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Abstract
23Na6Li is a fermionic molecule that has weak singlet-triplet mixing, making it a
suitable system to study the triplet rovibrational ground state (𝑎3Σ+, 𝑣 = 0, 𝑁 =
0). It is notable for its both non-zero electric (0.175 Debye) and magnetic (2𝜇𝐵)
dipole moments and small two-body scattering rate, as predicted by the universal
model for cold collision. Additionally, 23Na6Li is the lightest bi-alkali molecule, and
the theoretical simulation of collisions is relatively feasible compared to other heavy
molecules which makes it a promising benchmark system for theoretical quantum
scattering calculations.

This thesis describes three experiments and a numerical/theoretical work on 23Na6Li
molecules in the triplet ground state. The first two experiments are on molecular Fes-
hbach resonances: in spin-polarized 23Na6Li+23Na collisions and in 23Na6Li+23Na6Li
collisions. The first experiment focuses on the spectroscopic study of Feshbach res-
onances in two possible spin-polarized 23Na6Li+23Na collisions from near 0 to 1400
Gauss. This allows learning about the molecular interaction potential surface and
intermediate collision complexes, benchmarking theory, and controlling reactive colli-
sions. The second experiment is a report of an unpredicted 𝑝-wave Feshbach resonance
in 23Na6Li+23Na6Li collisions and interpretations. The resonance occurs for molecules
in the lower stretched hyperfine state near an open-channel degeneracy. The collision
loss rate is enhanced by more than two orders of magnitude from the 𝑝-wave universal
value at the background to near the 2D unitarity limit.

In addition to the search for magnetically tunable resonances, 23Na6Li molecules
in the triplet potential are suitable for magnetic trapping. The third experiment
describes building an improved experimental setup that allows magnetic trapping of
23Na6Li molecules and studying various collisions in the magnetic trap by quantum
state control of molecules and atoms. The molecular density is a factor of 105 higher
than that reported for magnetically trapped ultracold molecules, and the temperature
is ≈ 1𝜇𝐾. This condition enables observation of both atom-molecule and molecule-
molecule collisions in the ultracold regime and sympathetic cooling of 23Na6Li by
evaporative cooling of 23Na in the magnetic trap.
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Lastly, this thesis presents the numerical and theoretical approach to finding a
window for an all-optical creation of molecules using Raman transitions from 23Na
and 6Li atoms to 23Na6Li molecules. All-optical creation of molecules in which the
magnetic association step near a Feshbach resonance is eliminated is expected to
broaden the horizon of ultracold molecules to a larger pool and to eliminate the need
for high magnetic fields.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacArthur Professor of Physics
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Chapter 1

Introduction

The field of ultracold polar molecules is driven by the success of ultracold atoms which

provided many exciting and diverse applications such as atomic clocks, precision tests

of fundamental physics, quantum simulations of many-body quantum phenomena,

and new quantum information architectures. The underlying foundation is the advent

of optical and magnetic trapping of atoms, various cooling methods including laser

cooling and evaporative cooling, which have been the most effective ways to cool

atoms to the submilli-Kevin and nano-Kelvin regimes, respectively, techniques to

control the quantum states both at the internal and external level, and to manipulate

interactions between atoms.

Extending these types of control to ultracold polar molecules offers exciting new

directions of research. Molecules have a richer energy-level structure that includes

rotation, vibration energy levels, and a relatively strong anisotropic interaction. In

addition, they can have a long-range electric dipole-dipole interaction when they are

polarized. Due to their additional properties, they can offer opportunities to study

quantum state controlled chemistry [1, 2], quantum simulation [3–5], and quantum

information processing [6–9] in a different regime.

However, even the simplest molecules in the quantum degenerate regime are ex-

tremely difficult to prepare because of the extra degrees of freedom. Due to the

rotation and vibration energy levels, a closed set of electronic transitions normally

does not exist, and it prevents us from performing laser cooling of molecules. Col-

17



lective efforts have been made to obtain molecules in a single quantum state and

understand the interactions among them. There are two main streams toward ultra-

cold molecules, which laid the foundation for achieving atom-like control of ultracold

molecules: (i) direct cooling of molecules that are chemically prepared and (ii) ul-

tracold assembly of precooled atoms. Cooling of chemically synthesized molecules

became possible using direct laser cooling. This method is restricted to only a hand-

ful of molecules that form a near-closed transition, that is, CaF, SrF, and YO [10–12].

The ultracold association method was first demonstrated in 2008 by two groups with

Cs2 and KRb and has since been widely used to create other diatomic molecules as

well [13–19].

1.1 Formation and properties of NaLi

The focus of this thesis is on the 23Na6Li molecules in their triplet ground state that

are formed by the association of precooled Na and Li atoms. Although direct cooling

has made significant advances in recent years [20–22], the highest density that can

be reached is more than a few orders of magnitude lower than that of the ultracold

association and the typical temperature that is achieved is tens of 𝜇K (never reached

the nano-Kelvin regime). So far, ultracold association has been the most effective

method for producing near-quantum degenerate gases of molecules [23]. Furthermore,

it is natural to produce bialkali molecules using the ultracold association method,

as the experimental apparatus, named BEC3, was designed for the production of

ultracold Na and Li atom mixtures1.

One of the most successful recipes for achieving ground-state molecules by ultra-

cold assembly has two combined steps. The first step is the magnetic association

of cold atoms to weakly bound molecules near a Feshbach resonance. The second

step is the efficient formation of ground-state ultracold molecules via the stimulated

Raman adiabatic passage (STIRAP). Although this recipe allowed the production of

1BEC3 was built in 2001 to produce 23Na Bose-Einstein condensates and later upgraded in 2007
to coproduce 6Li degenerate Fermi gases.
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cold molecules as low as tens of nano-Kelvin, it also has some drawbacks. It requires

a Feshbach resonance to be at an experimentally accessible bias field and to be strong

compared to any decoherence rate for an efficient magnetic association. The Na +

Li mixture has very narrow (∼mG) resonances only at high fields (>700 G), and

using these resonances for molecule formation is technically challenging. Formation

of weakly bound NaLi Feshbach molecules was first reported in 2012 [24] by the same

BEC3 lab. Even after the success of the experiment, achieving the ground state of

NaLi was also demanding because there was no prior spectroscopic data available for

STIRAP. A detailed spectroscopic study of the excited and ground triplet potentials

of NaLi was carried out using one- and two-photon photoassociation spectroscopy,

providing the spectroscopic positions and strengths of the transitions to most of the

vibrational states in the excited 𝑐3Σ+ and ground 𝑎3Σ+ potentials of NaLi [25, 26],

and the first formation of an ultracold gas of NaLi molecules in the triplet ground

state was achieved using the spectroscopic results in 2017. Initially, 3×104 molecules

were formed at a density of 5× 1010cm−3 and a temperature of 3 𝜇K [13]. This was

further improved, which is described in this thesis and in the thesis of Hyungmok

Son [27].

Several parameters are important when discussing heteronuclear bialkali molecules.

The two valence electrons on each alkali atom can pair in either a triplet or a singlet

spin configuration. The triplet potential is much shallower than the deeply bound

singlet potential, and thus energetically can be unstable. However, NaLi is unique

compared to other heteronuclear bialkaline molecules and is particularly suitable for

studying the triplet state. NaLi in the triplet ground state has weak coupling to the

singlet manifold due to the weak spin-orbit coupling and thus is meta-stable. Indeed,

they were measured to have a long lifetime (∼ 4 s) at a density of 5× 1010cm−3 and

a temperature of 3 𝜇K. Singlet molecules have anti-aligned electron spins and thus

have a very small magnetic moment from the nuclear spin, while triplet molecules

have aligned electron spins and thus have a magnetic moment of 2 𝜇𝐵. The non-zero

magnetic moment enables magnetic trapping of molecules and can be used to tune

collisional resonances in molecules.
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Furthermore, although it has the smallest permanent electric dipole moment

among all singlet ground state molecules, it has the fourth largest permanent electric

dipole moment among triplet ground state molecules, as listed in Table 1.1. NaLi in

the triplet ground state has both magnetic and electric dipole moments. These dipole

moments provide ∼ 1/𝑟3 character between molecules 𝑖 and 𝑗 as

𝑉 𝑑𝑑
𝑖𝑗 =

1

2𝜋𝜖0

�⃗�𝑖 · �⃗�𝑗 − 3(�⃗�𝑖 · �⃗�𝑖𝑗)(�⃗�𝑖 · �⃗�𝑖𝑗)
𝑟3𝑖𝑗

(1.1)

where 𝜇𝑖 is the dipole moment and �⃗�𝑖 is the position vector of the molecule 𝑖. Here,

�⃗�𝑖𝑗 = |�⃗�𝑖 − �⃗�𝑗|, and �⃗�𝑖𝑗 is the unit vector in the direction of �⃗�𝑖𝑗. Note that the electric

dipole interaction is typically much stronger than the magnetic dipole interaction.

For example, for the electric dipole of value 𝑑 ≈ 1𝐷 has a four orders of magni-

tude stronger interaction compared to the magnetic dipole of value 1𝜇𝐵. Tunable

long-range interactions between spins through the electric dipole-dipole interaction

in ultra-cold polar molecules can offer new possibilities for quantum simulation [3].

NaLi is fermionic since the total spin 𝐹 (nuclear and electronic) of the molecule is

half-integer. The states converge to 8 hyperfine thresholds in the zero-field limit due

to the conservation of the total angular momentum 𝐹 = |𝐹 | = |�⃗� + 𝐼Na + 𝐼Li|, where

𝑆 = |�⃗�| = 1 is the total electron spin of NaLi (𝑎3Σ+) and 𝐼Na = 3/2 and 𝐼Li = 1 are

the nuclear spins of Na and Li. With the method explained above, NaLi molecules

are initially formed in the |𝐹 = 7/2,𝑚𝐹 = 7/2⟩ hyperfine state, which is a stretched

state in which all nuclear and electron spins are aligned to the direction of the bias

field. Fermionic molecules including NaLi can only collide via 𝑝-wave collisions that

are suppressed by the centrifugal barrier and therefore have much longer lifetimes

than their bosonic counterparts if they exist.

Chemical reactivity is another property that needs to be considered when it comes

to molecular collisions. Any collision that transfers internal energy into relative kinetic

energy is likely to eject both collision partners from the trap. If both species are in

their absolute ground state (singlet), inelastic collisions are impossible, but there

remains the possibility of reactive collisions through atom exchange 𝐴𝐵 + 𝐴𝐵 →
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Molecule PDM (Debye) PDM* (Debye) 𝐶6 (a.u.)

LiNa 0.57 0.175 3709

LiK 3.58 0.312 411682

LiRb 4.18 0.359 884704

LiCs 5.59 0.462 30409406

NaK 2.78 0.0269 516606

NaRb 3.31 0.0594 1507089

NaCs 4.69 0.0914 6946696

KRb 0.62 0.0540 17720

KCs 1.84 0.101 469120

RbCs 1.25 0.0344 180982

Table 1.1: Permanent dipole moment of molecules in the ground state of the 𝑋1Σ
potential (PDM) [28], permanent dipole moment of molecules in the ground state
of the 𝑎3Σ potential (PDM*) [29], and long-range dispersion coefficients in atomic
units [30]. permanent dipole moment

𝐴2+𝐵2
2. For alkali-metal dimers 𝐴𝐵(𝑎3Σ+) in the rovibrational ground state of the

triplet potential, the following reaction processes may lead to collisional losses:

2𝐴𝐵(𝑎3Σ+) → 𝐴2(𝑎
3Σ+) +𝐵2(𝑎

3Σ+) (1.2)

2𝐴𝐵(𝑎3Σ+) → 𝐴2𝐵 +𝐵 (1.3)

2𝐴𝐵(𝑎3Σ+) → 𝐴2(𝑋
1Σ+) +𝐵2(𝑇 ) (1.4)

2𝐴𝐵(𝑎3Σ+) → 𝐴𝐵(𝑋1Σ+) + 𝐴𝐵(𝑇 ) (1.5)

where 𝑇 is 𝑋1Σ+ or 𝑎3Σ+. Collisions of triplet ground state molecules could result in

inelastic loss from decay to states in the much deeper singlet manifold as well mediated

by nonadiabatic spin-dependent couplings. Thus in principle, singlet ground state,

non-reactive molecules are the most desirable candidates for long sample lifetimes.

Collisions between two NaLi molecules in the triplet ground state are highly re-
2For singlet alkali-metal dimers in levels near the potential minimum, trimer formation reactions

2𝐴𝐵 → 𝐴2𝐵 +𝐵 or 𝐴+𝐴𝐵2 are always energetically forbidden [31].
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active, although spin-dependent couplings are weak and reactions involving transi-

tions to lower-spin states (Eq. 1.4 and Eq. 1.5) are suppressed. The reaction pro-

cesses within the quintet potential (Eq.1.2 and Eq.1.3) are exothermic [29] for NaLi.

However, the collisions between NaLi and Na are peculiar, unlike collisions between

two NaLi. Collisions of 23Na6Li(a3Σ+) with Na are generally chemically reactive

(23Na6Li(a3Σ+) + Na → Na2(X
1Σ+

g ) + Li + heat). However, the dissociation ener-

gies for 23Na6Li and 23Na2 in the lowest triplet state 𝑎3Σ+ are 208.0826(3) cm−1 [25]

and 163.7(12) cm−1 [32], respectively. Therefore, the chemical reaction in the fully

spin-polarized atom–molecule system is strongly suppressed due to the conservation

of the total spin [29,33], and stable long-lived states can be supported. Sympathetic

cooling of NaLi molecules with Na atoms has been demonstrated in a 1-dimensional

1,596-nm optical lattice [34], which is a significant step forward to reaching quantum

degeneracy with molecules.

1.2 Cold collisions in molecular systems

At low temperatures of micro- and nanokelvin, the collision occurs at low partial

waves, and collision physics can be reduced to a few well-defined parameters. For

many systems, these parameters are the 𝑠-wave scattering length and the two-body

loss coefficients. However, because of the strong anisotropic interactions at short-

range and multiple decay channels that are possible in collisions involving molecules,

it is much more difficult to describe them. In relatively simple systems, such as

pairs of alkali-metal atoms or light atom-molecule systems, it is possible to solve the

Schrödinger equation using coupled-channel methods. However, for heavier and more

complex systems, the number of channels needed for convergence is too large, and

coupled channel approaches become prohibitively costly. In this regime, considerable

success has been achieved with effective single-channel methods that take into account

short-range inelastic/reactive loss with a single parameter [35,36].
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1.2.1 Universal loss model for reactive collisions

In particular, a single channel model by Zbigniew Idziaszek and Paul S. Julienne [35]

introduces a complex potential to represent the long-range potential (van der Waals

and centrifugal potential at 𝑟 ≳ 𝑅0) and short-range loss dynamics (at 𝑟 < 𝑅0):

𝑈𝑙(𝑟) = −𝐶6

𝑟6
+ ℏ2𝑙(𝑙+1)

2𝜇𝑟2
− 𝑖𝛾(𝑟)

2
and an energy-dependent complex scattering length

�̃� = �̃�− 𝑖𝛽. 𝑅0 denotes the range of short-range forces 𝛾(𝑟) simulates all short-range

coupling at 𝑟 < 𝑅0 to exoergic non-threshold exit channels that result in loss from the

entrance channel. The van der Waals (vdW) potential is characterized by the length

�̄� = 4𝜋𝑅6/Γ(
1
4
)2 where 𝑅6 = 1

2
(2𝜇𝐶6/ℏ2)1/4. Long-range dispersion coefficients 𝐶6

of bialkali molecules are given in Table 1.1. The model uses the analytic framework

of generalized multichannel quantum defect theory (MQDT) and the two quantum

defect parameters: phase parameter 𝑠 = 𝑎/�̄� and loss parameter 𝑦 where 𝑎 is the

scattering length. These parameters represent the effects of complex short-range

dynamics on the wave function Ψ(𝑟) ∼ 1√
𝑘(𝑟)

𝑒−𝑖
∫︀ 𝑟 𝑘(𝑥)𝑑𝑥 −

(︁
1−𝑦
1+𝑦

)︁
1√
𝑘(𝑟)

𝑒𝑖
∫︀ 𝑟 𝑘(𝑥)𝑑𝑥. The

first term represents the flux of incident particles, whereas the second term gives

the flux reflected from the short-range potential. The quantum defect parameter

0 ≤ 𝑦 ≤ 1 is related to the probability of irreversible loss of incoming scattering

flux from the entrance channel due to dynamics at short-range. For 𝑦 = 1 there is a

unit probability loss, which corresponds to a special “universal” case and for 𝑦 = 0

there is no loss (incident and reflected fluxes are equal). For arbitrary 𝑦 the complex

scattering length for 𝑠-wave and 𝑝-wave collisions are given by:

�̃�𝑙=0(𝑘) = 𝑎+ �̄�𝑦
1 + (1− 𝑠)2

𝑖+ 𝑦(1− 𝑠)
(1.6)

�̃�𝑙=1(𝑘) = −2�̄�1(𝑘�̄�)
2 𝑦 + 𝑖(𝑠− 1)

𝑦𝑠+ 𝑖(𝑠− 2)
(1.7)

when 𝑘 |�̃�| ≪ 1 and 𝑘𝑅6 ≪ 1. In the case of 𝑦 = 1 the elastic and inelastic or

reactive collision rates depend only on the quantum scattering by the long-range

potential at distances 𝑅 ≳ �̄�. Any incoming scattering flux that penetrates inside

�̄� experiences no reflection back into the entrance channel as it is lost to inelas-
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tic/reactive channels. Elastic rate constant 𝐾𝑒𝑙 = 2𝑔 ℎ𝑘
𝜇
|�̃�(𝑘)|2 𝑓(𝑘) and inelastic

rate constant 𝐾 𝑙𝑠 = 2𝑔 ℎ
𝜇
𝛽(𝑘)𝑓(𝑘) where 𝑘2 = 2𝜇(𝐸 − 𝐸0)/ℏ2 with 𝐸 denoting

the total energy, 𝜇 the reduced mass, and 𝐸0 the threshold energy. The function

𝑓(𝑘) =
[︁
1 + 𝑘2 |�̃�(𝑘)|2 + 2𝑘𝛽(𝑘)

]︁−1

≈ 1 is the saturation factor which deviates from

1 when 𝑘 |�̃�| ≪ 1 is not satisfied. Then universal rate constants (𝑦 → 1) for elastic

and inelastic collisions are given as:

𝐾𝑒𝑙
𝑙=0 = 4𝑔

ℎ

𝜇
𝑘�̄�2 𝐾 𝑙𝑠

𝑙=0 = 2𝑔
ℎ

𝜇
�̄� (1.8)

𝐾 𝑙𝑠
𝑙=1 = 4𝜎𝑔

ℎ

𝜇
𝑘�̄�21(𝑘�̄�)

4 𝐾 𝑙𝑠
𝑙=1 = 2𝜎𝑔

ℎ

𝜇
�̄�1(𝑘�̄�)

2 (1.9)

Here, �̄�1 = �̄�Γ(1
4
)6/(144𝜋2Γ(3

4
)2) ≈ 1.064�̄�. The factor 𝑔 = 1 except that 𝑔 = 2 when

both particles are identical species in identical internal states, and the factor 𝜎 = 3 for

𝑙 = 1 for molecules in the universal limit. This result implies that reactive collisions

undergo universal loss, which is greater for larger 𝐶6 and therefore NaLi is long-lived

due to the small vdW coefficient despite its reactivity.

Ironically, most reactive collisions and even many non-reactive collisions involving

one or more dimers that have been studied are known to go under fast collision loss and

have loss rates saturated or close to their universal value [41–49]. There are proposed

explanations for the fast loss of non-reactive molecules including formation of a long-

lived collision complex during collision which is referred to as “sticky collision" [37,38]

and photoassociation of intermediate complexes by the optical trap [39,40] as depicted

in Fig.1-1. As new ideas emerge, collisional studies directed to intermediate complexes

became an active research. The lifetime of the intermediate complex in RbCs + RbCs

collision was estimated by shining pulsed optical excitation light [50] and long-lived

intermediate complex was observed in KRb molecular systems [40,51].

1.2.2 Fabry-Perot interferometer model for collision resonances

The previously introduced single-channel model that uses the analytic framework of

MQDT may not be so intuitive, although it has simple results. Therefore, we now
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collsion

photo-excitation

Figure 1-1: Photo-induced collisional loss. The collisions between two molecules
(green and red sphere) occur in a potential which is the attractive vdW potential
−𝐶6/𝑅

6 at long-range 𝑅>𝑅long (𝑅 is the inter-particle distance) and a strongly re-
pulsive potential at short-range 𝑅<𝑅short. Most experiments on collisions involving
one or more dimers show fast collision loss that are saturated or close to their univer-
sal value and it is proposed that the fast loss of non-reactive molecules involve long-
lived intermediate complexes so called “sticky collision" [37,38]. These complexes are
photo-excited by optical trap, and near universal loss can be observed [39,40].
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focus on the simple picture of an optical Fabry-Perot interferometer with two mirrors

developed in Ref. [33]. This picture is analogous to cold collisions that are explained

by two reflectors, where the two reflections are from quantum reflection by the long-

range vdW potential and reflection at short-range by the repulsive core potential as

in Fig.1-1. The flux transmitted by the inner mirror M2 in Fig.1-2 represents inelastic

loss where mirror M1 represents long-range reflection (quantum reflection or reflection

by the centrifugal barrier) and mirror M2 represents reflection at short-range. For an

incoming flux 𝐼, the total transmission 𝑇 through both reflectors is given by the flux

transmitted in the absence of the second mirror (𝐼 · |𝑡1|2) times the interference term

(𝐶):

𝑇 = (𝐼 · |𝑡1|2)
(︂

1− |𝑟2|2

|1− 𝑟2𝑟1𝑒−𝑖𝜑|2

)︂
≡ (𝐼 · |𝑡1|2)𝐶 (1.10)

Here, 𝑟𝑖 and 𝑡𝑖 are the amplitude reflection and transmission coefficients for the mirror

Mi and 𝜑 is the round-trip phase. The first term represents the universal loss since

it assumes no reflection by the inner mirror (𝑟2 = 0). The inner reflection is directly

related to the quantum defect parameter 𝑦 introduced in the single channel model as:

𝑟2 = (1 − 𝑦)/(1 + 𝑦), 𝑡2 = 2
√
𝑦/(1 + 𝑦), which is 1 for complete transmission and 0

for 100 % reflection. Long-range reflection approaches unity at very low energies and

𝑟1 ∼ 1. In this limit, 𝐶(𝑦, 𝜑) = 2𝑦/(1−cos𝜑+𝑦2(1+cos𝜑)) and at 𝜑 = 0 contructive

interference leads to an enhancement of 𝐶 = 1/𝑦 and at 𝜑 = 𝜋 destructive interference

leads to a minimum transmission with 𝐶 = 𝑦.

