Towards an order of magnitude improvement in high-precision atomic mass measurements

Simon Rainville
James K. Thompson
Prof. David E. Pritchard
Michael P. Bradley
Trey Porto

... supported by NSF and NIST.

Massachusetts Institute of Technology, Cambridge MA
Single Ion Mass Spectrometry

Strong magnetic field

Cyclotron motion
\[\omega_c = \frac{qB}{m} \]

\[\frac{\omega_{c1}}{\omega_{c2}} = \frac{q_1}{q_2} \frac{m_2}{m_1} \]

Harmonic Axial motion
\[\frac{\omega_z}{2\pi} \approx 200 \text{ kHz} \]

Use mode coupling techniques to measure
\[\omega_c / 2\pi \approx 5 \text{ MHz} \]

Slow Magnetron motion
(usually ignore)
\[\frac{\omega_m}{2\pi} \approx 5 \text{ kHz} \]
Single Ion data

- 5 - 30 minutes to isolate a new single ion
- Precision of 10^{-10} for a full run (4 hours)

MIT Mass Table

<table>
<thead>
<tr>
<th>Element</th>
<th>$\Delta m/ m$ (x 10^{-10})</th>
<th>Factor of improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>5.0</td>
<td>24</td>
</tr>
<tr>
<td>2H</td>
<td>2.5</td>
<td>48</td>
</tr>
<tr>
<td>13C</td>
<td>0.8</td>
<td>17</td>
</tr>
<tr>
<td>14N</td>
<td>0.9</td>
<td>22</td>
</tr>
<tr>
<td>15N</td>
<td>0.7</td>
<td>36</td>
</tr>
<tr>
<td>16O</td>
<td>1.3</td>
<td>24</td>
</tr>
<tr>
<td>20Ne</td>
<td>1.2</td>
<td>957</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>$\Delta m/ m$ (x 10^{-10})</th>
<th>Factor of improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>23Na</td>
<td>1.2</td>
<td>93</td>
</tr>
<tr>
<td>28Si</td>
<td>0.7</td>
<td>350</td>
</tr>
<tr>
<td>40Ar</td>
<td>0.8</td>
<td>424</td>
</tr>
<tr>
<td>85Rb</td>
<td>1.6</td>
<td>193</td>
</tr>
<tr>
<td>87Rb</td>
<td>1.7</td>
<td>187</td>
</tr>
<tr>
<td>133Cs</td>
<td>2.0</td>
<td>111</td>
</tr>
</tbody>
</table>
Main Limitation of Single Ion Technique:

Magnetic Field Noise

Want to make SIMULTANEOUS measurements
Two Ions in One Trap

1 mm
Two Ions in One Trap

\[m_1 \approx m_2 \]

New normal modes:
- center-of-mass
- difference

- \(\rho_s \) is constant
- \(\rho_s \approx 0.5 - 1 \) mm

perturbation \(< 2 \times 10^{-12}\) on mass ratio

Want \(\rho_{\text{com}} \approx 0 \) for the two ions to sample the same average magnetic field.
Simultaneous Measurements on Two Ions

Axial Frequency - 212 982 Hz

Power Density (Arb Units)

- N_2^+
- CO^+
- 4 K Thermal Noise

magnetron
1 mm
5 kHz

cyclotron
200 µm
5 MHz
Preliminary Two Ions Data

Measurement Time (on 1/29/2001)

Precision of 10^{-10} in 4 minutes (during the day)!!

Cyc Phase of CO (deg)

Cyc Phase of N_2 (deg)
Current and Future Work

Big jumps in cyclotron frequency difference:
- ions decouple?
- change in separation distance?

Tools to observe and control trajectories of 2 ions:
- Anharmonicities $\Rightarrow \omega_z(\rho)$
- Transfer a little bit of ρ_{mag} into axial motion, to measure the ion’s radial position.
 - diagnostic
 - fine-tune orbits
 - study possible systematic errors
Simultaneous Measurements on Two Ions

magnetron
1 mm
5 kHz

cyclotron
200 µm
5 MHz