Interesting and Diverse Physics with Precision Mass Spectrometry

Have Done at
$$\frac{m}{m}$$
 10⁻¹⁰

²⁸Si for atomic definition of the kilogram to replace artifact standard

Recalibration of the -ray spectrum

New Determination of

The MIT Mass Table

Atom	MIT Mass (u)	m/m x 10 ¹⁰	Previous accepted value	
			Factor of improvement in precision	Difference (in units of old error)
${}^{1}\mathrm{H}$	1.007 825 031 6 (5)	5.0	24	-0.28
n	1.008 664 916 4 (8)	8.1	17	-0.54
$^{2}\mathrm{H}$	2.014 101 777 9 (5)	2.5	48	-0.05
¹³ C	13.003 354 838 1 (10)	0.8	17	0.71
$^{14}\mathbf{N}$	14.003 074 004 0 (12)	0.9	22	0.08
$^{15}\mathbf{N}$	15.000 108 897 7 (11)	0.7	36	-1.81
¹⁶ O	15.994 914 619 5 (21)	1.3	24	-0.21
²⁰ Ne	19.992 440 175 4 (23)	1.2	957	2.08
²³ Na	22.989 769 280 7 (28)	1.2	93	-1.46
²⁸ Si	27.976 926 532 4 (20)	0.7	350	-0.81
$^{40}\mathrm{Ar}$	39.962 383 122 0 (33)	0.8	424	-0.41
⁸⁵ Rb	84.911 789 732 (14)	1.6	193	-0.99
⁸⁷ Rb	86.909 180 520 (15)	1.7	187	-1.89
^{133}Cs	132.905 451 931 (27)	2.0	111	1.64

For a new determination of the fine structure constant

Single Ion

Magnetic field fluctuations limit precision to 10⁻¹⁰

Ion Motion in a Penning Trap

Detecting a Single Ion

Measuring the Cyclotron Frequency

Cool and detect the cyclotron mode by coupling to the damped and detected axial mode.

50 s evolution time (T) yields a precision of 1 part in 10^{10}

Two Ions

Precision of 10⁻¹⁰ in 3 minutes (during the day) !!

Magnetron Mode Locking

sep is constant and ions sample the same B field
At *sep* ~ 1 *mm* predict ion-ion perturbations < 2 x 10⁻¹²

Controlling the Ions Orbit

Set Center of Mass Motion, Make 2nd Ion, and Quickly Zero

Two Ion Signal

Typical Axial Signals from ions after 240 sec of Cyclotron Phase Accumulation

Watching the Motion of the Ions

Electrostatic anharmonicities f_{τ} is a function of radius

Axial frequency of CO^+ in the presence of $N2^+$ FFT of 600 s **Power Density** 0.4 Axial Frequency shift (Hz) 0.3 0.2 0.13 0.14 0.16 0.12 0.15 Frequency (Hz) 0.1 0.0 -0.1 -0.2 1200 1150 1250 Time (s)

Magnetron radius of each ion is oscillating with a period ~ 7 s (calculated period for $_{sep}$ ~ 700 µm)

Effect of Finite Temperature (4K)

Problem:

cyclotron phase noise

cyclotron frequency variation (~ $5 \ge 10^{-11}$) due to magnetic field inhomogeneity and special relativity:

$$c = \frac{qB}{m}$$
 and $v = cA$

Solutions:

• Cool the ion (see below)

Classical Squeezed States

"Squeeze" the noise to reduce the amplitude fluctuations by a factor of 2 below the thermal limit.

Electronic Refrigeration

Use feedback to reduce thermal noise currents in the detector

In this data, the temperature of the resonant transformer is reduced by a factor of 3.

The ion's axial motion comes to equilibrium with this subthermal detector.

Observed factor of ~ 2 reduction in phase noise.