This Fabry-Perot interferometer model can explain collisional resonances as well.

When a new bound state is added to the interparticle potential and the close-range

potential is modified, the Fabry-Perot is tuned over one full spectral range. This takes

the scattering length 𝑎 over its full range between ±∞. The Fabry-Perot phase 𝜑 is

directly related to the quantum defect parameter 𝑠 by: cos𝜑 = 1−2/(1+(1−𝑠)2) and

therefore we obtain 𝐶(𝑦, 𝑠) = 𝑦(1+(1−𝑠)2)/(1+𝑦2(1−𝑠)2) which exactly reproduces

the results from Eq.1.6. The single channel model explained earlier can be extended

for a Feshbach resonance, which occurs when the incoming scattering channel becomes

resonant to a bound state by an external magnetic field. The Feshbach resonance at
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Figure 1-2: Fabry-Perot interferometer model for reactive collisions. The
scattering dynamics can be fully described by quantum reflection off the vdW po-
tential at 𝑅∼𝑅long and reflection and transmission at 𝑅∼𝑅short. Transmission into
short-range implies inelastic/reactive loss [35,52–54]. This situation is fully analogous
to an optical Fabry-Perot interferometer with two partially reflective mirrors (M1 and
M2). Reactive loss is proportional to the flux transmitted through both mirrors. De-
pending on constructive and destructive interference between multiple reflections, the
loss can be highly enhanced (on resonance, Fig. (a)) or suppressed (Fig. (b)) than
the transmission through mirror M1 only, which represents the universal loss.
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𝐵=𝐵res acts as a lossless phase-shifter for the Fabry-Perot phase 𝑠(𝐵) = 𝑞

(︂
1 −

Δ

𝐵 −𝐵res

)︂
where, 𝑞 characterizes the background scattering phase far away from the

Feshbach resonance, and Δ is the width of the resonance.

The universal limit from the single-channel model assumes no short-range reflec-

tion and is given by all the flux that has not been reflected at long-range. The loss

rates can be modified only if the background loss rate is below the universal limit

(𝑦 < 1) and the backreflected flux at short-range destructively or constructively inter-

feres with quantum reflection via Feshbach resonances. Spin-polaried NaLi+Na with

low reactivity has the background loss rate more than an order of magnitude lower

than the universal limit. Therefore, it can be a possible system for the realization

of quantum chemistry controlled by an external field. In principle, due to its chem-

ical reactivity, NaLi+NaLi is not a good candidate to observe magnetically tunable

chemical reactions using Feshbach resonances. However, as we shall discuss shortly,

the experimental evidence has not corroborated this hypothesis.

1.3 Thesis outline

The preceding discussion illustrates that the ground state NaLi in the triplet potential

is an experimental system that has pushed the field of ultracold physics and quantum

chemistry. Since the first signal of the triplet ground-state NaLi molecules [13, 25,

26] achieved on the first year of my Ph.D studies, I was involved in building the

control circuits, STIRAP laser system, and imaging laser system at a high magnetic

field for multiple hyperfine states of Na and Li atoms, which was necessary for two

important experiments: collisional cooling of NaLi with Na in an optical lattice [34],

and control of reactive collisions by quantum interference [33]. These two experiments

are elaborated in the thesis of Hyungmok son [27].

This thesis focuses on three experiments that I led in the last two years of my

Ph.D studies after the two experiments mentioned above, and numerical/theoretical

work on a new approach of creating ground-state NaLi using a free-to-bound Raman
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transition. Chapter 2 provides an overview of the experimental apparatus, focusing on

recent modifications for the purpose of the formation and manipulation of molecules.

Chapters 3, 4 and 5 discuss the three experiments: the spectrum of Na + NaLi

Feshbach resonances, a Feshbach resonance in NaLi + NaLi collisions, and magnetic

trapping and cooling of NaLi. These experiments use magnetic quantum control

of NaLi in the triplet potential to understand molecular collisions and reactions at

ultracold temperatures. Chapter 6 discusses two-photon Raman transfer from Na

and Li atoms to NaLi molecules. Chapter 7 is a summary of the work with future

prospects.
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Chapter 2

Experimental apparatus

The experimental apparatus or the BEC3 machine was built in 2001 and was initially

designed to produce 23Na Bose-Einstein condensates. In 2007, the 6Li atomic source

was added to the apparatus and modified to study 6Li degenerate Fermi gases. After

upgrading, long efforts were made to create 23Na6Li molecules from ultracold atoms.

The further development of the apparatus that was necessary for molecular spec-

troscopy [25, 26] and the first production of 23Na6Li in the triplet ground state [13]

is given in the thesis of Timur Rvachov. This chapter focuses on significant improve-

ments to the apparatus after the first signal of the ground state molecules, necessary

for studying molecular collisions using magnetic quantum control.

2.1 Instrumentation for control

The control of the experiment is accomplished through the integration of commercial

and home-built apparatus. We use Cicero word generator for our experimental control

software, which can send messages to devices through RS-232, GPIB connections,

and National Instruments (NI) digital and analog output cards. The purpose of this

section is to describe the instrumentation developed to generate reliable TTL signals

from the NI digital output and a circuit to buffer NI analog signals.
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2.1.1 Digital control

To switch devices on and off during the experimental sequence, we use National

Instruments (NI) PXI-6533 digital output cards, in which output signals are sent

to home-built instrumentation to generate TTL compatible digital control signals.

This TTL compatible signal generating device is used to constitute two parts: "an

opto-isolator box" and "a switch board". The opto-isolator electronic box isolates the

ground of the National Instrumentation cards from the rest of the system using a logic

gate optocoupler (FOD0720) and converts NI output low voltages (< 0.4V) or high

voltages (> 2.4V) to 0V or 5V via a digital buffer. After this stage, the converted

signals are sent to the "switch board" circuitry, which allows for either computer

or manual control of the digital output voltage. It has two toggle switches and two

LEDs per channel. The first switch allows us to switch between computer and manual

control mode, and the second switch, which is enabled only when the first switch is

set to manual control mode, allows us to toggle between high and low output voltages.

Two LEDs indicate computer or manual mode and high or low output voltage. This

digital control instrumentation had a few problems, and redesigning was necessary for

future molecule experiments. First, all the wires were hand-soldered and very old and

would often fall apart. Second, it was not designed to isolate between different output

channels, which caused cross-talk among them. Lastly, the LEDs were powered by

an output signal itself, and the brightness of the LED significantly depends on the

amount of current drawn by the device being controlled. In many cases, LEDs on a

single "switch board" that contains eight output channels simultaneously light on and

off during experimental runs as a result. Figure 2-1 is a simplified schematic of the

old circuit design, and figure 2-2 is a simplified schematic of the new circuit design for

a single digital channel. Parts inside the green dashed box in figure 2-1 were included

in the old "switch boards" and the rest were in a separate "opto-isolator box". In the

new design, eight duplicates of every part in figure 2-2 were built in a single "switch

board". This was only possible by making the circuit compact by employing printed

circuit boards (PCBs). All output signals share the same ground which corresponds
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Figure 2-1: Schematic of old digital control instrumentation circuit for single
channel. This is a simplified schematic for single control output. Only the parts
inside the green dashed box were included in the old "switch boards" and the rest
were in a separate "opto-isolator box".

to ’GND2’ in figure 2-1 for the old design, while each output channel has individual

floated ground by having a separate DC to DC converter for the new design. (See

Appendix A.1 for the full eight-channel PCB schematic and board design.)

2.1.2 Analog control

Analog control voltages (ranging from 0V to 10V) are used to vary laser frequencies

and intensities and magnetic fields in an experimental sequence. These voltages are

generated by PXI-6733 analog output cards and a newly developed low-noise system

using high-precision DACs and floating power supplies by Will Lunden [55]. We use

the low-noise system to vary the intensity of our 1D optical lattice and the magnetic

bias field for Feshbach resonances. For the rest of the analog control, we use the

voltage signals generated by the analog output cards that are buffered by home-built
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Figure 2-2: Schematic of newly designed digital control instrumentation
circuit for single channel. This is a simplified schematic for single control output.
In this new design eight duplicates of all the parts shown are built in a single "switch
board".
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buffering circuits. For this, we use mainly two types of instrumentation amplifier

(INA): either INA117 or INA111. INA117 has a large common-mode input range

of ±200V and a protected input voltage of ±500V which is necessary to control the

output current of high-power power supply units. However, INA117 has a relatively

large output voltage noise of, for example, 550 nV/
√
Hz at 10 kHz. On the other hand,

INA1111 has a small common-mode rejection voltage of ±10 V but low output voltage

noise, for example, 10 nV/
√
Hz at 10 kHz which is even lower than the low-noise

system developed using high-precision DACs and floating power supplies. A circuit

diagram and the printed board layout for buffering analog signals using INA111 are

provided in Chapter A.1.

2.2 Coils and magnetic field

The ability to control the magnetic field in the main vacuum chamber where most

of the science happens is essential for cooling and trapping atoms and molecules.

For example, to prepare an ultracold Na/Li mixture in the lowest Zeeman energy

states (in the |𝐹,𝑚𝐹 ⟩ basis, where 𝐹 is the total angular momentum and 𝑚𝐹 is the

projection of 𝐹 on the magnetic quantization axis, these states correspond to |1, 1⟩

for Na, and |1/2, 1/2⟩ for Li) for the magnetic association of NaLi Feshbach molecules
1, we produce an ultracold mixture of 23Na and 6Li in their upper-stretched hyperfine

states (|2, 2⟩ for Na and |3/2, 3/2⟩ for Li) using evaporative and sympathetic cooling

in an Ioffe–Pritchard magnetic trap [57] at a bias field of ∼ 2 G. The mixture is

later transferred to the lowest Zeeman states using a Landau–Zener (LZ) magnetic

field sweep in an optical trap (see Chapter 2.3.3 for details). The magnetic trap

requires two sets of four cloverleaf coils that create radial gradient fields in the 𝑥

and 𝑧 directions, and curvature coils that produce a parabolic field curvature in the

𝑦 direction. Since the curvature coils also produce a substantial bias field along

1Ultracold mixture of 23Na and 6Li in their lowest Zeeman states (|1, 1⟩ for Na and |1/2, 1/2⟩ for
Li) is required for the formation of NaLi Feshbach molecules. Our previous work on NaLi Feshbach
molecules uses the 745.4 G 𝑑-wave Feshbach resonance between Na and Li in the lowest Zeeman
energy states, which has a width of 10 mG [56].
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Power supply unit Connected coils Bias field direction
Curvature curvature & antibias (+)

Bias curvature (+)
y-comp compensation (+)

y-trap-bias compensation (-)
spin-flip compensation (-)
Feshbach antibias (-)

MOK MOK coil (+)

Table 2.1: Magnetic field coils and power supply units.

𝑦, a single power supply unit("Curvature") is connected to the curvature coils and

the antibias coils, which can produce a relatively homogeneous bias field in the −𝑦

direction (see Table 2.1 for details).

In addition, to study magnetically tunable scattering resonances, one should also

be able to stabilize magnetic fields at high fields. For example, the formation of NaLi

Feshbach molecules requires active stabilization of magnetic fields up to ∼ 800 G,

with field noise less than 1 part in 105 and the experiments described in chapters 3

and 4 require active stabilization of magnetic fields up to ∼ 1500 G. For producing

a high magnetic bias field, we use antibias coils powered by the "Feshbach" power

supply unit.

2.2.1 Curvature cancellation

Although antibias coils are meant to produce a homogeneous bias field, they can create

significant curvature fields (forming a saddle point) when the magnetic bias field by

these coils is high. Unfortunately, there is a mismatch between the position of the

saddle point of the field by antibias coils and the center of the Ioffe-Pritchard trap,

where the atoms are trapped for evaporative and sympathetic cooling. Therefore,

at a high bias field, atoms and molecules can feel a large gradient field if they are

placed at the center of the Ioffe-Pritchard trap. The displacement is estimated to

be about 2.5 mm in the 𝑥 direction and a few hundred 𝜇m in the 𝑦 direction. This

estimation was done by monitoring the acceleration of atoms near the magnetic trap

center which is driven by the curvature fields. To prevent atoms and molecules from
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feeling a large gradient field, after evaporative and sympathetic cooling of the atoms

in the magnetic trap, we had been applying an additional gradient field in the 𝑥

direction using a compensation coil (x-compensation) that shifts the magnetic trap

center to near the saddle point. This leads to heating and poor transfer efficiency

of the atoms from the shifted magnetic trap to an optical trap2. One approach to

solving this problem is to cancel the curvature created by the antibias coils. When the

magnetic curvature is canceled out, atoms or molecules will not see a huge magnetic

field gradient, even though they are not positioned at the saddle point.

The goal is to have the curvature created by the current through the antibias coils

canceled out by that of the current through the curvature coils as shown in figure 2-3.

The radius of antibias coils is larger than the spacing between sets of coils on the left

and right sides. However, the spacing is larger than the radius for the curvature coils.

Therefore, the signs of the curvature created by these two sets of coils are opposite

to each other when the currents flow in the same direction. For this purpose, an

additional power supply was connected anti-parallel to the "Bias" power supply unit.

A rough condition to cancel out the curvature was found by maintaining the bias

field near 745 G and monitoring Na atoms in the state |2, 2⟩ (low-field seeker) and Li

atoms in the state |1/2, 1/2⟩ (high-field seeker) simultaneously. When the 210 amps

pass through the antibias coils and the 22 amps pass through the curvature coils, the

magnetic bias field is near 745 G while the curvature field in the 𝑦 direction (axial

direction) is close to zero. However, this condition did not allow us to eliminate

inhomogeneity in the radial direction (𝑥𝑧 plane) because the saddle point created by

the curvature coils is also displaced by a few 𝜇m in the radial direction from that

created by the antibias coils.

2In principle, this should not affect the transfer efficiency. However, since the displacement
is significant, the shifted magnetic trap is no longer an approximate harmonic trap but can have
multiple local minima.
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Figure 2-3: Circuit diagram of curvature field cancellation.
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2.3 Laser systems

2.3.1 STIRAP lasers

The formation of NaLi molecules in the triplet ro-vibrational ground state (𝑣 =

0, 𝑁 = 0) from the Feshbach state (𝑣 = 10, 𝑁 = 2,𝑚𝑁 = −2) is carried out using the

technique called the stimulated Raman adiabatic passage (STIRAP). This technique

uses two laser pulses designed to keep the molecules in a coherent dark state that is

decoupled from the intermediate excited state. For the molecular potentials of NaLi,

we decided to use 833 nm (upleg) and 819 nm (downleg) laser frequencies to couple

the NaLi Feshbach and ground states via the 𝑣* = 11 excited vibrational state in

the 𝑐3Σ+ potential, which are chosen to have strong downleg Rabi coupling with a

compromised upleg coupling strength. Figure 2-4 is an energy level diagram showing

the STIRAP transitions. The relatively strong downleg transition requires only a few

100 𝜇W power and we use a home-built 818 nm external cavity diode laser (ECDL)3

while the weak upleg transition requires higher power and we use an injection lock

setup with a high power laser diode4 seeded by a home-built 833 nm ECDL.

The two STIRAP lasers are locked to a commercial optical cavity made of ultra-

low expansion (ULE) glass with a linewidth of 15 kHz. This cavity allowed for locking

lasers over a range of 810-880 nm to relative linewidths of < 1 kHz. However, we

observe that STIRAP transfer from the Feshbach state to the ground state efficiency

drops significantly for STIRAP pulses longer than 50 𝜇s. This is probably due to

the upleg laser, which has much higher power than the downleg laser, acting on the

downleg path (transition between 𝑣 = 0, 𝑁 = 0,𝑚𝑁 = 0 and 𝑣* = 11, 𝑁 = 1,𝑚𝑁 =

−1). The strong upleg laser can induce AC Stark shift of the ground state on the

order of 10 kHz, leading to large two-photon detuning5.

3We use the ECDL design developed by the Steck group at the University of Oregon for the
STIRAP ECDLs

4We use a laser diode mount and a 650 mW 830 nm single mode laser diode from Thorlabs
(model: LD830-SE650) for the injection lock.

5Problem of two-photon detuning due to AC stark shift becomes much more serious for free-to-
bound STIRAP described in Chapter 6.

39



Figure 2-4: STIRAP lasers.

2.3.2 Imaging & cleaning

To reliably detect molecules and atoms, we need resonant laser beams for atoms at

high bias field ( 745 G). Initially, imaging systems for Na in state |𝐹 = 1,𝑚𝐹 = 1⟩

(upper-stretched state |𝐹 = 2,𝑚𝐹 = 2⟩) and Li in state |𝐹 = 1/2,𝑚𝐹 = 1/2⟩ (upper-

stretched state |𝐹 = 3/2,𝑚𝐹 = 3/2⟩) were built by past members of the BEC3 team

to image atoms near 745 G (at low magnetic field near 0 G). In order to study

collisions between atoms and molecules, imaging/cleaning laser systems for Na in

state |𝐹 = 2,𝑚𝐹 = 1⟩ and |𝐹 = 2,𝑚𝐹 = 2⟩ at high field6 were implemented later by

setting up a double-pass acousto optical modulator (AOM) for each from the Na state

|𝐹 = 1,𝑚𝐹 = 1⟩ high field imaging beam. In addition, an imaging beam for Na in

the lower-stretched state |𝐹 = 2,𝑚𝐹 = −2⟩ was implemented to study collisions in

the lower-stretched NaLi + Na mixture in the quartet potential. After the magneto

optical trap (MOT) stage, the Na slower beam is frequency shifted by a −70 MHz

6Although we colloquially call 745 G as "the high field", it is not truly the high-field regime for
Na in the ground state. 𝑚𝐽 is not a good quantum number, and the state |𝐹 = 1,𝑚𝐹 = 1⟩ does
not have a well-defined quantum number 𝑚𝐽 = −1/2 but also has a small fraction of 𝑚𝐽 = 1/2
component. Therefore, the Na 𝐷2 transition from the ground state |𝐹 = 1,𝑚𝐹 = 1⟩ to the excited
state |𝐹 ′ = 0,𝑚𝐹 ′ = 0⟩ using 𝜎− polarized light is not a closed cycling transition, but the excited
state can decay to state |𝐹 = 2,𝑚𝐹 = 1⟩ as well.
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single-pass AOM and sent to the imaging path for state |𝐹 = 2,𝑚𝐹 = −2⟩ imaging

at high field.

2.3.3 Optical trapping

The Na/Li mixture is transferred from a magnetic trap to the combination of two

coaxial optical traps: a 1,064 nm optical dipole trap (ODT) (30 𝜇m waist, 10 W

power) and a 1,596 nm 1D optical lattice (50 𝜇m waist, 2 W power). After 0.4 s of

forced evaporation in the 1,064 nm optical dipole trap, the trap is switched off and

the science is carried out in the 1,596 nm 1D lattice. The use of 1,596 nm light for the

trap improves the lifetime of the NaLi molecules by suppressing spontaneous photon

scattering compared to the more common 1064 nm trap. Later, instead of using a

combination of the two coaxial optical traps, the mixture is transferred to a 1,550 nm

1D optical lattice (30 𝜇m, 10 W power) and forced evaporated in the lattice. The

1D lattice provides strong axial confinement to overcome the anti-trapping produced

by magnetic curvature even without shifting the magnetic trap or canceling out the

curvature created by antibias coils7.

7We realized that we do not need to shift the position of the magnetic trap center with a com-
pensation coil in order to well-confine the atoms and molecules only when we performed the third
experiment described in this thesis i.e., magnetic trapping and cooling of NaLi molecules.
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Chapter 3

Spectrum of Feshbach resonances in

NaLi+Na collision

Collisional resonances that are electromagnetically tunable have become an estab-

lished tool for modifying interactions between ultracold atoms and have been the

key for many applications, from magnetic association of loosely bound molecules to

quantum simulations [58, 59]. For ultracold molecular systems, tunable collisional

resonances are a powerful measure for understanding interaction potentials, probe

collision complexes, and control chemical reactions [60].

In the case of cold collisions between alkali-metal atoms, the number of resonant

states remains typically small, and the resonances are usually tractable. However,

in the case of cold collisions involving molecules, due to strong and anisotropic in-

teractions, ro-vibrational excited states can also contribute to resonant states, and

therefore resonances themselves may not be well separated and are difficult to iden-

tify. Due to the large density of states of molecular systems [37, 39] it has been a

challenge to perform rigorous scattering calculations and different methods enabling

efficient scattering calculations have become an active field [61, 62]. Despite these

efforts, due to the extreme sensitivity of the low-temperature observables to details

of potential energy surfaces, [63, 64] there has been very little success in predicting

Feshbach resonances in molecular collisions.

Rather than performing exact quantum calculations, using simple statistical short-
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range models while treating the physics of long-range scattering within multichannel

quantum defect theory is one feasible alternative approach that has been pursued for

the description of molecular resonances [37–39,65]. However, the validity of statistical

short-range models is controversial and, therefore, detailed experimental and further

theoretical studies are needed.

Here we use a combined experimental and theoretical quantum chemistry ap-

proach, which, for the first time, sheds some light onto the nature of deeply bound

complexes and the bottom-line mechanism of atom-molecule Feshbach resonances.

There are two approaches to understanding and characterizing resonances in colli-

sions involving ultracold molecules. Resonances supported by long-range states of

the collision complex may be trackable, since the quantum numbers of the separated

atoms and molecules are approximately preserved. For example, resonant states in

collisions involving Feshbach molecules [66–69] and in collisions between ground state

NaK and K [70, 71] were successfully analyzed in this way. In contrast, resonances

supported by collision complexes in which different quantum numbers are mixed due

to a strong anisotropic electronic interaction, as in the case for NaLi + Na [33], it

is more difficult to understand the nature of the bound complexes. In these terms,

patterns of resonances can provide information on the interaction potential and reso-

nant states. In either case involving tightly bound molecules, the underlying coupling

mechanism has not yet been characterized.

