumar
Qing Hu

Sandia Laboratories
John. L. Reno

University of Neuchatel
Christoph Walther
Giacomo Scalari
Jerome Faist

NEST- Scuola Normale Superiore
Alessandro Tredicucci
Tonia Losco
Richard Green

University of Paris 7
Stefano Barbieri
Carlo Siratori

Cavendish Laboratory
Harvey E. Beere
David A. Ritchie