We report the map of Feshbach resonances in collisions between triplet ro-vibrational

ground-state NaLi and Na, both prepared in the maximally spin-stretched state. NaLi

+ Na in the quartet potential is the lightest bialkali+atom system that has been re-

alized and is chemically stable. Collisions of 23Na6Li(a3Σ+) with Na are generally

chemically reactive (23Na6Li(a3Σ+) + Na → Na2(X
1Σ+

g ) + Li + heat). However, the

chemical reaction in the fully spin-polarized atom–molecule system is strongly sup-

pressed due to the conservation of the total spin [29,33], and stable long-lived states

can be supported. The system is suitable for modeling molecular scattering reso-

nances because of the relatively small density of states and number of electrons, and

therefore more accurate quantum calculations are feasible compared to other heavier
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molecular systems.

3.1 Experimental protocol and results

Our experiments use triplet ground-state 23Na6Li (𝑎3Σ+) molecule and Na atom mix-

tures in the spin-polarized quartet potential, which are chemically stable. The Hamil-

tonian that includes hyperfine coupling and Zeeman energy for triplet ground-state
23Na6Li is given as

𝐻 = 𝐻HF +𝐻Zeeman

= 𝑎1�⃗� · 𝐼Na + 𝑎2�⃗� · 𝐼Li +
𝜇𝐵

ℏ
(𝑔𝑠�⃗� + 𝑔𝐼Na

𝐼Na + 𝑔𝐼Li
𝐼Li) · �⃗�

(3.1)

where 𝑎1 = 433.2(1) MHz and 𝑎2 = 74.6(1) MHz [13]. There are 36 states in the

ground rotational state manifold (𝑁 = 0). The states converge to 8 hyperfine thresh-

olds in the zero-field limit due to the conservation of the total angular momentum

𝐹 = |𝐹 | = |�⃗� + 𝐼Na + 𝐼Li|, where 𝑆 = |�⃗�| = 1 is the total electron spin of NaLi

(𝑎3Σ+) and 𝐼Na = 3/2 and 𝐼Li = 1 are the nuclear spins of Na and Li. The hyperfine

splitting due to the Na nucleus is significantly larger than that due to the Li nucleus,

so 𝐹1 = |�⃗�+𝐼Na| = 1/2, 3/2, and 5/2 is an approximately good quantum number that

characterizes the largest-scale hyperfine splittings in the zero-field limit. The energy

level diagram of NaLi in the triplet ground state (𝑎3Σ+, 𝑣 = 0, 𝑁 = 0) at zero bias

field is shown in Fig. 3-1.

There are a total of two possible states in the spin-polarized quartet potential, the

“upper stretched state" where all nuclear and electron spins are aligned to the bias

magnetic field direction (|𝐹,𝑀𝐹 ⟩NaLi + |𝐹,𝑀𝐹 ⟩Na = |7/2, 7/2⟩NaLi + |2, 2⟩Na) and the

“lower stretched state", where all nuclear and electron spins are anti-aligned to the

field direction (|7/2,−7/2⟩NaLi + |2,−2⟩NaLi). Here, 𝐹 is the total spin (electron and

nuclear) and 𝑀𝐹 is the 𝐵- field projection of 𝐹 . The molecular and atom mixture in

the “upper stretched hyperfine state" with typical numbers of ∼3×104 and ∼3×105

respectively is produced in a 1, 596-nm one-dimensional optical lattice following the

method described in ref. [33, 72]. The mixture of “lower stretched state" is produced

45



mF = 3/2 3/2

mF = 5/2 5/2

mF = 7/2 7/2

F1 = 5/2

F = 3/2

F = 5/2

F = 7/2

100 MHz

mF = 1/2 1/2
mF = 3/2 3/2

mF = 5/2 5/2

F1 = 3/2
F = 1/2
F = 3/2

F = 5/2

1132 MHz

mF = 3/2 3/2

mF = 1/2 1/2

F1 = 1/2
F = 3/2

F = 1/2

561 MHz

Figure 3-1: Rovibrational ground state energy level diagram of NaLi in
the triplet potential (𝑎3Σ+) at zero bias field. Quantum number 𝐹 = |𝐹 | =
|�⃗� + 𝐼Na + 𝐼Li| is the total angular momentum, where 𝑆 = |�⃗�| = 1 is the total
electron spin of NaLi and 𝐼Na = 3/2 and 𝐼Li = 1 are the nuclear spins of Na and
Li. In the zero field limit, 𝐹1 = |�⃗� + 𝐼Na| = 1/2, 3/2, and 5/2 is an approximately
good quantum number that characterizes the largest-scale hyperfine splittings as the
hyperfine splitting due to the Na nucleus is significantly larger than that due to the Li
nucleus. Molecules are formed in the low field seeking spin-polarized hyperfine state
(|𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩) and is indicated in blue.
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by coherent transfer from the sample of “upper stretched state" using a magnetic field

sweep in the presence of radio frequency waves at a low bias field [73]. For this process,

the bias field is dropped from 745 G where “upper stretched state" is prepared to a

low field near 8 G in 15 ms. After the state preparation, the bias field is ramped to

a target value in 15 ms. We determined the collisional lifetimes of the atom-molecule

mixtures by holding the sample for a variable time at the target magnetic field.

The loss of NaLi molecules with Na atoms is measured as a function of the bias

field for both spin-polarized states. The number of molecules left after the bias field is

swept down by 12.6 G in each target field for 200 ms and normalized by that without

the field sweep is shown in Fig. 3-2 from near zero to 1420 G in steps of 8.76 G.

A fine scan that is at least a factor of 10 finer is performed in the fields where a

noticeable loss is found from the coarse scan in Fig. 3-2. We identified 8 resonances

in the upper stretched state and 17 resonances in the lower stretched state indicated

with red vertical lines in Fig. 3-2.

The approximate spectral information of each resonance is estimated by fitting

the observed loss features from a finer search to a simple Lorentzian function with

a slope (the slope is to consider the overall change in the background loss and the

effect of nearby other resonances). An example of a resonant loss feature near 884

G from a finer scan and a Lorentzian fit is shown in Fig. 3-3(a). The result of the

fit is summarized in Table 3.1. The resonances are labeled with numbers in order

of increasing resonance position in Gauss for two different initial collision channels,

respectively. For three resonances 4,5 and 6 in the upper stretched state, the loss

rates are mapped as a function of the bias field for a more accurate estimation of the

resonance position and width, as shown in Fig. 3-3(b). For these three resonances,

the center and width obtained by a Lorentzian fit to the loss rates instead of the loss

feature are summarized in Table 3.1. We confirmed that the approximate widths from

observed loss features can be broader due to saturation compared to the more accurate

widths from the loss rate measurements with resonance 5 in the upper stretched state

47



0 200 400 600 800 1000 1200 14000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Na

Li 
nu

m
be

r (a)

0 200 400 600 800 1000 1200 1400
Bias field (G)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Na

Li 
nu

m
be

r (b)

Figure 3-2: Collisional loss spectrum of NaLi molecules with Na atoms as
a function of magnetic field a. in upper stretched hyperfine states and
b. in lower stretched hyperfine states. Y-axis is the number of NaLi left after
sweeping down the bias field by 13 G at each field for 200 ms, normalized by the
number of NaLi without the field sweep. Each data point represents three to six
measurements with and without the sweep respectively. The number of Na atoms
in each pancake for each measurement was around 115, and the number of NaLi
molecules without the field sweep was about 35. We observed total of 25 resonances:
8 in the upper spin-polarized mixture and 17 in the lower spin-polarized mixture. Red
vertical lines indicate the position of Feshbach resonances. The errorbar represents
one standard deviation of the mean. Grey lines are interpolated data with a piecewise
cubic polynomial to guide the eye.
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Collision channel : |7/2,7/2⟩NaLi + |2,2⟩Na

𝐵0 (G) Δ𝐵 (G) 𝛽 (cm3s−1)

1 203.7(2) 5.3(7) 1.5(6)× 10−11

2 237.9(1) 6.3(4) 7.1(1)× 10−11

3 372.0(7) 20(3) 2.3(5)× 10−11

4 657.8(3) 5.2(8) 1.0(1)× 10−10

5 884.3(3) 10(2) 6(1)× 10−11

6 978.2(2) 4.9(3) 7.4(5)× 10−10

7 1029.7(3) 10(2) 1.5(3)× 10−11

8 1135.2(8) 15(3) 3.0(5)× 10−11

Collision channel : |7/2,−7/2⟩NaLi + |2,−2⟩Na

𝐵0 (G) Δ𝐵 (G) 𝛽 (cm3s−1)

1 82.5(1) 1.3(2) 1.0(3)× 10−10

2 145(1) 18(4) 5.3(9)× 10−11

3 309(1) 13(4) 1.9(4)× 10−11

4 361.82(5) 1.0(2) 4.5(8)× 10−11

5 449.8(2) 3.1(5) 6(2)× 10−11

6 478(3) 35(13) 3.4(6)× 10−11

7 561.8(2) 2.4(6) 8(2)× 10−11

8 590.7(2) 9(1) 8(2)× 10−11

9 642.3(5) 3(2) 2.9(4)× 10−11

10 661.5(2) 3.9(9) 2.4(5)× 10−11

11 722.5(1) 2.7(3) 8(4)× 10−11

12 860.8(2) 2.1(6) 2.4(6)× 10−10

13 963.3(2) 6(1) 2(1)× 10−10

14 1030.1(2) 3.3(8) 9(3)× 10−11

15 1083.3(3) 4(1) 5(1)× 10−11

16 1176.3(3) 3.2(9) 8(2)× 10−11

17 1269.2(1) 2.6(3) 3.3(5)× 10−11

Table 3.1: The Feshbach resonance position, width and peak loss rate con-
stant. Resonance positions and widths are obtained by Lorentzian fit to loss features,
except for resonances 4 to 6 for the incoming collision channel |7/2, 7/2⟩NaLi+ |2, 2⟩Na.
The center and width are obtained by Lorentzian fit to the field-dependent loss rates
instead for these three resonances.
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Figure 3-3: Feshbach resonance in NaLi + Na upper stretched state near
884 G. a. NaLi number as a function of bias field where the NaLi + Na mixture are
held for 100 ms normalized to the number without the hold. b. Loss rate of NaLi
molecules with about 100 Na atoms in each pancake as a function of bias field. The
dashed blue lines are the fits to a simple Lorentzian function with a slope. The inset
is the molecule number per pancake as a function of hold time near the center of the
resonance (∼ 884.3 G).
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near 884 G. The width obtained from a Lorentzian fit to the loss feature of resonance

5 is 17(1) G, which is broader (about 50 %) compared to that from the loss rate

measurement, which is 10(2) G.

The decay curves are taken as a function of the hold time near the center of

loss features as in the inset of Fig. 3-3(b) for the peak loss rate constants 𝛽 and

are summarized in the last column of Table 3.1. Sodium densities are calibrated

by comparing the measured decay rates with the decay rate of the mixture in a

non-stretched spin state which is predicted to occur with the 𝑠-wave universal rate.

This method was validated in ref. [33] by confirming that the measured loss rate in

|7/2, 7/2⟩NaLi+|1,−1⟩Na collision is, within the uncertainty, the 𝑠-wave universal rate,

which is well known for our system [74].

The upper and lower stretched Na + NaLi loss rate constants away from reso-

nances at low field near 0.5 G are 7.5(2.2)× 10−12cm3s−1 and 6.7(2.0)× 10−12cm3s−1,

respectively, and at high field near 540 G are 4.5(1.4) × 10−12cm3s−1 and 3.5(1.0) ×

10−12cm3s−1, respectively. These background loss rates are more than an order of

magnitude smaller than the universal loss rate constant for Na + NaLi 𝑠-wave colli-

sions, which is 1.7 × 10−10cm3s−1. The loss rate constants of the two spin-polarized

mixtures match both at low-field and high-field within the uncertainty. For both

states, the background loss rates are lower at the higher magnetic field.

3.2 Analysis

One would expect the upper stretched state to have more possible decay channels

due to its higher energy. However, we have observed similar rates of background

loss and Feshbach enhanced losses for both states, and even more resonances for the

lower stretched state. This implies that Zeeman energies do not play a major role

and that dipolar relaxation is not a dominant decay mechanism for the collisional

complex. Instead, the decay is probably dominated by short-range chemical reactions

or inelastic loss, which are expected to be similar for both spin-stretched initial states.

In the range up to 1500 G, we observed 8 resonances in the upper stretched state
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and 17 in the lower stretched state. This observation provides the density of stable

atom-molecule bound states in our system. The linewidths of the resonances range

from about 1 G to about 30 G and the spacing between resonances is on the order of

100 G. If the linewidths are interpreted as due to the finite lifetime of the resonant

state, this implies atom-molecule complexes with lifetimes in the range of 10 to 350

ns. One possible interpretation of the spacing between resonances is the rotational

structure of the intermediate complex. The spacing between resonances of the order

of 100 G corresponds to single spin-flip energy differences of 280 MHz and a rotational

constant with a moment of inertia for a complex of size around 30 𝑎0. Note that the

rotationally excited states of the NaLi triplet molecules 𝑁 = 1 are at 9.25 GHz and

𝑁 = 2 are at 27.75 GHz [13] corresponding to a double spinflip energy at 1650 G and

5000 G, respectively.

We quantify the resonance statistics of 17 resonances from Na+NaLi collisions

in the lower stretched state provided in Table 3.1 using the Brody parameter 𝜂,

which is a standard measure of chaos. For non-chaotic systems, in which resonances

have no correlations, the distribution of nearest-neighbor spacings is given by the

Poisson distribution, 𝑃P(𝑠) = 𝑒−𝑠. On the other hand, for chaotic systems, which

emerge when the mean spacing between bound states is comparable to the coupling

strength, the repulsion between energy levels occurs. In this regime, the distribution

of nearest-neighbor spacings is given by a Wigner-Dyson distribution, 𝑃WD(𝑠) =

𝜋
2
𝑠𝑒−

𝜋
4
𝑠2 [75,76]. The two distributions are smoothly interpolated through the Brody

parameter 𝜂 as 𝑃B(𝑠) = 𝐴𝑠𝜂𝑒−
𝐴

𝜂+1
·𝑠𝜂+1

, known as the Brody distribution, where 𝐴 =

(𝜂 + 1) · Γ
(︁

𝜂+2
𝜂+1

)︁𝜂+1

[77, 78]. Here, 𝜂 = 1 and 𝜂 = 0 lead to the Wigner-Dyson and

Poisson distribution, respectively. The cumulative probability function of the Brody

distribution is given as

𝐹𝐵(𝑠) = (𝜂 + 1) · [1− 𝑒−𝛼𝑠𝜂+1

]. (3.2)

Fig. 3-4 shows the cumulative probability of resonance spacing of the 17 resonances

from Na+NaLi collisions in the lower stretched state. The best fit of the data to Eq.

3.2 gives 𝜂 = 1.1(1), which shows the statistical signature of quantum chaos.
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Figure 3-4: Cumulative probability of resonance spacing from Na+NaLi collisions in
the lower stretched state. The black line is the best fit to the cumulative probability
function of the Brody distribution given as Eq. 3.2 and the blue (red) dashed line is
the cumulative distribution with 𝜂 = 1 (𝜂 = 0).
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Figure 3-5: Distribution of scaled reduced widths for scattering resonances in the
lower stretched state Na+NaLi mixture which are listed in Table 3.1. The Poter-
Thomas distribution of scaled reduced widths is in black line.

However, statistical conclusions from only 17 resonances are speculative. On the

basis of our quantum-scattering calculations (see Chapter B.1), the Wigner-Dyson

statistics are not expected because each resonance can be assigned by 𝑀𝑆, 𝐽 , 𝑀𝐽

quantum numbers. (Resonances with different values for these quantum numbers do

not see one another.) In addition, it is difficult to conclude that the broad trend of the

distribution of resonance widths follows the Porter-Thomas distribution of resonance

widths, 𝑃PT(𝛾) = 𝛾−1/2𝑒−𝛾/2, which is also a statistical character of quantum chaos.

Here, 𝛾 is the normalized velocity width divided by the mean value of all normalized

widths [79]. Fig. 3-5 shows the histogram of the scaled reduced resonance width

distribution and the Porter-Thomas distribution. Due to the small statistical sample,

it is difficult to compare the broad trend of the distribution with the Porter-Thomas

distribution.

Here, we have focused on analyzing the spectrum of Feshbach resonances solely

based on the experimental observations. However, there are some open questions that
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are not answered with immediate interpretations, and some of the interpretations

may need further study for justification. First, the mechanism of coupling between

the initial scattering channel and the loss channels or resonant closed channels that

leads to back ground loss or resonances is not explained. Hypothetically, spin-flip

transitions can be induced by intramolecular spin-spin, spin-rotation, atom-molecule

magnetic dipole-dipole interactions, and others. What are the dominant interactions

that are responsible for the resonances and the background loss, and the detailed

mechanism, is still an open question. Second, there is insufficient information to

explain the qualitative difference between the upper stretched states and the lower

stretched states. One may expect the observed difference in the number of resonances

between two spin-stretched initial states to result from the difference in the density of

states because resonant coupling can probe the chemical structure of the complex, and

the number of resonances is closely related to the density of states. However, only after

further investigation can we make a decisive statement on the qualitative difference

between the two states. Lastly, the nature of the collisional complex is inconclusive.

The validity of the simple interpretation of the spacing between resonances as the

rotational energy splitting of the complex, which leads to a complex size of around

30 𝑎0 is debateable. In addition, the analysis does not provide any other information

on the nature of the complex. For example, one may ask what the good quantum

numbers are of these collisional complexes. To unravel these open questions, we use

a combined experimental and theoretical quantum chemistry approach. The details

of quantum calculation are presented in Chapter B.1.

3.3 Interpretation

In this section, we will summarize the key points understood by the combined ex-

perimental and theoretical quantum chemistry approach rather than going through

the details of the quantum calculations. Even state-of-the-art quantum chemistry

calculations cannot predict the position of resonances because of the uncertainty in

the interaction potentials. However, they can provide a deep understanding of the
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relevant states and their couplings.

Background loss. The inelastic losses observed in Na + NaLi collisions are due

to transitions to lower lying states — these are the singlet states of Na2 or NaLi,

and in the case of the upper stretched state, also lower Zeeman states. Similar

losses observed for the upper and lower stretched states imply that Zeeman relaxation

is not dominant. The loss is therefore due to transitions from the quartet to the

doublet potential which occur at close range. If the input state already has a doublet

component (e.g. by using Na in a different hyperfine state), the loss rate is much

faster since the reaction can occur directly in the doublet potential and does not need

a spinflip process, which is weak.

Feshbach resonance. Feshbach resonances increase the wavefunction at close range

by coupling the open channel to closed channels. Our simulations show that the closed

channels are 3-body complexes in the quartet state with rotational excitation, either

of NaLi (quantum number 𝑁), or rotation of Na around NaLi (quantum number 𝐿).

Doublet states have only a minor role. These complexes have a typical size of 20− 40

𝑎0. The input channel has 𝑁 = 0, 𝐿 = 0. The input state and the complex state

involve different𝑀𝑆, which is necessary for a magnetic Feshbach resonance. Molecular

eigenstates in different Zeeman levels can be coupled by a strong anisotropic electronic

interaction since the different molecular Zeeman states have different rotational state

decompositions due to mainly spin-spin coupling and also spin-rotation coupling. As

a result, the complexes have mechanical rotation 𝐽 = 2. Note that spin-spin coupling

depends on the orientation of the molecular axis and, therefore, provides tensorial

coupling between the spin and the mechanical angular momentum. The enhanced

loss near Feshbach resonances is either due to enhanced loss via the open channel or

by a short lifetime of the admixed closed channel. At least for the strong resonances,

it is the former.

Number of resonances. Our simulations can explain why the number of observed

resonances is smaller for the upper stretched state. Simulations with decay to lower

Zeeman states removed show a similar number of resonances. This implies that the

difference in the number of resonances is not due to a different density of states
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but is due to the rapid decay of some of the intermediate complexes which broaden

the resonances and makes them unobservable. Those complexes decay to lower-lying

Zeeman states via spin-spin coupling.
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Chapter 4

Degeneracy-induced magnetic

resonance in NaLi+NaLi collision

One of the powerful methods used in cold atoms is Feshbach resonances, which can

happen when a molecular bound state in the closed channel approaches the threshold

of the scattering state in the open channel. They act as fingerprints of molecular

interaction potentials because of their high sensitivity to the shape of the molecular

potential energy surface and shed light on expanding our understanding of collision

dynamics.

However, there have been only a few discoveries of magnetically tunable Fesh-

bach resonances in a molecular system. Exploration of Efimov physics was carried

out by observation of Feshbach resonances in collisions of loosely bound Cs2 and

NaRb Feshbach molecules [66–69,80]. There are two atom-molecule systems in which

magenetically tuneable Feshbach resonances are observed. Scattering resonances in

K+NaK collision identified an intermediate complex as a loosely bound state be-

tween the molecule and the atom [71] and in Na + NaLi collision probed three-body

tightly bound states [33]. Feshbach resonances in collisions between two ground-state

molecules have not yet been identified before.

Here we report the observation of a pronounced, isolated Feshbach resonance in

collisions between fermionic NaLi molecules in their ro-vibronic ground state. The

magnetically tunable resonance is extremely narrow (∼ 25 mG) and enhances the
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loss rate by more than two orders of magnitude, providing strong evidence for a

stable and long-lived collision complex. The existence of long-lived complexes in

a molecular system of high reactivity, such as NaLi, is unexpected and has strong

implications for controlling ultracold chemistry via scattering resonances. The long-

lived state revealed by our experiments is coherently excited, whereas so far, all other

observations of collisional complexes are compatible with an incoherent population

described by rate equations.

The observed resonance is special in two regards: In simple models, resonantly

enhanced losses are only possible if the background loss rate is much smaller than

the so-called universal limit. A loss rate near the universal limit implies almost

complete inelastic loss at short-range and should suppress any long-lived resonant

state. However, we observe loss rates close to the universal limit outside the narrow

resonance. Second, the NaLi + NaLi Feshbach resonance is observed at a finite

magnetic field where two open channels become degenerate, and it is possibly a new

type of Feshbach resonance with a mechanism different from the Feshbach resonances

observed in ultracold atomic systems. This mechanism is unique to molecule-molecule

collisions, as the required single-molecule degeneracies cannot be realized in atomic

systems at practicable field strengths. On the contrary, two-molecule degeneracies

used to engineer shielding interactions in ultracold KRb + KRb and CaF + CaF

collisions, are commonly found in molecular collisions. Our results suggest that the

new type of degeneracy-induced magnetic resonance could be ubiquitous in ultracold

molecular physics, offering an exquisite new mechanism for tuning intermolecular

interactions with external electromagnetic fields. We present simple models which

explain the observed behavior.
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Figure 4-1: a. Resonant molecular loss as a function of magnetic field. The
remaining molecule number after holding for 30ms at a target field is plotted near
334.9 G. Molecule numbers are normalized by the molecule number without the 30
ms hold. Each data point represents three to six measurements with and without 30
ms hold respectively, and the error bars are 1 standard deviation. The black dashed
line is a Gaussian fit. The blue (green) vertical line indicates the field where the
molecular decay curve in blue (green) is obtained in Fig. 4-1(b). b. Molecular
decay curves at 334.92 G resonance and away from the resonance. The
main plot shows the molecular decay curve near the center of the resonance within 50
ms. The upper right subplot shows decay curves away from the resonance at 334.82
G in green squares and at 745 G in red triangles and also near the resonance at 334.92
G with blue circles from 0 to 2 s. Dashed lines are fits to a simple model for two-body
loss using mean square regression.
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4.1 Measurement & Experimental Result

4.1.1 Experimental sequence

We prepare ground-state 23Na6Li (𝑎3Σ+) molecules in their lower stretched hyperfine

state, where all nuclear and electron spins are anti-aligned to the bias field direction.

For the state preparation, we first produce triplet ground state molecules in the upper

stretched hyperfine state, where all spins are aligned along the bias field, via magnetic

association followed by stimulated Raman adiabatic passage (STIRAP) near 745 G

in a 1 dimensional (1D) 1596 nm optical lattice [13,33,72]. The bias field is dropped

from 745 G to a low field near 8G in 15ms for coherent microwave state transfer

from the upper stretched state (|𝐹,𝑚𝐹 ⟩ = |7/2, 7/2⟩) to the lower stretched state

(|𝐹,𝑚𝐹 ⟩ = |7/2,−7/2⟩). After the state preparation, field is ramped to a target

value in 15ms. The search for scattering resonances is done for the bias field range of

40.5 G < 𝐵 < 1401.6 G. After waiting for a certain time for the molecules to collide

at a target field, we return the field to ∼ 8 G for reverse state transfer (|7/2,−7/2⟩ →

|7/2, 7/2⟩) for detection. We used absorption imaging of lithium atoms dissociated

from molecules to measure the number and temperature of molecules, and thus the

field was brought to 745 G. An extra time of 15 ms < t < 30 ms after each magnetic

field ramp was sufficient for the bias field to settle within the range of the magnetic

field inhomogeneity across the molecular sample.

Within more than 1000 G range in bias field, only one Feshbach resonance is

observed as shown in Figure 4-1(a). While the number of molecules decreases by

about 40% in 600 ms at most bias field values, more than half of the molecules

are lost after 30 ms hold near 334.914(10) G (Fig.4-1(b)). In order to verify that

the enhanced loss is due to a resonance in collisions between two fermionic NaLi

molecules in the same hyperfine state, we investigate three aspects: the effect of

impurities, the density dependence and temperature dependence on molecular decay

rates. We confirm that the loss enhancement is not due to impurities by examining

the decay curves at the resonance. About 30 molecules per lattice site decreases down

to about 7 molecules in 40 ms as shown in Figure 4-1(b) and are depleted to the level
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that is barely detectable in less than a hundred milliseconds. A little fraction of

contamination of the molecular sample that may exist can only cause depletion of the

sample up to the contamination level mainly through s-wave collisions. This confirms

that the loss enhancement comes from two identical fermionic molecules and not from

other unwanted states.

4.1.2 Model for molecular decay & density calibration

Exploration of the other two aspects: density dependence and temperature depen-

dence on molecular decay rate requires careful modeling of molecular decay and den-

sity calibration. We model the two-body loss with a differential equation that takes

into account the time dependence of temperature: [23]

�̇�(𝑡) = −𝛽(𝑇 (𝑡))𝑛2(𝑡)− 3

2
𝑛(𝑡)

�̇� (𝑡)

𝑇 (𝑡)
, (4.1)

where 𝛽 is the two-body loss rate constant, 𝑛 is the mean density, and 𝑇 is the

temperature of the molecules. Anti-evaporation causes an increase in temperature

of up to 50% within a molecular decay time near 334.9 G. We fit the measured

temperatures to a linear function of time, 𝑇 (𝑡) = 𝐻𝑡 + 𝑇𝑜, where 𝐻 is the heating

rate and 𝑇𝑜 is the initial temperature. Both away from and near the resonance, the

loss rate coefficient has a temperature dependence that can be expressed as 𝛽 =

𝛽0(𝑇 (𝑡)/𝑇0), where 𝛽0 is the initial loss rate coefficient when the temperature is 𝑇0.

To determine the rate coefficient from equation Eq. (4.1) requires accurate knowledge

of the molecular density. The mean molecular density can be expressed with the

effective number of particles, 𝑁 eff and the mean volume, 𝑉eff, of molecules for a single

pancake, as 𝑛 = 𝑁 eff/𝑉eff.

We obtained the effective particle numbers for a single pancake from the measured

number of molecules, 𝑁 tot, and the distribution of the numbers over the pancakes.

The observed axial profile of NaLi follows a Gaussian form with width 𝜎=450(60)𝜇m,

so we assume a Gaussian distribution of the number of particles per pancake. As

the average weighted over a Gaussian, the effective particle number per pancake is
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𝑁 eff=𝑁 tot · 𝑎/(2
√
𝜋 · 𝜎), where the lattice constant is 𝑎=𝜆/2 and 𝜆=1596 nm.

The trap volume of each pancake, 𝑉eff, is determined from the measured molecule

temperature and trap frequencies. For a purely harmonic trap, one obtains 𝑉 (0)
eff =

�̄�−3(4𝜋𝑘𝐵𝑇/𝑚)3/2 where the geometric mean of the NaLi trap frequencies is �̄�=(𝜔𝑥𝜔𝑦𝜔𝑧)
1/3.

However, there are two corrections which we determine separately: (1) the confine-

ment in each pancake is moderately anharmonic, and (2) the system is in the cross-

over regime between quasi-2D and 3D, 𝑘𝐵𝑇 ∼ ℏ𝜔𝑧.

First, the anharmonicity of the trapping potential leads to a modified mean volume

𝑉
(1)
eff

1/𝑉
(1)
eff =

∫︀
𝑑𝑉 e−2𝛽𝑈(𝑟,𝑧)

[
∫︀
𝑑𝑉 e−𝛽𝑈(𝑟,𝑧)]2

(4.2)

where 𝑈(𝑟, 𝑧) is the potential of a single lattice site. We use the same trap model

validated in ref. [33] to determine 𝑈(𝑟, 𝑧) and integration limits. With typical con-

ditions for molecular loss measurements, the mean volume 𝑉 (1)
eff is larger than 𝑉

(0)
eff

by less than 25%. However, some measurements at lower density required weaker

optical traps for which the anharmonicity correction is larger and had to be taken

into account for proper density calibration.

Second, the tight confinement in the lattice direction makes the classical thermal

distribution for harmonic trapping in the pancakes invalid for low molecular temper-

atures. We estimate the corrected volume as

1/𝑉
(2)
eff =

∫︀
𝑑𝑉 (

∑︀∞
𝑖=0 𝜌(𝑟)|𝜑𝑖(𝑧)|2e𝛽(−𝑖− 1

2
)ℏ𝜔𝑧)2

[
∫︀
𝑑𝑉
∑︀∞

𝑖=0 𝜌(𝑟)|𝜑𝑖(𝑧)|2e𝛽(−𝑖− 1
2
)ℏ𝜔𝑧 ]2

(4.3)

where 𝑟 is the radial coordinate, 𝑧 is the axial coordinate along the beam direction,

𝛽 = (𝑘𝐵𝑇 )
−1, 𝜑𝑖(𝑧) is the 𝑖th eigenstate of the axial harmonic oscillator and 𝜌(𝑟) is

the classical thermal distribution in the radial direction, which is a Gaussian function.

The black line in Figure 4-2 is the result of Eq. 4.3 using the typically radial trap

frequency (𝑓𝑥, 𝑓𝑦) = (450, 640) Hz as a function of the ratio of thermal energy to

axial zero-point energy. The red dashed line is 1/𝑉 (0)
eff and the blue dashed line is the

inverse of the quasi-2D volume 1/𝑉
(2𝐷)
eff , assuming that all atoms in the 0𝑡ℎ eigenstate
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Figure 4-2: Mean density estimation in the 3D to quasi-2D crossover regime
as a function of the ratio of the thermal energy to axial zero-point energy.
Black line is the result of Eq. 4.3, red dashed line is the estimated 1/𝑉

(0)
eff and blue

dashed line is the inverse of the quasi-2D volume where it is assumed that all atoms
are in the 0𝑡ℎ eigenstate of the axial harmonic oscillator, 𝜑0. Calculation is with the
typically radial trap frequency (𝑓𝑥, 𝑓𝑦) = (450, 640) Hz.

of the axial harmonic oscillator, 𝜑0:

1/𝑉
(2𝐷)
eff =

∫︀
𝑑𝑉 [𝜌(𝑟)|𝜑0(𝑧)|2]2

[
∫︀
𝑑𝑉 𝜌(𝑟)|𝜑𝑖(𝑧)|2]2

. (4.4)

For all the experimental conditions which is indicated with gray shaded area in Fig.

4-3, 𝑉 (0)
eff differs from the more accurate 𝑉 (2)

eff by less than 20% 1. Since it is unclear

how this correction might interact with the larger correction from 𝑉
(1)
eff , we include

𝑉
(2)
eff only as an enlargement in the uncertainty.

1Difference between 𝑉
(2𝐷)
eff and 𝑉

(2)
eff is much larger than that of 𝑉 (0)

eff and 𝑉
(2)
eff . This implies that

the system is closer to 3D than quasi-2D in terms of molecular density
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Figure 4-4: Density dependency of molecular decay rate at 334.92 G. The
initial decay rates are plotted as a function of initial molecule mean density. The
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𝑜

with 𝜒2
𝑟𝑒𝑑 = 13.50, 1.43 and 20.42 respectively.

4.1.3 Density and temperature dependence on molecular de-

cay rates

To understand the loss mechanism, the molecular decay rate is measured as a function

of initial density and modeled with an equation 𝑅𝑜 = 𝐴𝑛
(𝛾−1)
𝑜 as shown in Figure

4-4. 𝑅𝑜 is an initial decay rate, 𝑛𝑜 is an initial molecular density, 𝛾 is a parameter

determined by the number of particles involved in collision loss and 𝐴 = 𝛽𝑁𝑜 where𝑁𝑜

is an initial number of molecules. In general, the loss rate constant 𝛽 is temperature

dependent, and to treat 𝐴 as a constant we controlled the initial temperatures of the

molecules to be the same within 15 %. 𝛾 = 1.82(9) gives the best fit, confirming that

the resonant loss is due to two-body collisions. Molecule densities are estimated from

the lattice trap frequencies and molecular temperature, as explained in Chapter 4.1.2.

We map the temperature dependence of the molecular decay rate constant and
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compare it with the Wigner threshold law [81]. We generate molecular gases at

different temperatures by varying the initial temperature of the Na and Li atomic

mixture. The initial temperature of the molecule ranging from 0.74(8) uK to 3.88(36)

uK and from 1.33(7)uK to 4.40(25) uK is achieved away (745G) and at resonance

(334.92 G), respectively. We model the temperature scaling with the polynomial

function 𝛽 = 𝐶𝑇 𝑙 and obtain 𝐶 = 1.8(7) × 10−10 𝑐𝑚3/(𝑠𝐾) and 𝑙 = 1.5(4) near the

resonance in blue dotted line and 𝐶 = 1.7(5) × 10−10 𝑐𝑚3/(𝑠𝐾) and 𝑙 = 0.98(27) as

shown in Fig. 4-5. This p-wave Wigner threshold law [81] like behavior implies that

the loss is caused by collisions between two identical fermions2.

4.1.4 Loss rate constant

We map out the measured loss rates as a function of the magnetic bias field. Natural

comparisons for the observed decay rates are the unitary limit and the universal loss

rate. As the 1D optical lattice creates a trapping potential tightly confined in the

axial direction, our experiments are done in the crossover between 2D and 3D physics.

The p-wave unitarity limit in a three dimensional trap, 𝛽𝑢𝑛𝑖𝑡.
3𝐷 =6 ℏ

𝜇
𝜆𝑑𝐵, where 𝜆𝑑𝐵 is

the de Broglie wavelength given as 𝜆𝑑𝐵=
√︀

2𝜋ℏ2/𝑘𝐵𝜇𝑇 and 𝜇 is the reduced mass

which is half of the NaLi molecule mass, 𝜇 = 𝑚NaLi/2
3. The unitarity limit in a

quasi-2D trap, 𝛽𝑢𝑛𝑖𝑡.
2𝐷 =4 ℏ

𝜇
(
√
𝜋𝑙0). 𝛽𝑢𝑛𝑖𝑡.

2𝐷 scales linearly to the oscillator length in the

tightly confined direction, 𝑙0 = (ℏ/𝑚NaLi𝜔𝑧)
1/2, instead of the de Broglie wavelength,

𝜆𝑑𝐵 (see Chapter C.1 for details). Here, 𝜔𝑧 is the trap angular frequency in the tightly

confined direction. We use an approximate value of NaLi-NaLi long-range dispersion

coefficient (𝐶6 = 5879 a.u) obtained by summing all 𝐶6 coefficients between two

constituent atoms [83]. The universal loss rate constant for 𝑝-wave (𝑠-wave) collisions

2The system is in the quasi-2D to 3D crossover regime, and therefore, the Wigner threshold law
in both quasi-2D and 3D regime had to be derived for proper comparison with the experimental
result. We confirm in C.1 that 𝛽 ∝ 𝑇 in both regimes.

3Inelastic loss rate constant is given by 𝛽𝑢𝑛𝑖𝑡.
3𝐷 = 𝑔𝜎 𝜋ℏ

𝑚𝑢

⟨
1

𝑘𝑟𝑒𝑙

⟩
in ref. [82] where

⟨
1

𝑘𝑟𝑒𝑙

⟩
is thermally

averaged 1
𝑘𝑟𝑒𝑙

= ℏ
𝜇

1
𝑣𝑟𝑒𝑙

, 𝑔 = 2 for indistinguishable particles, and the degeneracy factor 𝜎 = 3 for

𝑝-wave collision. The thermal averaging of the inverse of relative velocity
⟨

1
𝑣𝑟𝑒𝑙

⟩
=
√︁

2𝜇
𝜋𝑘𝐵𝑇 , and

therefore, 𝛽𝑢𝑛𝑖𝑡.
3𝐷 =6 ℏ

𝜇𝜆𝑑𝐵 , where 𝜆𝑑𝐵 is the de Broglie wavelength given as 𝜆𝑑𝐵=
√︀
2𝜋ℏ2/𝑘𝐵𝜇𝑇 .
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is 𝛽𝑢𝑛𝑖𝑣
𝑙=1 /𝑇 = 1.2× 10−12 𝑐𝑚3/𝑠 · 𝜇K (𝛽𝑢𝑛𝑖𝑣

𝑙=0 = 1.85× 10−10 𝑐𝑚3/𝑠).

The rate constant, 𝛽, increases by more than two orders of magnitude as the

bias field approaches 334.918(5) G from near 𝑝-wave universal value to above 𝑠-wave

universal value. Loss rate coefficients are plotted as a function of magnetic field and

fitted to a Lorentzian function for two temperatures, 1.8 𝜇K and 4.2 𝜇K, in Fig.4-6.

The loss rate constant contrast is ∼ 155 for 1.8 𝜇K and ∼ 230 for 4.2 𝜇K. The rate

constants at the peak are far below the 3D unitarity limits but approach near the

2D unitary limits. The width of the resonance is as narrow as or narrower than the

inhomogeneity of the magnetic field across a molecular sample, ∼ 25 mG, given the

fact that the Lorentian widths from the fits for both 1.8 𝜇K and 4.2 𝜇K are also ∼ 25

mG. The result of 4.2 𝜇K shows an overall higher loss rate constant compared to

that of 1.8 𝜇K as expected from the p-wave threshold law at the resonance, 𝛽 ∝ 𝑇 ,

mentioned earlier.

4.2 Analysis

We will now develop a model that addresses our major experimental findings. The

universal limit assumes that the loss rate is given by all the flux which has not been

quantum reflected, i.e. it has tunneled through the centrifugal barrier located at

∼ 2.2𝑅vdw with the van der Waals (vdW) length 𝑅vdw = 1
2

(︀
2𝜇𝐶6

ℏ2
)︀1/4 ≈ 66𝑎0. Rates

higher than the universal limit observed here are only possible (1) if losses occur at

long-range (outside the 𝑝 wave barrier) as depicted in Figure 4-7, or if substantial back

reflection from short-range (behind the centrifugal barrier) destructively interferes

with quantum reflection.

A single narrow resonance between two NaLi molecules in their lower stretched

hyperfine state is located at a magnetic field where there are multiple other hyperfine

states that are energetically close by. We first rule out the possibility (1) by showing

that these states are not directly coupled strongly to the initial scattering state at

long-range. We then focus on the second possibility (2). Nearly degenerate states

may have indirect coupling mediated by a bound state of an intermediate collision
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Figure 4-6: Enhanced two-body loss rate coefficient of molecules. Initial two-
body loss rate coefficients which are indicated with blue squares and green circles,
are plotted as a function of the bias field. Data points are obtained using a simple
two-body loss model for initial temperatures ∼ 4.2 uK (blue squares) and ∼ 1.8 uK
(green circles). Solid lines are Lorentzian fits to the data points. The dotted red
line is the 𝑠-wave universal value and dash-dot lines are p-wave universal values for
𝑇 = 4.2 uK (blue) and 𝑇 = 1.8 uK (green). Dashed horizontal lines are the 3D
unitarity limits and solid horizontal lines are the 2D unitarity limits.
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Figure 4-7: Long-range coupling. a+a is the initial collision channel where a is the
lower stretched state. a+b is another collision channel coupled to a+a at long-range
𝑅𝑏 = 100 nm where b is a near-degenerate hyperfine state.

complex. Our analysis shows that such long-range coupling is too weak to play a

role in the observed molecular resonance (see chapter 4.2.1 for details). This suggests

that the intermediate bound state does not suffer from short/close range loss and the

resonance arises in an open channel.

4.2.1 Hyperfine structure of NaLi

There are a total of 9 hyperfine states crossing the lower stretched state at bias fields

between 320 G and 340 G. There are three states that cross at fields within a few

hundred mG of the resonance. Due to the uncertainty of the hyperfine constants,

the uncertainty of their energies relative to the stretched state is ±400 kHz, and

therefore each of them is a possible candidate to cross the stretched state at or near

the observed Feshbach resonance at 334.92 G.

The state indicated with an red "a" in Figure 4-9 is the lower stretched state
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|𝐹 = 7/2,𝑚𝐹 = −7/2⟩. The three states close in energy near the resonance are in-

dicated as 𝑏1, 𝑏2 and 𝑏3 in Figure 4-9. The most likely candidate to couple to the

stretched state is the state 𝑏1= |𝐹 = 5/2,𝑚𝐹 = −3/2⟩ since its nuclear spin character

overlaps with the stretched state by 50%, whereas for the other two states, non-zero

nuclear spin overlap less than 0.1% may arise from small intra-molecular spin-spin

(−551 MHz) and spin-rotation (14.5 MHz) couplings. More explicitly, The Zeeman

states can be expanded in the fully uncoupled basis set

|𝑁,𝑚𝑁 , 𝑆,𝑚𝑆, 𝐼𝑁𝑎,𝑚𝐼𝑁𝑎
, 𝐼𝐿𝑖,𝑚𝐼𝐿𝑖

⟩ (4.5)

where |𝑁,𝑚𝑁⟩ are the eigenstates of the rotational angular momentum �⃗� and of its

projection on the 𝐵-field axis, |𝑆,𝑚𝑆⟩ are those of the electron spin angular momen-

tum, and |𝐼,𝑚𝐼𝑖⟩ are the eigenstates of the nuclear spin angular momenta of Na and

Li (𝑖 = 𝑁𝑎,𝐿𝑖). The leading terms in the expansion of the Zeeman states involved in

the avoided crossings near 𝐵 = 334.92 G are, neglecting small (≲ 1%) contributions

from the 𝑁 = 2 rotationally excited states,

|𝑎⟩ = |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = −7

2
⟩ = |0, 0,−1,−1,−3

2
⟩ ,

|𝑏1⟩ = |𝐹1 = 3/2, 𝐹 = 5/2,𝑚𝐹 = −3

2
⟩

≈ 0.71 |0, 0, 1,−1,−3

2
⟩ − 0.57 |0, 0, 0,−1,−1

2
⟩ − 0.40 |0, 0,−1,−1,

1

2
⟩ ,

|𝑏2⟩ = |𝐹1 = 3/2, 𝐹 = 5/2,𝑚𝐹 = −1

2
⟩

≈ 0.76 |0, 0, 0,−1,
1

2
⟩ − 0.55 |0, 0, 1,−1,−1

2
⟩+ 0.31 |0, 0,−1,−1,

3

2
⟩ ,

|𝑏3⟩ = |𝐹1 = 3/2, 𝐹 = 5/2,𝑚𝐹 = −1

2
⟩

≈ 0.91 |0, 0, 0,−1,
3

2
⟩ − 0.38 |0, 0, 1,−1,

1

2
⟩ .

(4.6)

Additionally, the difference in 𝑚𝐹 to the lower stretched state, is the smallest for

state 𝑏1 which is 2 4.

Spin flip processes can, in principle, happen at long-range outside the 𝑝-wave

4State 𝑏1 lies ∼ 100 kHz above the lower stretched state at 334.92 G in figure 4-9. Given the
uncertainty of the hyperfine constants, this value can be as high as 480 kHz or as low as −300 kHz
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Figure 4-8: Hyperfine structure of NaLi(𝑎Σ+) in an external magnetic field.
The blue dashed vertical line indicates the position of the Feshbach resonance (∼
334.92 G). The subplot show the Zeeman shifts from 0 to 1000 G whereas the main
plot is zoomed into where there are 9 near degenerate states.
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Figure 4-9: Hyperfine structure of NaLi(𝑎Σ+) in an external magnetic field.
𝑎 in red is the lower stretched hyperfine state of NaLi molecules. 𝑏1, 𝑏2 and 𝑏3 in blue
are other hyperfine states that are energetically close to state 𝑎 near 334.92 G.
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barrier due to the dipole-dipole interaction. However, due to the selection rules of the

magnetic dipolar interaction (|Δ𝑚𝑆| = 1), a single spin flip cannot provide coupling

between the near-degenerate hyperfine states of interest |𝑎⟩ and |𝑏1⟩, which correspond

to 𝑚𝑆 = 1 and 𝑚𝑆 = −1, respectively. Therefore, only weak higher order spinflips5 or

spin-rotation couplings exist. A loss rate constant higher than 10−10 cm3s−1 requires

a coupling strength on the order of 100 kHz at long-range (∼ 100 nm)6. However, the

strongest higher-order process has a coupling strength around 0.05 kHz. We therefore

assume that we have a 𝑝-wave resonance enabled by high reflectivity at close range.

4.2.2 Three-state model of 𝑝-wave resonant scattering

To explain the observed Feshbach resonance, it is necessary to assume the presence

of a short-range loss mechanism. A minimal model for such a mechanism involves

a bound state (state 3) coupled to the open channels. The simplest model for the

Feshbach resonance near state degeneracies that involves enhanced loss contains two

open channels |1⟩ and |2⟩ coupled to a stable bound state, channel |3⟩, where |1⟩ is

the incident scattering channel and |2⟩ is the loss channel where particles are in a

different internal state from |1⟩ as depicted in Figure 4-10(a) [84]. This is analogous

to an incident light coupled in at one side and coupled out at the other side of a single

mode cavity. The transmission through a cavity as illustrated in Figure 4-10(b) is

expressed in a simple form with the mirror coupling strengths 𝛾𝑖 as:

𝑇 = 𝐼
𝛾1𝛾2

(𝜔𝑜 − 𝜔)2 + [(𝛾1 + 𝛾2)/2]2
. (4.7)

Here, 𝛾𝑖= − 2 ln 𝑟𝑖/𝜏𝑅𝑇 where 𝑟𝑖 is the reflection coefficients of two mirrors, M1 and

M2 and 𝜏𝑅𝑇 is the round-trip time of the flux travelling in the cavity 7. 𝜔0 is the
5At the position of the 𝑝-wave barrier (𝑅𝑏 = 100 nm), the interaction between two spins with

magnetic moments 2𝜇0, where 𝜇0 is the Bohr magneton, is 𝑉 𝑚𝐷𝐷 = 0.052 kHz. Higher order spinflip
must involve an intermediate state |𝑘⟩, which is off-resonant by its Zeeman energy Δ𝑎𝑘 ≃ 1𝜇0×300 G
≃ 400 MHz. This further reduces the magnetic dipolar coupling between the open channels by the
factor (𝑉 𝑚𝐷𝐷/Δ𝑎𝑘)

−1 = 7.7× 106 to much less than 1 mHz.
6The peak of the barrier is at 241/4 · 𝑅vdw ≈ 7.8 nm where the van der Waals length 𝑅vdw =

1
2

(︁
2𝜇𝐶6

ℏ2

)︁1/4
, and the outer turning point 𝑅𝑏 is at 100 nm at 3.35 𝜇K temperature.

7Transmission of flux through a Fabry–Pérot cavity with two mirrors, M1 and M2, nor-
mally has the Airy distribution expressed in terms of the incoming light flux, 𝐼, mirror reflec-
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angular frequency of the cavity mode, 𝜔 is the angular frequency of the light, and 𝐼

is the incoming flux8.

Assuming that the input mode is either (nearly) resonant (𝜔−𝜔0 ≪ 𝛾1) or far-off

resonant (𝜔−𝜔0 ≫ 𝛾1) with the Fabry-Perot cavity, tuning the coupling term 𝛾2 now

leads to a pronounced resonance-type feature in the Fabry-Perot transmission. For

small 𝛾2, transmission is proportional to 𝛾2. However, for large 𝛾2, the quality factor of

the resonance is reduced, there is less and less built up of light inside the resonator, and

the transmission decreases with 𝛾2. For resonant coupling, the maximum transmission

is at 100% (𝑇 = 𝐼) when 𝛾2 = 𝛾1 while for off-resonant coupling, the maximum

transmission is at the reduced value by a factor of 𝛾1/(𝜔 − 𝜔0) when 𝛾2 = 2(𝜔 − 𝜔0)

as shown in Figure 4-11(a). For on (or off) resonant coupling, the full width at half

maximum (FWHM) of the transmission spectrum as a function of 𝛾2 is expressed as

FWHM = 4
√
2𝛾1 (of 2

√
𝜔 − 𝜔0), and the transmission line is narrower or sharper for

smaller 𝛾1 (or 𝜔 − 𝜔0) as shown in Figure 4-11(a) and (b).

We suggest that this mechanism is responsible for the observed resonance. For

this, we assume the existence of a coupling between the incoming channel and a long-

lived collision complex with energies that do not tune relative to one another with

the magnetic field. This may seem to call for a remarkable coincidence, but molecule-

molecule collisions are predicted to have a high density of resonances. The decay

strengths of the channel |3⟩ to the open channels 𝛾𝑖, where 𝑖 = 1, 2, are represented

by the mirror coupling strengths 𝛾𝑖. The incoming scattering flux and collision loss of

molecules are represented by the incoming flux of light and the transmission through

the second mirror in the optical filter picture, respectively.

The transmission of a Fabry–Pérot exhibits the analytical result of the inelastic

loss rate extended from the p-wave interaction model in Ref. [86] by Prof. Timur

tion and transmission coefficients, 𝑟𝑖 and 𝑡𝑖, and single-pass phase shift that light exhibits, 𝜑 as
𝑇 = 𝐼

𝑡21𝑡
2
2

(1−𝑟1𝑟2)2+4𝑟1𝑟2 sin2 𝜑
. This Airy distribution is well approximated to a Lorentzian spectral line

shape near a resonance (𝜔 ∼ 𝜔𝑜) for highly reflective cavities (𝑟21𝑟22 < 0.1) as Eq.4.7 [85].
8The process is fully analogous to an harmonic oscillator with resonance 𝜔0 and damping rate

𝛾2 driven at frequency 𝜔 via a frictional input coupling 𝛾1. The ratio of the power dissipated via 𝛾2
to quarter of the nominal drive power (drive power at zero amplitude of the harmonic oscillator) is
exactly given by Eq. 4.7. (see appendix)
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Figure 4-10: a. Schematic of the resonance model with two open channels
and a p-wave bound state trapped behind a centrifugal barrier. Channel |1⟩
and |2⟩ are the open channels that are coupled to a closed channel |3⟩, Channel |1⟩
corresponds to the initial scattering channel where two NaLi molecules are in the lower
stretched hyperfine state. Channel |2⟩ corresponds to another open channel where
molecules are in a different hyperfine state and energetically close to the incident
scattering state. b. Schematic of a Fabry–Pérot cavity. Two mirrors M1 and
M2 couple light into and out of the Fabry–Pérot resonator created by these mirrors
with coupling strengths 𝛾𝑖. When the spacing between the mirrors is tuned to form a
cavity mode that is resonant to the incoming light, transmission loss is enhanced by
constructive interference of the light amplitude inside the cavity.
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Figure 4-11: a. Transmission probability of a cavity for different detunings,
𝜔 − 𝜔0. For given coupling strengths of the first mirror, 𝛾1 = 1 (in arbitrary units),
transmission probability reaches unity for resonant coupling (blue) while maximizes
to 𝛾1/(𝜔 − 𝜔0) for far off-resonant coupling (black). b. Transmission probability
of a resonant cavity for different first mirror coupling, 𝛾1. For given coupling
strengths of the first mirror, 𝛾1=1, 3 or 9, transmission probability reaches unity when
𝛾2 = 𝛾1 at a resonance. The line width of the transmission probability as a function
of 𝛾2 is narrower for smaller 𝛾1.
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Tscherbul, to whom we are grateful. The details of the derivation of the inelastic loss

rate are included in Chap. C.4. The decay strengths from channel |3⟩ to |1⟩ (|2⟩)

are proportional to 𝛾1 ∝ 𝜆1𝑘
3 (𝛾2 ∝ 𝜆2𝑘

′3) where 𝜆1 (𝜆2) is the open-closed channel

coupling and 𝑘 (𝑘′) is the open channel wavevector. 𝑘3 scaling of the decay strength

comes from the threshold behavior of 𝑝-wave inelastic collision rate (∝ 𝑘2) and the

density of states of an open channel (∝ 𝑘). Using this scaling, we obtain the inelastic

loss rate:

𝑔2 ∝
𝑘−1𝛾1𝛾2

(𝐸 − 𝐸0)2 + [(𝛾1 + 𝛾2)/2]2
(4.8)

where 𝐸 is the incident energy and 𝐸0 is the resonant energy. The numerator scales

with 𝑘2 instead of 𝑘3, which is different in structure from equation (4.7)9. For particle

collisions, the initial channel is in a single wavevector, so we see threshold 𝑝-wave

scaling (𝑘2) for the input coupling. Inelastic decay from the closed channel proceeds

into a continuum of states, which adds the third power of 𝑘 for the density of states in

that continuum. The experimentally observed 𝑘2 dependence of the loss rate constant

implies that the 𝛾1 never dominates the other terms in the denominator of 𝑔2.

The model presented so far can explain a resonant enhancement of the loss as a

function of the magnetic field. However, unlike in the case of spin-protected NaLi+Na

[33] or non-reactive NaK+K Feshbach resonances [71] where the background loss

rates were observed to be far below the universal values, NaLi+NaLi collision is

reactive and the loss rate is saturated to near 𝑝-wave universal value (𝑦 ∼ 1) at the

background. Despite the fact, the loss rate is enhanced from the background by more

than two orders of magnitude at the resonance. This peculiar enhanced loss feature

was unexpected based on existing simple models for reactive collisions in molecular

system. Collision of ultracold molecules is often described with the quantum-defect

model used in Ref. [35] where quantum-defect parameter 𝑦 = (1 −
√
𝑅)/(1 +

√
𝑅)

is directly related to the probability of incoming scattering flux being reflected back

at short range 𝑅. This single-channel model was extended to describe the Feshbach

resonance in collision between the NaLi molecule and Na atom and it was shown
9In the appendix, Eq. 4.8 is derived using a T matrix formalism.
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Figure 4-12: a. Schematic of the resonance model with more than one
orthogonal collisional path. The incoming flux is split into two or more (orthog-
onal) components, one part (10%) has the resonant behavior, whereas the other part
(90%) has non-resonant universal loss. b. Schematic of a Fabry–Pérot cavity
with a polarizing beam splitter (PBS). Two mirrors form a resonator where
p-polarization component of light amplitude is enhanced near a resonance. There are
two paths for light to travel that are decoupled by a PBS. s-polarization component
is reflected by the PBS and rejected.
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that the scattering loss rate that is suppressed below the universal value by a factor

of 𝑦 can be enhanced by a Feshbach resonance at most above the universal value

by 1/𝑦 [33]. With the extended single channel model, this large enhancement which

requires 𝑦 ≪ 1 cannot be explained for NaLi+NaLi collisions which are reactive

(2NaLi→Na2+Li2+heat) and have 𝑦 ∼ 1.

One possible explanation is that the incoming flux is split into two or more (or-

thogonal) components, one part has the resonant behavior described above, whereas

the other part has non-resonant universal loss (i.e. full transmission at short range)

as depicted in Fig.4-12(a). For example, if one tenth of the scattering flux is cou-

pled to the resonance, but its loss is enhanced by a factor of 1000, the total loss can

be 100 times the universal limit. Outside the resonance, the majority of the flux

(here assumed to be 90 %) provides the background loss near the universal rate. At

resonance, the enhancement of the collision loss rate is inversely proportional to 𝛾2,

which can be easily obtained from the Fabry–Pérot picture. With sufficiently weak

open-closed channel couplings, large enhancement in collision loss is allowed despite

close to unity loss of scattering flux that reaches short/close range.

This model can be pictured with a polarizing beam splitter(PBS) placed inside

a Fabry–Pérot cavity as illustrated in Figure 4-12(b). As an extension of a simple

cavity picture described earlier, the mirror M1 represents quantum reflection by the

long-range vdW potential, and M2 represents the reflection of a stable bound state

by coupling to another near degenerate hyperfine state. There are two optical paths

which are decoupled at the PBS by the light polarization. Light that enters through

the outer mirror M1 has fraction, 𝜅𝑝, of p-polarization which represents the long-

lived bound state and passes through the PBS traveling toward mirror M2. The

other fraction, 𝜅𝑠, corresponding to s-polarization represents short-lived states and

is reflected at the PBS resulting in complete rejection. This perfect removal of the

flux represents short/close range loss with unity probability (𝑦 = 1). The total loss

of incoming flux is composed of the transmission of p-polarization through M2 and

the rejection of the s-polarization. Transmission through M2, 𝑇𝑝 is given as equation

(4.7) with an extra factor 𝜅𝑝 and loss or s-polarization is given as 𝑇𝑠=𝐼𝜅𝑠𝛾1𝜏𝑅𝑇/2.
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When 𝜅𝑠 ≫ 𝜅𝑝 off-resonant transmission is dominated by the complete rejection of

the s-polarization component of light, which is analogous to the molecular collision

loss at the background being close to the universal value.

4.3 Discussion

The simplest model for an atom-like p-wave Feshbach resonance in the NaLi+NaLi

collision assumes two resonances at a certain magnetic field. It is unusual to have three

states that are near degenerate by coincidence, and one may suggest two possibilities:

the existence of many stable bound states or a resonant bound state having the same

magnetic moment as the initial state. The presence of dense stable bound states that

may couple to the incident channel allows having Feshbach resonances all through

while scanning the magnetic field. Similarly, if the magnetic moment and the energy

of a stable bound state match that of the initial state, the Feshbach resonance is

insensitive to magnetic field change, and the system will always be on resonance. For

these cases, the energy difference between two hyperfine states is tuned by changing

the magnetic field, while always being at a Feshbach resonance. The coupling of a

bound state to a degenerate loss channel is tuned by an external magnetic field and

allows the Feshbach resonance to be visible.

4.3.1 Collision complex lifetime

One may estimate the collision complex lifetime to be ∼ 28.6 𝜇s from the width of

the scattering loss feature assuming that magnetic field scan sweeps through a 𝑝-

wave Feshbach resonance like previously observed Feshbach resonances 10. However,

according to our model, the observed width may not reflect the width of the long-

lived state but would depend instead on the ratio of coupling strengths for the two

open channels. A more reliable estimate uses the classical round-trip time for a

zero-energy particle in the combined centrifugal and van der Waals (vdW) potential,

10Difference in magnetic moment between the initial state and the bound state is assumed to be
1 Bohr magneton for this estimate.
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which is equal to ℏ/𝐸vdW. The vdW energy, 𝐸vdW = ℏ2
2𝜇

1
𝑅2

vdw
is determined by the

vdW length 𝑅vdw = 1
2

(︀
2𝜇𝐶6

ℏ2
)︀1/4 ≈ 66𝑎0, where 𝜇 is the reduced mass of two NaLi

molecules and 𝐶6 is the NaLi-NaLi long-range dispersion coefficient.

We consider the threshold limit with the molecule-molecule potential in Eq. 4.9

and a hard wall at an intermolecular distance 𝑅 = 0.

𝑉 (𝑅) = −𝐶6

𝑅6
+
𝑙(𝑙 + 1)ℏ2

2𝜇𝑅2
(4.9)

Classically, the round-trip time of a particle in this potential between two turning

points, the inner turning point 𝑅 = 𝑅𝑖 = 0 and the outer turning point 𝑅 = 𝑅𝑜 =

(𝐶6𝜇/ℏ2)1/4, is given as:

𝑡𝑅𝑇 = 2

∫︁ �̄�

0

1

𝑣
𝑑𝑅 = 2

∫︁ �̄�

0

1√︁
2
𝜇

√︁
𝐶6

𝑅6 − ℏ2
𝜇𝑅2

𝑑𝑅

= 2

√︂
𝜇

2𝐶6

∫︁ 1

0

�̄�4√︁
1
𝑋6 − 1

𝑋2

𝑑𝑋

=
√
2
𝜇3/2𝐶

1/2
6

ℏ2

∫︁ 1

0

1√︁
1
𝑋6 − 1

𝑋2

𝑑𝑋

=
√
2
𝜇3/2𝐶

1/2
6

ℏ2

∫︁ 1

0

𝑋3

√
1−𝑋4

𝑑𝑋

=
√
2
𝜇3/2𝐶

1/2
6

ℏ2
1

4

∫︁ 1

0

1√
𝑌
𝑑𝑌

=
𝜇3/2𝐶

1/2
6

21/2ℏ2
=

ℏ
𝐸vdw

.

(4.10)

Here, for the integrand on the first line of Eq. 4.10, substitute 𝑋 = 𝑅/�̄� and,

for the integrand on the fourth line of the equation, substitute 𝑌 = 1 − 𝑋4. For

collisions between two identical NaLi molecules, this classical round trip time 𝑡𝑅𝑇 is

approximately 5.67 ns.

The lifetime of the collision complex is finite due to losses resulting from coupling

to other channels (nonzero mirror transmissions in the cavity model). The decay of a

radiation mode of a cavity can be expressed as 𝐼(𝑡) = 𝐼0𝑒
−𝑡/𝑡𝐶 . For reflectivity 𝑅, the
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Figure 4-13: Intermolecular potential of the NaLi (𝑎3Σ+) molecules. The
𝑝-wave centrifugal barrier is also shown. The upper and lower bounds on the exper-
imental collision energies (4.2 𝜇K and 1.8 𝜇K) are marked by green horizontal lines.
The outer turning points for these collision energies are 𝑅𝑏 = 89.3 and 136.4 nm,
respectively.
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time to make 𝑁 reflections is 𝑡 = 𝑁𝑡𝑅𝑇 where 𝑡𝑅𝑇 is the round trip time. After 𝑁

reflections, the radiation intensity is 𝐼0𝑒−𝑁𝑡𝑅𝑇 /𝑡𝐶 = 𝐼0𝑅
𝑁 which gives for the lifetime

𝑡𝑐 =
𝑡𝑅𝑇

𝑙𝑛(1/𝑅)
≈ 𝑡𝑅𝑇/(1−𝑅). Therefore, the photon lifetime in a cavity is the round-trip

time times the resonant enhancement divided by 4 11. Using this analogy and the

observed loss enhancement factor of 230, we obtain an estimate for the lifetime of the

complex of 320 ns.

We consider this to be a low estimate. Even if the 𝑝-wave resonance is at resonance,

due to thermal broadening, the maximum loss enhancement is reduced by a factor

ℏ𝛾1/𝑘𝐵𝑇 ≈ 0.1 which implies a 10-fold longer lifetime (see chapter 4.3.2 for details).

In addition, if we assume that the loss enhancement is possibly not 230, but 2300 for

10% of the incident flux (model with polarization beam splitter), then the lifetime

would be another factor of ten higher and could be tens of microseconds.

4.3.2 Estimation of coupling strength 𝛾1

The coupling between channel 1 and channel 3, 𝛾1, can be estimated from the re-

flection coefficient for quantum reflection and the round trip time behind the 𝑝-wave

barrier. For this, we use the optical cavity analogy, where the first mirror coupling

is 𝛾1 = −4 ln 𝑟1/𝜏𝑅𝑇 . With the classical round trip time 𝑡𝑅𝑇 ∼ 5.67 ns and 𝑝-wave

quantum transmission 𝑇𝑝
12, one can estimate 𝛾1 ≈ − ln (1− 𝑇𝑝)/𝑡𝑅𝑇 ≈ 2𝑇𝑝/𝑡𝑅𝑇 ≈

2�̄�1�̄�
2𝑘3/𝜏𝑅𝑇 , where �̄� = 4𝜋𝑅vdW/Γ(

1
4
)2, �̄�1 = �̄�Γ(1

4
)6 and 𝑘 is the collision wavevec-

tor. 𝛾1 is calculated as a function of the collision energy, as shown in Fig.4-14(a). We

can confirm that 𝛾1 is much smaller than the thermal energy for our experimental

conditions (𝑇 ≃ 4.2 𝜇K) as shown in Fig.4-14(b).

11Quantum-defect parameter 0 ≤ 𝑦 ≤ 1 is related to the probability of irreversible loss of incoming
scattering flux from the entrance channel due to chemical reaction or inelastic loss at short range.
Based on the single-channel Fabry-Perot model introduced in chapter 1.2.2, 𝑡2 = 2

√
𝑦/(1+ 𝑦) where

𝑡2 represents the short-range reflectivity of the scattering flux and the factor 1/𝑦 is the maximum
enhancement possible above the universal limit with the tuneable round trip phase of the cavity.
This relation leads to 𝑡22 = 1−𝑅 = 4𝑦/(1 + 𝑦)2 ≈ 4𝑦 for 𝑦 ≪ 1.

12The short-range transition matrix 𝑇 reduces to the quantum transmission coefficient 𝑡1 at
threshold [87] and the universal loss rate coefficient is directly related to the transition matrix
as 𝐾 = 2𝑔 𝜋ℏ

𝜇𝑘 |𝑇 |2. By comparing this relation with the known universal loss rate coefficient [88], we
obtain the probability of quantum transmission for 𝑝 wave collision, 𝑇𝑝 ≈ 2�̄�1�̄�

2𝑘3.
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Figure 4-14: The coupling between the incident open channel |1⟩ with the
p-wave bound state 𝛾1 as a function of collision energy. a. 𝛾1 estimated
by taking the classical round trip frequency 1/𝜏𝑅𝑇 times minus the log of quantum
reflection probability |𝑟1|2 is plotted as a function of collision energy. b. The ratio
between the estimated ℏ𝛾1 and the thermal energy is plotted as a function of the
collision energy.
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4.3.3 Conclusion

The most surprising aspect of our results is the existence of a long-lived collision

complex in NaLi+NaLi collisions, which allows barrier-free chemical reactions in all

channels [29]. A long-lived complex is necessary for the existence of a high-Q res-

onance, such as we observed, independently of any detailed model. Magnetically

tuneable resonances between two ground state molecules have yet to be discovered

in other systems, although it has been uncovered that long-lived four-body collision

complexes can form in other molecular systems including Rb2Cs2 [50] and K2Rb2 [40].

These other observations are most likely related to “sticky” collisions [37–39,89] con-

nected with a high density of states. These complexes are formed incoherently and

lead to a loss rate at the universal rate. In contrast, an enhancement above the uni-

versal rate (as observed here) is only possible when the flux reflected at short range

destructively interferes with the quantum reflected flux and, therefore, requires full

phase coherence.

There exists a challenge of answering the question why Feshbach resonances are

unseen in other systems. Feshbach resonances may be too dense, or intermediate

collision complexes may undergo a fast loss from higher-body collision or photo-

induced processes in other systems. In these cases, Feshbach resonances are almost

impossible to detect, as they are unresolved or broadened, although they exist. So

far, the Feshbach resonance in NaLi+NaLi collisions is unique. It is created by a

long-lived collision complex which does not go through fast collision loss or photo-

induced loss and it is detected by the coupling of the complex to a nearly degenerate

hyperfine state.
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Chapter 5

Magnetic trapping and cooling of

molecules

Trapping ultracold molecules in conservative traps is essential for applications—such

as quantum state-controlled chemistry, quantum simulations, and quantum informa-

tion processing. These applications require high densities or phase-space densities.

We report magnetic trapping of NaLi molecules in the triplet ground state at high

density (≈ 1011 cm−3) and ultralow temperature (≈ 1 𝜇K). Magnetic trapping at

these densities allows studies on both atom-molecule and molecule-molecule collisions

in the ultracold regime in the absence of trapping light, which has often lead to un-

desired photo-chemistry. We measure the inelastic loss rates in a single spin sample

and spin-mixtures of fermionic NaLi as well as spin-stretched NaLi+Na mixtures. We

demonstrate sympathetic cooling of NaLi molecules in the magnetic trap by radio fre-

quency evaporation of co-trapped Na atoms and observe an increase in the molecules’

phase-space density by a factor of ≈ 16.

5.1 Introduction

Ultracold molecules offer new opportunities for quantum state controlled chemistry

[1, 2], for quantum simulations [3–5], and for quantum information processing [6–9].

For more than two decades, various methods were developed with the goal to trap
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molecular samples at densities high enough to study molecular collisions. Using buffer

gas cooling [90–93] or Stark or magnetic deceleration [94–96], molecules were trapped

in magnetic traps in the temperature range of tens or hundreds of millikelvin. In

only one case (O2) were densities high enough (estimated at ≈ 1010 cm−3) to observe

molecular collisions [97]. Dipolar molecules can be trapped with electric forces. Col-

lisions between CH3F molecules were observed in an electrostatic trap at densities

of 107 cm−3 [98], and elastic collisions of OH were observed in an electromagnetic

trap at temperatures around 60 mK [99], though none of these studies reached the

ultracold temperature regime. Ultracold laser-cooled molecules (in the 50 - 100 𝜇K

range) were transferred into magnetic traps at densities ≲ 106 cm−3 [20,100], too low

for the observation of intermolecular collisions.

Optical traps have the advantages of trapping non-magnetic molecules and provid-

ing tight confinement, which has allowed the study of collisions involving molecules

created by ultracold assembly or direct laser cooling. For example, collisional reso-

nances have been observed in atom-molecule mixtures [33,70,71] and between molecules

[73] in optical traps. The disadvantage of optical traps is the small trapping volume

and the presence of intense laser light, which can induce photochemistry. This has

become a major concern recently after many experiments have found fast collisional

losses even for non-reactive molecules, possibly due to “sticky collisions” connected

with long-lived complexes [37–39,89,101]. Recent experiments to test these proposals

suggest that optical traps can cause short lifetimes of molecules and are not truly

conservative [40,50,102–104] emphasizing the need for “laser-free” trapping.

Here, we report magnetic trapping of triplet NaLi molecules in the rovibrational

ground state with high density (≈ 1011 cm−3) and ultracold temperature (≈ 1𝜇K).

The typical density is a factor of 105 higher compared to previous experiments with

magnetically trapped ultracold molecular gases. Inelastic losses are detected in single-

component and in spin-mixtures of a fermionic NaLi molecular gas.

Another major long-standing goal has been magnetic trapping of molecules to-

gether with atoms for sympathetic cooling of molecules to achieve higher molecular

densities or phase-space densities [105,106]. Magnetic co-trapping of NH and N [107],
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and more recently of CaF and Rb [108] and O2 with Li atoms [109] has been achieved.

However, so far only inelastic collisions were observed [107,108], with atomic densities

far too low for sympathetic cooling.

Here we demonstrate sympathetic cooling of molecules in a magnetic trap. We use

a spin-stretched NaLi+Na mixture, which had been studied in ref. [72] and observe

an increase in the phase-space density (PSD) of the molecular gas by more than an

order of magnitude after radio frequency (RF) evaporation of Na atoms.

5.2 Experimental methods

The experiments are carried out with NaLi molecules in the triplet ground state

(𝑎3Σ+, 𝑣 = 0, 𝑁 = 0) created by means of ultracold assembly of Na and Li atoms in

the lowest-energy Zeeman states following the procedure described in ref. [33,72,73].

The procedure has been improved so that the Na/Li mixture is transferred directly

from the initial magnetic trap into a 1550 nm 1D optical lattice without the use of

extra optical traps (previous configurations required a 1064 nm optical dipole trap

and a 1596 nm 1D optical lattice). After 0.4 seconds of forced evaporation of the atom

mixture, 105 molecules at 1.8 𝜇K temperature are formed in the maximally stretched

low-field seeking hyperfine state (|𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩) using Feshbach as-

sociation and STIRAP transfer to the triplet ground state. Here, 𝐹 is the total

angular momentum including electron and nuclear spins, 𝑚𝐹 is the 𝐹 projection

to the quantization axis, and 𝐹1 is a good quantum number in the zero-field limit

combining the electron spin and the Na nuclear spin [13].

After ramping down the bias field from ∼ 745 G, where the association of molecules

occurs, to a low magnetic bias field in 20 ms, molecules are transferred from the optical

lattice to an Ioffe-Pritchard magnetic trap with a bias field of 0.56 G in 100 ms. The

molecules are trapped for various hold times and transferred back to the optical lattice

in 100 ms for detection at high field (∼ 745 G). The number of molecules is counted by

absorption imaging of the Li atoms from the recaptured and dissociated molecules.

The experimental sequence is illustrated in Figure 5-1. The transfer efficiency of
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Figure 5-1: Top figures are the illustration of particles confined in different traps. I.
Na/Li mixture is confined in a 1D lattice potential (indicated with orange dashed
line). II. NaLi molecules are trapped in the same 1D lattice. III. NaLi molecules
are trapped in a hybrid trap created by a 1D lattice and a magnetic trap (indicated
with black line). IV. Molecules are purely confined by a magnetic trap. The middle
plot is the experimental sequence to produce and isolate NaLi molecules (time axis
is not to scale). Molecules are formed via Feshbach formation and STIRAP in a
1D lattice, and the free atoms are removed using resonant light pulses at high field.
After the magnetic bias field is dropped to low field, the lattice is ramped down and
the magnetic trap is turned on in 100 ms. In the magnetic trap RF or microwave is
applied to the molecules for thermometry or preparation of molecular spin mixtures.
For detection, molecules are transferred back to the 1D lattice, the molecule formation
process is reversed, and the dissociated free atoms are imaged. The bottom row is
the lattice intensity as a function of time along with particle and trap type indicated
using index I-IV.
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(a) (b)

(c)

Figure 5-2: (a) Rovibrational ground state energy level diagram of NaLi molecules in
the triplet potential (𝑎3Σ+) at zero bias field. Molecules are initially formed in the low
field seeking spin-polarized hyperfine state (|𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩) indicated
in blue. States in red and green are the other hyperfine states used for creating
molecular spin-mixtures. (b) Number decay of low field seeking spin-polarized NaLi
molecules (|𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩) in a magnetic trap. (c) The number of
molecules left in the magnetic trap as a function of the RF-knife frequency. The
dashed line is a fitting function for a temperature of 1.06 𝜇K. The inset is the 𝑚𝐹

energy levels of NaLi in |𝐹1 = 5/2, 𝐹 = 7/2⟩ near the center of a magnetic trap (in
black lines). Exemplary density profile of molecules in the top hyperfine state is in
blue dashed line.
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molecules from the optical trap to the magnetic trap is close to 100 % whereas the

recapture efficiency back to the optical trap is only about 50 % due to a smaller

optical trap volume.

We investigate mainly three types of inelastic collisions: 𝑝-wave collisions in sin-

gle spin component molecular gas, 𝑠-wave collisions in molecular spin-mixutures, and

low-reactivity atom-molecule collisions i.e. NaLi+Na in the low field seeking spin-

stretched states. For this, molecules in the hyperfine state |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩

are held by the magnetic trap in the single spin state, or together with molecules in an-

other hyperfine state or Na atoms in the upper spin-stretched state (|𝐹 = 2,𝑚𝐹 = 2⟩).

The energy level diagram of NaLi molecules in the triplet ground state is shown in Fig.

5-2(a). We focus on the number decay of NaLi in state |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩

in the magnetic trap.

5.2.1 Decay models

The differential equations that describe the decay of molecules in the upper stretched

state in the presence of another type of particle 𝑖 are given as:

�̇�NaLi = −(𝐾𝑖/𝑉ov)𝑁𝑖𝑁NaLi − (𝛽0/𝑉eff,NaLi)𝑁
2
NaLi (5.1)

�̇�𝑖 = −(𝐾𝑖/𝑉ov)𝑁NaLi𝑁𝑖 − (𝛽𝑖/𝑉eff,𝑖)𝑁
2
𝑖 , (5.2)

where 𝑁NaLi represents the number of NaLi in the upper stretched state and 𝑁𝑖

represents the number of particles of type 𝑖 that are magnetically trapped with the

molecules. Here, 𝑉ov is the volume of the regime where the 𝑖-type particles overlap

with the upper stretched molecules, 𝑉eff,𝑖 is the mean volume filled with 𝑖 particles,

𝛽0 (𝛽𝑖) is the two-body molecular (particle 𝑖) loss rate coefficient, and 𝐾𝑖 is the loss

rate coefficient for the collisions of 𝑖 +NaLi pairs.

We solve the given differential equations for three different conditions: 𝑁𝑖 = 0,

𝑁𝑖 ≈ 𝑁NaLi, and 𝑁𝑖 ≫ 𝑁NaLi. The two-body loss in the single spin component

(|𝐹1 =
5
2
, 𝐹 = 7

2
,𝑚𝐹 = 7

2
⟩) molecular gas, i.e. 𝑁𝑖 = 0, is described by the second term
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of Eq. 5.1 only. The analytical solution is given as 𝑁NaLi(𝑡) = 𝑁0
1

1+𝛽0𝑁0𝑡/𝑉eff

1, where

𝑁0 is the initial NaLi number.

For collisions in two-component mixtures that we study experimentally, the decay

of the NaLi number is well described by Eq. (5.1) and (5.2) with the second terms

approximated to zero since 𝛽0, 𝛽𝑖 ≪ 𝐾𝑖. With this approximation, the analytic

solution becomes2:

𝑁NaLi(𝑡) =
𝐷

𝐶𝑒𝐷Γ𝑡 − 1
(5.3)

𝑁𝑖(𝑡) = − 𝐷
1
𝐶
𝑒−𝐷Γ𝑡 − 1

(5.4)

where Γ = 𝐾𝑖𝑁𝑖(0)/𝑉ov is the loss rate, 𝐶 = 𝑁𝑖(0)/𝑁NaLi(0), and𝐷 = 𝑁𝑖(0)−𝑁NaLi(0).

In a regime where 𝑁𝑖(0) ≫ 𝑁NaLi(0) in a two-component mixture, 𝑁𝑖(𝑡) can be ap-

proximated to 𝑁𝑖(0) throughout and Eq. 5.3 is reduced to a simple exponential decay,

𝑁NaLi(𝑡) = 𝑁0𝑒
−𝐾𝑖𝑡/𝑉ov . In the experiment, the Na atom number was more than a fac-

tor of 10 larger than the NaLi molecule number, so the decay of NaLi is well described

by the exponential function.

Now we discuss the volumes 𝑉eff and 𝑉ov in Eqs. (5.1) and (5.2). Assuming a

harmonic trap, one obtains:

𝑉eff,𝑖 = �̄�−3
𝑖 (4𝜋𝑘𝐵𝑇𝑖/𝑚𝑖)

3/2

𝑉ov=
𝑁𝑖𝑁NaLi∫︀
𝑑𝑉 𝑛𝑖𝑛NaLi

= �̄�−3
Na

[︂(︂
2𝜋𝑘𝐵𝑇𝑖
𝑚𝑖

)︂(︂
𝜇Na

𝜇𝑖

+
𝜇Na

𝜇2

𝑇NaLi

𝑇𝑖

)︂]︂ 3
2

,

where the geometric mean of the sodium trap angular frequencies, �̄�Na = (𝜔𝑥𝜔𝑦𝜔𝑧)
1/3

1In order to account for the additional loss while and after the transfer back to an optical trap,
the 𝛼𝜏 term should be added to 𝛽0𝑁0𝑡. 𝛼 is the ratio of decay rate in the optical trap to that in the
magnetic trap and 𝜏 is the time molecules spend in the optical trap. Although the optical trap is
tighter than the magnetic trap, since only 50% of the molecules are transferred back to the optical
trap, 𝛼 is typically not much greater than 1. In addition, 𝜏 is short (effectively ≈ 50 ms under
maximum trap depth). Therefore, this additional loss term can be neglected under the experimental
conditions.

2The 𝛼𝜏 term should be added on top of 𝐷Γ𝑡 in Eq. 5.1 in order to account for the additional
loss while and after the transfer back to an optical trap. Similarly, this additional loss term can be
neglected under the experimental conditions.
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= 2𝜋×(282·282·14.8)1/3 Hz ≈ 2𝜋 × 106 Hz. Here, 𝑛𝑖 is the density, 𝑇𝑖 is the tem-

perature, 𝑚𝑖 is the mass and 𝜇𝑖 is the magnetic moment of an 𝑖 particle. The geo-

metric mean of the trap angular frequencies for NaLi in the upper stretched state,

�̄�NaLi=�̄�Na · (𝑚Na/𝑚NaLi) · (𝜇NaLi/𝜇Na), where the mass ratio, 𝑚NaLi/𝑚Na ≈ 29/23 and

the magnetic moment ratio, 𝜇NaLi/𝜇Na ≈ 2.

5.2.2 Thermometry

We determine the temperature of a NaLi gas in the magnetic trap from its density

profile. To find this, we let NaLi molecules in the |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩ hy-

perfine state undergo radio frequency (RF) induced spin-flips in a magnetic trap that

has a trap bottom of 0.56 G. RF is swept from some high value (> 600 kHz) to a lower

value 𝑓 in 600 ms 3. This RF can induce 7 simultaneous transitions, by one quanta of

𝑚𝐹 each, from state |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩ to |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = −7/2⟩,

allowing the molecules to escape from the trap. The number of molecules left in the

magnetic trap is determined by the final RF value (RF-knife frequency). The max-

imum possible energy of the molecules is 𝐴 = 7
2
ℎ(𝑓 − 𝑓0) where 𝑓 is the RF-knife

frequnecy and 𝑓0 is the transition frequency from |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩ to

|𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 5/2⟩ at the bottom of the magnetic trap.

Near the center, the magnetic field of the Ioffe-Pritchard magnetic trap varies

quadratically with the distance from the origin. The states of the particles are enu-

merated by a set of quantum numbers [𝑛𝑥, 𝑛𝑦, 𝑛𝑧] in a general three-dimensional

harmonic trap potential 𝑉 (𝑥, 𝑦, 𝑧) = 1
2
𝑚(𝜔2

𝑥𝑥
2+𝜔2

𝑦𝑦
2+𝜔2

𝑧𝑧
2) and the energy of a par-

ticular state is given by 𝜖 = ℏ(𝑛𝑥𝜔𝑥 +𝑛𝑦𝜔𝑦 +𝑛𝑧𝜔𝑧) + 𝜖0, where 𝜖0 = 1
2
ℏ(𝜔𝑥 +𝜔𝑦 +𝜔𝑧)

is the zero-point energy in this harmonic trap. For 𝜖 ≫ 𝜖0, the number of states

with energy between 𝜖 and 𝜖 + 𝑑𝜖 is estimated as 𝑔(𝜖)𝑑𝜖, with 𝑔(𝜖) = 𝜖2

2ℏ3�̄�3 where

�̄� = (𝜔𝑥 ·𝜔𝑦 ·𝜔𝑧)
1/3 is the geometric mean of the trap angular frequencies. Therefore,

3The thermometry is carried out when there are only NaLi molecules in the upper-stretched state,
and 𝑠-wave collisions are impossible. Therefore, 600 ms is far too short for molecules to thermalize
during the RF sweep.
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the particle number with energy between 0 and 𝐴 is

𝑁(𝐴) =𝑁tot

∫︀ 𝐴

0
𝑔(𝜖)𝑒−𝛽𝜖𝑑𝜖∫︀∞

0
𝑔(𝜖)𝑒−𝛽𝜖𝑑𝜖

(5.5)

=
𝑁tot

2

[︀
𝑒−𝛽𝐴{−𝛽𝐴 · (𝛽𝐴+ 2)− 2}+ 2

]︀
(5.6)

where 𝛽 = (𝑘𝐵𝑇 )
−1 is the Boltzmann factor. Fitting the data in Fig. 5-2(c), which is

the NaLi number as a function of the RF-knife frequency 𝑓 , to Eq. 5.6 provides the

estimate for the molecule temperature of 1.06± 0.18 𝜇K.

For the temperature estimation of NaLi in the other hyperfine state either state

|𝐹1 = 5/2, 𝐹 = 5/2,𝑚𝐹 = 5/2⟩ or state |𝐹1 = 3/2, 𝐹 = 5/2,𝑚𝐹 = 5/2⟩ of a molecu-

lar spin mixture, we assume that the average total kinetic energy and the average

total potential energy are equal in the harmonic trap by the virial theorem. Af-

ter molecules are transferred from the upper-stretched state to the other hyperfine

state, the average potential energy of NaLi is reduced by the magnetic moment ratio

𝜇NaLi*/𝜇NaLi momentarily, while the kinetic energy remains the same. Here, NaLi

represents the upper stretched state and NaLi* indicates the other hyperfine state.

The average potential and kinetic energy redistribute to be equal. With this simple

model, the temperature is estimated as 𝑇NaLi* ≈ 𝑇NaLi(𝜇NaLi*/𝜇NaLi + 1)/2. The Na

temperature is measured directly from the time-of-flight (TOF) absorption imaging

out of the magnetic trap at low field.

5.3 Results

5.3.1 𝑝-wave collisions between molecules

We first observe 𝑝-wave inelastic collisions of NaLi in the upper spin-stretched state.

The number of molecules in the magnetic trap decays by more than 50% starting from

6 × 104 in a few seconds, as shown in Fig. 5-2(b), while the typical vacuum lifetime

is greater than 20 seconds. The molecular temperature is 1.06 ± 0.18 𝜇K, which is

measured by applying an RF-knife of various frequencies as shown in Fig. 5-2(c).
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Figure 5-3: Number decay of low field seeking spin-polarized NaLi molecules
(|𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩) when magnetically trapped together with molecules
in state |𝐹1 = 5/2, 𝐹 = 5/2,𝑚𝐹 = 5/2⟩ (in red circles) and with molecules in state
|𝐹1 = 3/2, 𝐹 = 5/2,𝑚𝐹 = 5/2⟩ (in green squares).

The initial density is 1.7 × 1011 cm−3—a factor of 105 greater than the experiments

carried out in ref. [20, 100]. The loss rate coefficient is calculated as (3.6 ± 1.4) ×

10−12 (cm3/s)(TNaLi/𝜇K) from the best fit to a two-body loss model described above.

Within the uncertainty, this value is consistent with the value reported in ref. [33],

which was measured near 980 G.

5.3.2 𝑠-wave collisions between molecules

Next, we observe 𝑠-wave inelastic collisions by creating a spin-mixture of molecules

in two different hyperfine states. A transition from |𝐹1 = 5/2, 𝐹 = 7/2,𝑚𝐹 = 7/2⟩ to

|𝐹1 = 5/2, 𝐹 = 5/2,𝑚𝐹 = 5/2⟩ is driven by 100 MHz RF until the molecules form a

near 50/50 spin mixture in the magnetic trap. Similarly, the mixture of |5/2, 7/2, 7/2⟩

and |3/2, 5/2, 5/2⟩ is prepared with a 1133 MHz microwave drive. Due to mag-

netic field inhomogeneity, the superposition of the two spin states decoheres within

𝑇2 ≈ ℎ
Δ𝜇·𝛿𝐵 ≲ 500𝜇s, where Δ𝜇 is the magnetic moment difference between the

two hyperfine states, and 𝛿𝐵 ≈ 10 mG is the magnetic field inhomogeneity, during
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and after an approximate 𝜋/2 pulse. The loss rate coefficients are calculated to be

(3.6 ± 1.5) × 10−11 cm3/s and (1.1 ± 0.4) × 10−10 cm3/s respectively by fitting the

data in Fig. 5-3 to a loss model described in the Methods section. These values are

significantly lower than the 𝑠-wave universal value estimated using the approximate

NaLi-NaLi long-range dispersion coefficient (𝐾𝑢𝑛𝑖𝑣
𝑙=0 = 1.85× 10−10 cm3/s).

5.3.3 Collisions between NaLi and Na

For atom-molecule collisions, we load together about 4 × 105 Na atoms and about

4 × 104 NaLi in the upper stretched hyperfine states into the magnetic trap. The

temperature of the atoms is ≈ 2𝜇K from the TOF imaging. Since the Na number

is much greater than the NaLi number we fit the molecule decay in Fig. 5-4(a) to a

simple exponential decay curve. The measured loss rate constant 𝛽 = (6.3 ± 1.4) ×

10−12cm3/s is about a factor of 30 lower than the universal value (1.72× 10−10cm3/s)

which is well known for this system [74].

5.3.4 Sympathetic cooling of NaLi with Na

With the low-reactivity atom-molecule mixture, we demonstrate sympathetic cooling

of molecules in the magnetic trap. Here, via RF controlled evaporation, we have

independent control over the molecule and atom trap depths. It is possible to cool

spin-polarized NaLi using collisions with Na, also spin-polarized in the same direction

as NaLi, because NaLi has a favorable ratio of elastic to inelastic collisions 𝛾 with Na.

At high field, it was measured to be 𝛾 ≈ 300 [72]. After loading the atom-molecule

mixture into the magnetic trap, we slowly evaporate Na atoms out of the trap with a

microwave sweep. We perform a microwave sweep to remove all Na from the magnetic

trap in 1 second, which is chosen to be similar to the lifetime of NaLi with Na and

longer than the thermalization time among Na (∼ 670 ms) and between Na and NaLi

(∼ 90 ms) (see Chap.5.3.5 for details).

We compare the temperature of NaLi after the Na evaporation to that of NaLi from

an identical mixture loaded to the magnetic trap but with sudden removal of Na using
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Figure 5-4: (a) Molecule number as a function of hold time in a magnetic trap when
trapped together with Na. The atom-molecule mixture is in the low-field seeking
spin-stretched state. Na number is about 4 × 105 and the temperature is ≈ 2𝜇K.
(b) Molecule number as a function of RF-knife frequency. Data in red circles is with
slow evaporation of Na and data in black squares is with Na suddenly removed after
loading into a magnetic trap. The density profile obtained from the red (black) data
implies a temperature of 0.8(1) 𝜇K ( 2.3(3) 𝜇K). The fits in dashed lines use a fit
function described in Chap.5.2.2.

100



a resonant light pulse after the loading. The two temperatures are estimated by the

RF-knife frequency scan described earlier (Fig.5-4(b)). Evaporation of Na leads to a

temperature of NaLi molecules of 0.8(1) 𝜇K, substantially lower than the temperature

without the evaporation (2.3(3) 𝜇K), while the molecule number is decreased by 30%.

This corresponds to an increase in PSD of the molecular gas by a factor of ≈ 16.

5.3.5 Inelastic collision and thermalization rates

To investigate the limiting factor for sympathetic cooling, we compare the three

relevant time scales in a Na+NaLi mixture: the inelastic collision and thermalization

rates between Na and NaLi, and the thermalization rate among Na atoms. The

experiment was done with about 33× 103 NaLi and 420× 103 Na at a temperature of

≈ 2𝜇K in a magnetic trap. The initial densities of Na and NaLi are 1.25× 1011 cm−3

and 3.3× 1010 cm−3, respectively. The initial inelastic collision rate is experimentally

measured to be Γinel ≈ 1.2 s−1 as shown in Fig. 5-4(a).

Next, we estimate the thermalization rate between Na and NaLi. In a mass-

imbalanced system, the factor 3/𝜉 quantifies the approximate average number of

collisions per particle required for thermalization, where 𝜉 = 4𝑚Na𝑚NaLi/(𝑚Na +

𝑚NaLi)
2 ≈ 0.987 [72,110]. Thus, the relation between the thermalization rate and the

elastic scattering rate is given by Γth ≈ Γel/(3/𝜉). In our system, where the particle

number is largely imbalanced, we can write the thermalization rate as

Γth ≈ (𝑁Na/𝑉ov)𝜎el𝑣rel
3/𝜉

, (5.7)

where 𝑁Na/𝑉ov is the average density of Na atoms seen by NaLi molecules, 𝜎el is the

elastic scattering cross-section and the relative velocity 𝑣rel =

√︂
8𝑘𝐵
𝜋

(︁
𝑇Na
𝑚Na

+ 𝑇NaLi
𝑚NaLi

)︁
.

The 𝑠-wave elastic scattering cross-section between Na and NaLi is given by 𝜎el ≈

4𝜋𝑎2, where 𝑎 is the scattering length. Using an approximate value for the scattering

length 𝑎 = 263(66)𝑎0, where 𝑎0 is the Bohr radius [72], the thermalization rate is

estimated to be ≈ 11 s−1 .

Similarly, the thermalization rate among Na is given as Γ̃th =
(𝑁Na/𝑉eff,Na)�̃�el𝑣rel

3
≈
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1.5 s−1, where the 𝑠-wave elastic scattering cross-section between Na atoms �̃�el ≈

8𝜋�̃�2, where the scattering length between Na atoms �̃� = 85(3)𝑎0 [111]. The relative

velocity 𝑣rel =
√︁

16𝑘𝐵
𝜋

𝑇Na
𝑚Na

. We see that Γinel ∼ Γ̃th ≪ Γth, and the sympathetic cooling

of NaLi is limited by the slow Na thermalization rate.

5.4 Summary

In summary, we have shown magnetic trapping of molecules with a factor of 105 higher

density compared to ultracold molecules previously studied in a magnetic trap. We

have measured the inelastic collision rates for two selected molecular spin mixtures

and a spin-stretched Na+NaLi mixture that serve as prototypes for future studies on

state-dependent molecule-molecule and atom-molecule collisions in the magnetic trap.

Quantitative analysis of molecular collisions in the magnetic trap is much simpler than

in optical traps, because the magnetic trap is well-approximated by a harmonic po-

tential whose trap frequencies are determined by molecule magnetic moments, which

are typically well known. In contrast, optical traps can be highly anharmonic near

the top of the trap, and ratios of trap frequencies (unless directly measured) can be

difficult to determine because of the unknown molecular ac polarizability.

Our collisional studies show that NaLi molecules with various collision partners

have loss rates far below the universal limit. Although all collision systems are reac-

tive, the absorption probability at close range is much smaller than one. This is well

understood for the collisions in the spin-stretched Na+NaLi mixture [29,33] where the

quartet potential in the input channel is non-reactive, and inelastic collisions are only

possible via spiflips. However, this explanation does not apply to the s-wave molecule-

molecule collisions studied here. Also, a molecule-molecule Feshbach resonance has

been observed for a strongly reactive input potential [73]. These observations suggest

that collisional resonances and collisional complexes should occur more generally, and

motivate more systematic studies of collisions involving NaLi and collision partners

in various hyperfine states, and also for other molecules [112]. We also demonstrated

sympathetic cooling of NaLi by RF evaporation of Na atoms, increasing the PSD of
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the molecules by a factor of ≈ 16. This can be further optimized, but is eventually

limited by the slow Na thermalization rate, which is significantly slower than the rate

of elastic collisions between Na and NaLi. Using a second trap for Na that enhances

the thermalization rate should allow cooling into the quantum-degenerate regime.
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Chapter 6

Free to bound Raman transfer

Progress toward ultracold molecular system has been made with various species by

either synthesis of preliminarily cooled atoms or direct cooling of molecules chemically

produced. One of the most successful recipes for achieving ground state molecules

(without direct laser cooling of molecules) has two combined steps. The first step

is the magnetic association of cold atoms into weakly bound molecules near a Fesh-

bach resonance. The second step is the efficient formation of ground-state ultracold

molecules via the stimulated Raman adiabatic passage (STIRAP). Although this

recipe allowed the production of cold molecules as low as tens of nano Kelvin, it also

has some drawbacks. It requires a Feshbach resonance to be at an experimentally ac-

cessible bias field and to be strong compared to any decoherence rate for an efficient

magnetic association. The Na + Li mixture has very narrow (∼mG) resonances only

at high fields (>700 G), compared to other diatomic alkali metal mixtures, and using

these resonances for molecule formation is technically challenging. However, we have

relied on one of these resonances at 745G to generate ground-state molecules. Even

with a low magnetic association efficiency of about 5%, having a large initial atomic

mixture number allowed a competitive number of ground-state molecules, typically

5× 104.

All-optical creation of molecules in which the magnetic association step near a

Feshbach resonance is eliminated can broaden the horizon of ultracold molecules to

a larger pool and simplify some of the experimental complication. There have been
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efforts toward all-optical creation of molecules. However, there are only a couple of

different molecules that have been successfully formed in their ground state. Recent

experiments on Sr2 molecule formation have shown the all-optical creation of an

ultracold gas of alkaline-earth metal dimers in their absolute ground state [113,114].

In addition, all optical creation of RbCs molecules using photoassociation (PA) was

demonstrated using spontaneous emission [115–119].

In the following subsections, three different approaches to the all-optical formation

of NaLi molecules in the ground state of the 𝑎3Σ+ potential are discussed in a chain

of thought that gradually develops on top of a simplified model. Therefore, the full

picture is revealed only at the end of the chapter. The work described in this chapter

heavily utilizes ab initio calculations of the NaLi triplet potentials (𝑎3Σ+, 𝑐3Σ+, and

𝑏3Π) provided to us by Prof. Olivier Dulieu, to whom we are grateful. The table of

ab initio potential values for the lowest three triplet potentials of NaLi is provided in

Appendix C of ref. [120].

Here, we model the NaLi free-to-bound Raman transitions as an effective three-

level system. The most complete knowledge of the system is contained in the state

vector |𝜓⟩ = 𝑐𝑖 |𝑖⟩+ 𝑐𝑒 |𝑒⟩+ 𝑐𝑓 |𝑓⟩, which is a superposition of three orthogonal state

vectors: the initial state |𝑖⟩, the intermediate excited state |𝑒⟩ and the final state |𝑓⟩.

Here, we do simple modeling and numerical calculation of the Schrodinger equation

that describes our system (effective three-level system with additional loss terms and

energy shifts) given by:

𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
𝑐𝑖

𝑐𝑒

𝑐𝑓

⎤⎥⎥⎥⎦ = 𝑖

⎡⎢⎢⎢⎣
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𝛿
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𝑐𝑒

𝑐𝑓
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− 1

2

⎡⎢⎢⎢⎣
𝑅𝐴 0 0

0 Γ𝑀 +𝑅𝑀 0

0 0 𝑅𝐶

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑐𝑖

𝑐𝑒

𝑐𝑓

⎤⎥⎥⎥⎦
(6.1)

where the two Rabi frequencies are Ω𝑢𝑝 and Ω𝑑𝑜𝑤𝑛 and Δ and 𝛿 are single- and two-
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photon detunings set by the laser frequencies, respectively. We can define the effective

detunings Δ̄ ≡ Δ + Δ′ and 𝛿 ≡ 𝛿 + 𝛿′ where Δ′ and 𝛿′ are detunings caused by the

Raman beams acting on other nearby atomic or molecular transitions, and creating

light shifts. The term in blue compensates the AC Stark shifts caused by two Rabi

couplings in an isolated three-level system. Γ𝑀 is the linewidth of the intermediate

excited state. The terms in red and orange are additional decay terms that arise

specifically in our system. 𝑅𝐴 and 𝑅𝑀 are decay rates of the initial atomic state

and the final molecular state by photon scattering. 𝑅𝐶 is the atom-molecule collision

loss rate. We first focus on optimizing the Raman transition with only atomic and

molecular photon scattering (𝑅𝐴, 𝑅𝑀) setting Δ′ and 𝛿 to zero and with complete

Stark shift compensation (with term in blue). We then further explore the effects of

collisional loss and light shifts.

6.1 Double Raman transfer via Feshbach molecule

state

The most staightforward approach to forming a ground state molecule is to replace

the well-established method of forming Feshbach molecules, magnetic association near

a Feshbach resonance, with a two-photon Raman transfer from the ultracold atomic

mixture to molecules in the Feshbach state (𝑣 = 10, 𝑁 = 2). Stable ground-state

molecules are eventually created from optically created Feshbach molecules by the

standard STIRAP sequence. The Feshbach state 𝑣 = 10, 𝑁 = 2 has a binding energy

of 5.85 GHz, which can be bridged with an electro-optic modulator (EOM) from the

energy of free atoms. This allows using a single laser source with an EOM driven

with 5.86 GHz radiofrequency (RF) to achieve a two-photon 𝜋 pulse. There are a

few advantages to this method. First of all, by having an EOM in addition to a

single laser source, it is easier to achieve a much longer coherence time between two

Raman beams compared to having two independent lasers locked to a stable reference

cavity. Second, only one additional laser is required to create Feshbach molecules, and
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Figure 6-1: Ti:Sapphire laser setup for Raman transfer from free atoms to the Fesh-
bach state.

the existing STIRAP lasers can be used to form the ground-state molecules from the

Feshbach molecule. Lastly, it can be checked whether the first step (optical formation

of Feshbach molecules) was successful by imaging atoms that are dissociated from a

Feshbach molecule near the ∼ 745 G Feshbach resonance.

However, this approach has limitations. The Frank-Condon factors (FCF) of two

paths: a. FCF between free atomic states and the intermediate excited molecular

state (upleg path), and b. FCF between the Feshbach state and the intermediate

excited molecular state (downleg path) differ by more than two orders of magnitude,

and the binding energy of the Feshbach state is only 5.85 GHz; the Raman beam

that bridges the atomic state to one of the excited molecular bound states (upleg)

also acts strongly on the other path (downleg path), causing significant off-resonant

Rayleigh scattering of Feshbach molecules. Additionally, this also causes large AC

stark shifts of the molecular bound states leading to fast decoherence during the

Raman transition. We will ignore the effect of AC stark shifts for now, since in

principle, it can be compensated with additional laser beams. However, it turns out

to be one of the most critical aspects in evaluating the approach.
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Figure 6-2: Four photon transfer of sodium and lithium atoms to the rovi-
brational ground state of NaLi molecules in the 𝑎3Σ+ potential via Feshbach
molecule state. Free sodium and lithium atoms are transferred to the Feshbach state
(𝑣 = 10, 𝑁 = 2) in the 𝑎3Σ+ potential by two photon Raman transfer mediated by
an excited molecular state (𝑣* = 49) in the 𝑐3Σ+ potential. Feshbach molecules are
eventually transfered to the rovibrational ground state of NaLi molecules in the 𝑎3Σ+

potential either using two photon Raman pulse or STIRAP mediated by 𝑣* = 11.
The two red arrows indicate the first two photon couplings and the two black arrows
indicate the second two photon couplings.
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6.1.1 Coupling strengths of Raman beams

A newer model of Ti:Sapphire laser from M-Squared Laser spanning 670-725 nm

range1 can be used for Raman transfer of free atoms to the Feshbach state. With the

current continuum-to-bound Raman experimental setup using the Ti:Sapphire laser

and a fiber EOM from EOSpace (PM-0S5-10-PFU-PFU-670), we are able to get up

to 300 mW for Upleg and 100 uW for Downleg, respectively. Assuming a beam waist

of 50 𝜇 m, which is comparable to the size of 1596 nm lattice and a 1064 nm dipole

trap, the intensities of the two Raman beams are given as:

𝐼𝑢𝑝 =
300mW

𝜋(50× 10−4cm)2
= 3.82× 106 mW · cm−2 = 3.82× 103 W · cm−2

𝐼𝑑𝑜𝑤𝑛 =
100uW

𝜋(50× 10−3cm)2
= 1.27× 103 mW · cm−2 = 1.27 W · cm−2

(6.2)

The Rabi coupling strength between the free atomic state and 𝑣* = 49 by the upleg

beam of intensity 𝐼𝑢𝑝 is estimated to be Ω𝑢𝑝 ≈ 2𝜋 × 31.1kHz for the atomic density

of 𝑛 = 5× 1012 cm−3 for both sodium and lithium atomic clouds. Given the Franck-

Condon factor2 difference between the upleg and the downleg as shown in Fig.6-3, the

Rabi frequency of the downleg (Ω𝑑𝑜𝑤𝑛) is roughly 1000 times higher than the Rabi

frequency of the upleg for individual excited vibrational states when 𝑣* is smaller

than 50.

6.1.2 Li 2S to 2P transition strengths

States in the 𝑐3Σ+ potential have electronic states dissociating into Na(3𝑠)+Li(2𝑝),

and therefore, free-to-bound upleg and downleg pulses can cause near-resonant light

scattering by Li 𝐷1 and 𝐷2 transitions leading to atomic loss 3. This effect can be

large for highly excited vibrational states as an intermediate excited state, and it is

dominated by the upleg pulse, since its intensity is normally a few orders of magnitude

1A newer model of Ti:Sapphire laser from M-Squared Laser spanning 670-725 nm range was
originally used for finding photoassociation (PA) lines of high vibrational states of 𝑐3Σ+ NaLi.

2Fanck-Condon factors are calculated from ab initio potentials.
3Na 𝐷1 and 𝐷2 transitions are far off-resonant to upleg and downleg optical frequencies (tens of

THz or more), and the caused loss is negligible compared to the loss caused by Li transitions.
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Figure 6-3: Franck-Condon factors (FCF) calculated from ab initio poten-
tials. Free-to-bound (𝑣*) FCFs are indicated in red, Feshbach state (𝑣 = 10, 𝑁 = 2)
to excited state FCFs are indicated in blue and the ground state to excited state FCFs
are indicated in green. The red dashed circles are identifying the two FCFs relevant
to the first two photon transfer: free-to-bound (atoms to 𝑣* = 49) FCF and 𝑣* = 49
to 𝑣 = 10 FCF. The black dashed circles are identifying the two FCFs relevant to the
second two photon transfer: FCF between 𝑣 = 10 and 𝑣* = 11, and FCF between
𝑣* = 11 and 𝑣 = 0.
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larger than that of the downleg pulse as estimated in Eq. 6.2.

Here, we first quantify the strengths of these atomic transitions driven by the

upleg pulse. In a two-level system with a coherent drive by near-resonant light, the

optical Rabi frequency is given by Ω = ⟨𝑏|𝜇 · E |𝑎⟩ /ℏ = 𝜇𝑏𝑎𝐸0/ℏ where 𝜇𝑏𝑎 is the

electric-dipole transition matrix element for states 𝑎 and 𝑏, and 𝐸0 is the electric field

strength of the incident optical field. We can write this as Ω = 4.37𝜇𝑏𝑎

√
𝐼 with Ω

in unit of 2𝜋×MHz, 𝜇𝑏𝑎 in Debye, and 𝐼, the light intensity, in mW/mm2. However,

for a full description, we need to consider all the hyperfine states. The interaction

between the internal states of the atom and an external, near-resonant optical field

is quantified through the electric dipole transition matrix elements. These matrix

elements describe how the internal states of the atom couple to each other via an

electric dipole (�⃗�·�⃗�) interaction with the near-resonant field. If we start in a hyperfine

state represented by |(𝐽𝐼)𝐹𝑚𝐹 ⟩ and couple to a state |(𝐽 ′𝐼 ′)𝐹 ′𝑚𝐹 ′⟩, then the matrix

element for this transition is given by ⟨(𝐽 ′𝐼 ′)𝐹 ′𝑚𝐹 ′| �̂� |(𝐽𝐼)𝐹𝑚𝐹 ⟩, where �̂� is the

electric dipole operator. We can use the Wigner-Echart Theorem to represent this

matrix element in terms of a 𝑚-independent reduced matrix element ⟨𝐽 ′| |�̂�(1)| |𝐽⟩,

Wigner 3-J and 6-J symbols as:

⟨(𝐽 ′𝐼 ′)𝐹 ′𝑚𝐹 ′| �̂� |(𝐽𝐼)𝐹𝑚𝐹 ⟩ = 𝛿𝐼′𝐼(−1)𝐹
′+𝐹+𝐽 ′+𝐼−𝑚𝐹+1

√︀
(2𝐹 ′ + 1)(2𝐹 + 1)

×

⎛⎝ 𝐽 ′ 1 𝐽

−𝑚𝐹 ′ 𝑞 𝑚𝐹

⎞⎠⎧⎨⎩𝐽 ′ 𝐼 𝐹 ′

𝐹 1 𝐽

⎫⎬⎭ ⟨𝐽 ′| |�̂�(1)| |𝐽⟩
(6.3)

where �̂�(1, 𝑞) is an irreducible spherical tensor operator for the electric dipole oper-

ator with 𝑞 = −1, 0, 1 for electric dipole radiation with polarization 𝜎−, 𝜋 and 𝜎+,

respectively.

For example, let us consider a free-to-bound Raman transition from Na and Li

atoms with their electron spins aligned to the bias field direction in the ground

levels, |𝑆Na = 1/2,𝑚𝑆Na
= 1/2, 𝑆Li = 1/2,𝑚𝑆Li

= 1/2⟩, to the NaLi Feshbach state

(|𝑣 = 10, 𝑁 = 2,𝑚𝑁 = −2, 𝑆 = 1,𝑚𝑆 = 1⟩) in the 𝑎3Σ+ potential via an intermedi-

ate excited state (|𝑣* = 49, 𝑁 = 1,𝑚𝑁 = −1, 𝑆 = 1,𝑚𝑠 = 1⟩) in the NaLi 𝑐3Σ+ po-
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tential. This process requires that the upleg pulse be polarized 𝜎− and the down-

leg pulse be polarized 𝜎+, as illustrated in Fig. 6-2. With the Upleg intensity

mentioned above which is 𝐼𝑢𝑝 = 3.82 × 104 mW · mm−2, optical Rabi frequency,

for example, of Li 𝐷1 transition from the ground upper stretched hyperfine state

|𝐽 = 1/2, 𝐹 = 3/2,𝑚𝐹 = 3/2⟩ to the excited state |𝐽 ′ = 1/2, 𝐹 ′ = 3/2,𝑚𝐹 ′ = 1/2⟩ is

Ω = 4.37× (−
√
2
3
)× (−8.433 Debye)×

√
I ≈ 3.4 GHz 4.

The photon scattering rate of a two-level atomic system 𝑅𝑠𝑐𝑎𝑡𝑡 = Γ𝜌𝑏𝑏 where 𝜌𝑏𝑏 is

the fraction of the population in the excited state 𝑏 and Γ is the linewidth of state 𝑏.

Using the solution of optical Bloch equations that describes the excitation of a two-

level atom by radiation, the scattering rate is expressed as 𝑅𝑠𝑐𝑎𝑡𝑡 = Γ
2

Ω2/2
Δ2+Ω2/2+Γ2/2

which is approximated to Ω2

4Δ2Γ when detuning Δ is much greater than the Rabi

frequency Ω and the linewidth Γ. Therefore, the total atomic scattering rate 𝑅𝐴,

considering all near-resonant hyperfine states, is perturbatively given by:

𝑅𝐴 =
∑︁

𝐹 ′,𝑚𝐹 ′

⃒⃒⃒⃒
⟨(𝐽 ′𝐼 ′)𝐹 ′𝑚𝐹 ′| �̂� · E |(𝐽𝐼)𝐹𝑚𝐹 ⟩

2Δ𝐹 ′,𝑚𝐹 ′

⃒⃒⃒⃒2
Γ𝐹 ′,𝑚𝐹 ′ (6.4)

where Γ𝐹 ′,𝑚𝐹 ′ is the natural linewidth Δ𝐹 ′,𝑚𝐹 ′ is the photon detuning of an excited

state |𝐹 ′,𝑚𝐹 ′⟩. From Eq.6.3 and Eq.6.4, the photon scattering rate by Li 𝐷1 line is

about 381 Hz and by 𝐷2 line is about 177 Hz leading to total scattering rate of about

558 Hz 5.
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Figure 6-4: Atomic and molecular photon scattering losses. High intensity
upleg pulse with 𝜎− polarization in green can drive Li 𝐷1 and 𝐷2 transitions leading
to photon scattering. Strong downleg Rabi coupling Ω𝑑𝑜𝑤𝑛 causes photon scattering
through the molecular transition (𝑣 = 10 → 𝑣* = 49).
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Figure 6-5: Results of a simplified loss model for free-to bound Raman
transition. (a) Optimum ratio of the single photon detuning to the downleg Rabi
frequency ( Δ𝑀

Ω𝑑𝑜𝑤𝑛
=
√︁

Γ𝑀

Γ𝐴

Δ𝐴

Ω𝐴
) as a function of excited vibrational state 𝑣* picked as

an intermediate state. (b) Raman 𝜋 pulse duration in ms obtained with the optimum
ratio in (a). (c) Minimum total photon scattering loss given by Eq. 6.6 as a function
of excited vibrational state 𝑣*.
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6.1.3 Molecular and atomic losses

Near-full-contrast Raman transitions require a single Rabi cycle time to be shorter

than the laser coherence time (∼ 1 ms). For this, it is necessary to have Ω𝑑𝑜𝑤𝑛

much greater than Ω𝑢𝑝 in order to provide a sufficient two-photon rabi frequency

Ω𝑒𝑓𝑓 = Ω𝑢𝑝Ω𝑑𝑜𝑤𝑛/Δ with weak upleg. However, in this case ,Ω𝑑𝑜𝑤𝑛 ≫ Ω𝑢𝑝, photon

scattering loss of the molecule population by the downleg pulse can be significant as

well in addition to the atomic losses by the Li 𝐷1 and 𝐷2 transitions as mentioned

in the previous section. The goal of this section is to find the condition of minimum

photon scattering loss created by these two effects illustrated in Fig. 6-4.

Molecular and atomic photon scatting losses in half the Rabi cycle 𝑡 = 𝑡𝜋 =

4𝜋Δ𝑀

Ω𝑢𝑝Ω𝑑𝑜𝑤𝑛

6 are given by:

Loss|M =
Ω2

𝑑𝑜𝑤𝑛

4Δ2
𝑀

· Γ𝑀 · 𝑡 𝑡=𝑡𝑅−−−→ 𝜋 · Γ𝑀 · 𝑥√
𝐹𝐶

Loss|A =
Ω2

𝐴

4Δ2
𝐴

· Γ𝐴 · 𝑡 𝑡=𝑡𝑅−−−→ 𝜋 · Γ𝐴√
𝐹𝐶 ·Δ2

𝐴 · 𝑥

(6.5)

where the relative FCF, 𝐹𝐶 is defined by Ω2
𝑢𝑝 = 𝐹𝐶 ·Ω2

𝐴, Γ𝑀 is the linewidth of the

molecular excited state (∼ 9 MHz) and 𝑥 = Ω𝑑𝑜𝑤𝑛

Ω𝐴·Δ𝑀
. Here, Ω𝐴 is the effective atomic

Rabi frequency7 and Δ𝑀 is the single photon detuning of the two-photon Raman

transition. We regard scattering of a single photon as a loss, since we want to stay

below the recoil temperature. To minimize the total loss Loss|tot = Loss|M + Loss|A,

4𝐷1 line reduced matrix element ⟨𝐽 ′ = 1/2| |�̂�(1)| |𝐽 = 1/2⟩ = −8.433 Debye and 𝐷2 line reduced
matrix element ⟨𝐽 ′ = 𝑒/2| |�̂�(1)| |𝐽 = 1/2⟩ = 11.925 Debye [121].

5The estimate assumed the upleg frequency is resonant to the free to 𝑣* = 49 transition. (Δ𝐷1 ≈
258 GHz and Δ𝐷2

≈ 268 GHz) Since the excited-state hyperfine splittings are much smaller than
the photon detunings in this case, the effective Rabi frequency of 𝐷1 transitions Ω𝐷1

and that of
𝐷2 transitions Ω𝐷2

can be approximated to the sum of all relevant individual Rabi frequencies.
Therefore, Ω𝐷1

≈
⃒⃒
Ω1/2,3/2,1/2

⃒⃒
+
⃒⃒
Ω1/2,1/2,1/2

⃒⃒
=
[︁⃒⃒⃒
−

√
2
3

⃒⃒⃒
+
⃒⃒
1
3

⃒⃒]︁
×
⃒⃒⃒
4.37× (−8.433 Debye)×

√
I
⃒⃒⃒
≈

4.158 GHz and Ω𝐷2
≈
⃒⃒
Ω3/2,5/2,1/2

⃒⃒
+
⃒⃒
Ω3/2,3/2,1/2

⃒⃒
+
⃒⃒
Ω3/2,1/2,1/2

⃒⃒
=
[︁⃒⃒⃒
− 1

6
√
2

⃒⃒⃒
+
⃒⃒⃒
− 1

3

√︁
2
5

⃒⃒⃒
+
⃒⃒⃒

1
2
√
10

⃒⃒⃒]︁
×⃒⃒⃒

4.37× (11.925 Debye)×
√
I
⃒⃒⃒
≈ 2.940 GHz . The three numbers as subscripts of Ω s indicate the 𝐽 ′,

𝐹 ′ and 𝑚𝐹 ′ quantum numbers in order
6The duration of a 𝜋 pulse 𝑡𝜋 is defined by 𝑡𝜋 · Ω𝑒𝑓𝑓 = 𝜋 where two photon Rabi frequency

Ω𝑒𝑓𝑓 =
Ω𝑢𝑝Ω𝑑𝑜𝑤𝑛

4Δ .
7Since Δ𝐷1

≈ Δ𝐷2
= Δ𝐴 (Δ𝐷1

, Δ𝐷2
≫ |Δ𝐷1

−Δ𝐷2
|) and Γ𝐷1

≈ Γ𝐷2
, we can define the effective

atomic Rabi frequency Ω𝐴 by Ω2
𝐴 =

∑︀
𝐹 ′,𝑚𝐹 ′ |⟨(𝐽

′𝐼 ′)𝐹 ′𝑚𝐹 ′ | �̂� |(𝐽𝐼)𝐹𝑚𝐹 ⟩|2.
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we take the derivative of Loss|tot with respect to 𝑥 to find the optimal value of 𝑥. We

come to the conclusion that in this model, the optimal value 𝑥 does not depend on the

FCF if the pulse duration is fixed to half the Rabi cycle and 𝑥 = Ω𝐷

Ω𝐴·Δ𝑀
=
√︁

Γ𝐴

Γ𝑀

1
Δ𝐴

gives the minimum total loss. From this relation, we can find the optimal ratio

between the molecular single-photon detuning Δ𝑀 and the downleg Rabi frequency

Ω𝑑𝑜𝑤𝑛 as Δ𝑀

Ω𝑑𝑜𝑤𝑛
=
√︁

Γ𝑀

Γ𝐴

Δ𝐴

Ω𝐴
. The optimal ratio is plotted as a function of 𝑣* in Fig.

6-5(a). For a given excited molecular state, the minimum scattering loss achieved by

the optimum value 𝑥 is given as:

Loss|tot =
2𝜋

ΔA

√︂
ΓAΓM

FC
. (6.6)

Therefore, using a lower lying exit state that has a larger Δ𝐴 than that of 𝑣* = 49 for

a Raman transfer has a smaller scattering loss, as plotted in Fig. 6-5(c). However, the

maximum upleg and downleg Rabi frequencies that we can achieve become smaller

with low 𝑣* molecular states, and 𝑡𝑝𝑖 starts to become much larger than 1 ms (Fig.

6-5(b)). If we do not have a limited laser coherence time, using, for example, 𝑣* = 44

as an intermediate excited state is a better choice. Figures 6-6 and Figure 6-7 are

numerical calculations of the Schrödinder equation describing the three-level system

with an extra decay term that accounts for the atomic photon scattering using an

intermediate state 𝑣* = 49 and 𝑣* = 44 respectively. With 𝑣* = 49, the maximum

population transfer efficiency to the Feshbach state is ∼ 1.2 % at around 0.25 ms,

while with 𝑣* = 44, the maximum population transfer efficiency to the Feshbach state

is ∼ 11.5 % at around 15 ms, which is much longer than the laser coherence time (∼

1 ms). In case the Raman pulse duration is limited to 1 ms, the transfer efficiency

reaches only ∼ 0.3 %, which is worse than what we can achieve with 𝑣* = 49.

So far, we have been optimizing a rather simplified process: Raman transition in a

three-level system with an additional atomic loss term. However, unlike alkali atoms,

molecules have many vibrational and rotational states, which may interfere with the

simplified process. For example, there are more than 100 rovibrational states within

the 𝑣* = 49 branch. Despite the upleg free-to-bound Rabi frequency being only about
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Figure 6-6: Numerical calculation of free-to bound Raman transition to the
Feshbach state via 𝑣* = 49 with atomic photon scattering. (a) Time evolution
of the populations in the final Feshbach state (in blue), intermediate excited state (in
red), initial free atomic state (in dashed green) and the total population (in black)
are plotted. The total population decreases over time because of atomic loss term
from Li 𝐷1 and 𝐷2 transitions is included in the calculation. Optimum ratio of the
single photon detuning to the downleg Rabi frequency is chosen in the numerical
calculation. (b) Transferred population to the Feshbach state is plotted as a function
of pulse duration. The transfer is maximized to ∼ 1.2 % at around 0.25 ms.
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Figure 6-7: Numerical calculation of free-to bound Raman transition to the
Feshbach state via 𝑣* = 44 with atomic photon scattering. (a) Time evolution
of the populations in the final Feshbach state (in blue), intermediate excited state (in
red), initial free atomic state (in dashed green) and the total population (in black)
are plotted. The total population decreases over time because of atomic loss term
from Li 𝐷1 and 𝐷2 transitions is included in the calculation. Optimum ratio of the
single photon detuning to the downleg Rabi frequency is chosen in the numerical
calculation. (b) Transferred population to the Feshbach state iS plotted as a function
of pulse duration up to 40 ms. The transfer is maximized to ∼ 11.5 % at around
15 ms. (c) The transfer to the Feshbach state only reaches to ∼ 0.3 % if the pulse
duration is limited to 1 ms.
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30 kHz at most, the upleg can act strongly on the downleg path driving transitions

between the Feshbach state to some of these other rovibronic states (e.g. 𝑣* = 49,

𝑁 = 3, 𝑚𝑁 = −3)8. Additionally, even small fraction of upleg polarization impurity

(𝜎+ component) can cause fast molecular scattering through the Feshbach state to

𝑁 = 3, 𝑚𝑁 = −1 states in the 𝑐3Σ+ potential. Figure 6-8 is an illustration of the

upleg beam acting on the downleg path through nearby excited rovibronic states in

the 𝑐3Σ+ potential. For example, the upleg beam of 3.82 × 104 mW/mm2 intensity

leads to a molecular scattering rate of more than 20 kHz with Δ𝑀 ≈ 1.45 GHz 9.

The photon scattering rate of about 22 kHz is caused by the molecular transition

between the Feshbach state and 𝑣* = 49, 𝑁 = 3,𝑚𝑁 = −3 and scattering rate of

more than 1 kHz can be caused by only 1% impurity of the upleg beam polarization

(𝜎+) through the Feshbach state to the 𝑣* = 49, 𝑁 = 1,𝑚𝑁 = −1 transition. Using

a highly excited vibrational state 𝑣* as an intermediate state tends to have a higher

additional molecular scattering loss by the upleg acting on the downleg path, since

the higher 𝑣* has a smaller rotational constant 𝐵 (see Table 6.1) and, therefore, the

optical frequency of the upleg is closer to these molecular transition frequencies. Even

without considering molecular photon scattering losses by the upleg beam acting on

the downleg path, population transfer efficiency was less than 2 % (see Figs. 6-6 and

6-7). The inclusion of additional molecular decay in the numerical calculation further

reduces the transfer efficiency.

6.1.4 Effects of atomic densities and collisional loss

One way of reducing the loss by atomic and molecular light scattering to obtain a

non-negligible population transfer from the free atomic state to the Feshbach state

is to shorten the Rabi cycle time or in other words, increase the two-photon Rabi

frequency (Ω𝑒𝑓𝑓 = Ω𝑢𝑝 × Ω𝑑𝑜𝑤𝑛

4Δ𝑀
). We saw previously that simply increasing Ω𝑑𝑜𝑤𝑛/

rather increases molecular loss by strong Ω𝑑𝑜𝑤𝑛 and there is an optimum value for

8The rotational selection rules for Σ ↔ Σ potential transitions are Δ𝑁 = 1, hence from a 𝑁 = 2
Feshbach state it is possible to access 𝑁 = 1, 3 excited states.

9With downleg intensity given in Eq. 6.2 and 𝑣* = 49, optimum single photon detuning Δ𝑀 =√︁
Γ𝑀

Γ𝐴

Δ𝐴

Ω𝐴
× Ω𝑑𝑜𝑤𝑛 ≈ 1.45 GHz.
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Figure 6-8: Molecular photon scattering losses by the upleg beam driving
transitions to nearby excited states in the 𝑐3Σ+ potential from the Feshbach
state. High intensity upleg pulse with 𝜎− polarization indicated with a dashed green
arrow can drive transitions from the Feshbach state (𝑣 = 10, 𝑁 = 2,𝑚𝑁 = −2) to
vibrational states with 𝑁 = 3,𝑚𝑁 = −3 in the 𝑐3Σ+ potential (green dashed circles).
Small fraction of 𝜎− polarization component due to polarization impurity of the upleg
can drive transitions from the Feshbach state (𝑣 = 10, 𝑁 = 2,𝑚𝑁 = −2) to excited
states in the 𝑐3Σ+ potential with 𝑁 = 1,𝑚𝑁 = −1 or 𝑁 = 3,𝑚𝑁 = −1 (green dotted
circles). These transitions lead to molecular photon scattering losses indicated with
red dashed wiggles in addition to those caused by the strong downleg Rabi frequency.
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𝑣* 𝐵 constant (GHz) 𝑣* 𝐵 constant (GHz)
0 8.83 26 5.51
1 8.71 27 5.36
2 8.59 28 5.20
3 8.48 29 5.02
4 8.36 30 4.86
5 8.24 31 4.67
6 8.12 32 4.51
7 8.00 33 4.32
8 7.88 34 4.14
9 7.76 35 3.96
10 7.64 36 3.77
11 7.52 37 3.57
12 7.40 38 3.38
13 7.27 39 3.16
14 7.15 40 2.96
15 7.02 41 2.75
16 6.89 42 2.53
17 6.76 43 2.31
18 6.63 44 2.10
19 6.50 45 1.88
20 6.38 46 1.65
21 6.24 47 1.42
22 6.08 48 1.21
23 5.93 49 0.994
24 5.79 50 0.905
25 5.66

Table 6.1: Rotational constants of excited vibrational states (𝑐3Σ+, 𝑣*). The
rotational constants are calculated from the 𝑐3Σ+ ab initio potential.
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Figure 6-9: Raman transfer with atomic and molecular decay as a function
of Δ𝑀 via different 𝑣*. The plots are the numerical calculation of free to Feshbach
state Raman transfer with additional atomic and molecular decay driven by the upleg
pulse. The left (right) plot is the result without (with) a molecule-atom collisional
loss term. The calculation is done assuming upleg beam polarization purity of 99%
and atomic densities of 5× 1014 cm−3. The upleg beam power is set to 300 mW and
the downleg beam power is set to 100 𝜇W with beam waists of 50 𝜇m.

Ω𝑑𝑜𝑤𝑛/Δ𝑀 for minimum total loss. Therefore, it is necessary to increase Ω𝑢𝑝 to

actually benefit from larger Ω𝑒𝑓𝑓 . Since FCF is proportional to the larger density

among the two atomic clouds (Na and Li) 10, this can be achieved by preparing

atomic clouds with higher densities.

However, Feshbach molecules are chemically reactive with Na atoms or Li atoms,

and it is natural to assume that the molecule+atom collisional loss rates are close

10Photoassociation (PA) rate equation is given by �̇�𝑁𝑎 = �̇�𝐿𝑖 = −�̄�𝐼𝑛𝑁𝑎𝑛𝐿𝑖 where 𝐼 is the
PA laser intensity and �̄� is the intensity normalized PA rate coefficient. By defining 𝐷 ≡
𝑛𝐿𝑖(0) − 𝑛𝑁𝑎(0) = 𝑛𝐿𝑖(𝑡) − 𝑛𝑁𝑎(𝑡), the rate equation is expressed as �̇�𝐿𝑖 = −�̄�𝐼𝑛𝐿𝑖(𝑛𝐿𝑖 + 𝐷).
The solution of the differential equation is given by 𝑛𝑁𝑎(𝑡) = 𝐷

[𝑛𝐿𝑖(0)/𝑛𝑁𝑎(0)]𝑒𝐷�̄�𝐼𝑡−1
and 𝑛𝐿𝑖(𝑡) =

−𝐷
[𝑛𝑁𝑎(0)/𝑛𝐿𝑖(0)]𝑒−𝐷�̄�𝐼𝑡−1

. 𝑖) If 𝑛𝑁𝑎(0) = 𝑛𝐿𝑖 = 𝑛(0), 𝑛(𝑡)
𝑛(0) = 1

1+𝑛(0)�̄�𝐼𝑡
≈ 1 − 𝑛(0)�̄�𝐼𝑡 and there-

fore FCF is proportional to 𝑛(0) of the relation 𝑛(0)�̄�𝐼 = Ω2
𝑃𝐴/Γ𝑃𝐴. 𝑖𝑖) If 𝑛𝑁𝑎(0) ≫ 𝑛𝐿𝑖,

𝑛𝐿𝑖(𝑡)
𝑛𝐿𝑖(0)

≈ 𝑒−𝑛𝑁𝑎(0)�̄�𝐼𝑡 ≈ 1− 𝑛𝑁𝑎(0)�̄�𝐼𝑡 and therefore FCF is proportional to 𝑛𝑁𝑎(0).
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to the universal values 11. Universal loss rate constants are 𝐾NaLi−Na ≈ 1.53 ×

10−10 s−1cm3 with Na atoms and 𝐾NaLi−Li ≈ 3.425 × 10−10 s−1cm3 with Li atoms.

Figure 6-9 is the result of numerical calculations of the Raman transition with atomic

and molecular decay as a function of Δ𝑀 through different excited states 𝑣* with

stronger Ω𝑢𝑝 achieved by denser atomic clouds (5 × 1014 cm−3). The left graph is

the result without including the molecular loss from molecule + atom collisions and

the right graph includes the collisional losses of molecules by Na and Li atoms. The

calculation is done assuming a polarization purity of the upleg beam of 99% and

atomic densities of 5 × 1014 cm−3. The upleg beam power is set to 300 mW and

the downleg beam power is set to 100 𝜇W with beam waists of 50 𝜇m. With denser

atomic clouds, much higher population transfer can be achieved especially with low

𝑣* (for example, more than 30% via 𝑣* = 11) if collisional losses do not exist, as you

can see in the left plot. Once, collisional losses are taken into account, as transfer

with low lying 𝑣* tends to have a longer 𝑡𝜋, experiences a longer time for collisional

loss as well, and therefore, stronger suppression of population transfer, as shown in

the right graph. Therefore, higher densities may not be always helpful because of the

universal rate limited collisional loss of NaLi with surrounded atoms 12, and only a

few percent transfer is achieved with 𝑛𝑁𝑎 = 𝑛𝐿𝑖 = 5× 1014 at most with 𝑣* = 48. It

is important to optimize both the atomic densities and 𝑣* to maximize the number

of Feshbach molecules.

In summarity, atomic scattering is suppressed by increasing the detuning from the

atomic resonance, e.g. going to smaller 𝑣*. However, this increases molecular scatter-

ing and gives an optimum detuning. Density can speed up the molecule formation,

but then runs into the limit of collisional loss. For the optimum choice, all three loss

11It is experimentally confirmed by us that NaLi Feshbach molecule+atom (with Na state
|𝐹 = 2,𝑚𝐹 = 2⟩ and |𝐹 = 1,𝑚𝐹 = 1⟩, and Li state |𝐹 = 1/2,𝑚𝐹 = 1/2⟩) collision rates are 𝑠-wave
universal rate limited. However, ground-state molecules in their stretched state live long with Na
atoms also in their stretched state (when they are aligned) unlike Feshbach molecules. (The colli-
sional loss rate constant is about 2 orders of magnitude smaller than the universal value.)

12We will see later that, indeed, 𝑛 = 5 × 1014 gives more transfer than 𝑛 = 5 × 1015. The loss
with Li atoms is about twice larger than with Na atoms, and preparing the Li density 10 times
lower while keeping the Na density high may lead to a higher transfer efficiency. However, this will
require loading 10 times less Li atoms, and the transferred molecule number will be less since a 10
time lower Li number does not increase the transfer efficiency by more than a factor of 10.

124



processes contribute about equally.

6.2 Direct transfer to the ro-vibrational ground state

The second approach is to perform a single Raman transfer from an ultracold gas of

atoms directly to the molecular ro-vibrational ground state. This approach allows for

a single Raman transfer to create ground-state molecules, and hence, the experimental

complexity can be reduced. The FCF of the ground state 𝑣 = 0 to an excited state 𝑣*

transition becomes comparable to or even smaller than that of the free to 𝑣* transition

for a high 𝑣* as in Fig. 6-3, and it is natural to choose a rather lower lying 𝑣* as

an intermediate excited state for the Raman transition. As an example, Figure 6-10

illustrates a free-to-ground direct Raman transition via an intermediate excited state

𝑣* = 26, 𝑁 = 1, 𝑚𝑁 = −1 using 𝜎− polarization for both upleg and downleg beams.

As in the Raman transition from free to the Feshbach state, high intensity upleg can

act on the downleg path causing light scattering. The binding energy of the ground

state (6.2381 THz) is large compared to that of the Feshbach state (5.85 GHz), and

therefore, the rate of this molecular light scattering can be tuned to much smaller

value than we saw in the free-to-Feshbach state Raman transfer. Upleg frequency

can be tuned to have relatively large detuning from the ground state to excited

molecular state transition lines. However, achieving a sufficiently high two-photon

Rabi frequency can be extremely challenging because of even smaller FCFs.

Direct Raman transfer from free to the 𝑣 = 0 ground-state molecules can be

divided into mainly two different situations: Either i) Ω𝑑𝑜𝑤𝑛 ≫ Ω𝑢𝑝 or ii) Ω𝑑𝑜𝑤𝑛 ≲ Ω𝑢𝑝

unlike the free-to-Feshbach state transfer where Ω𝑑𝑜𝑤𝑛 was always greater than Ω𝑢𝑝.

For case i) Ω𝑑𝑜𝑤𝑛 ≫ Ω𝑢𝑝, which is achieved with an intermediate state 0 ≤ 𝑣* ≤ 31

when the maximum upleg power is set to 300 mW and the downleg power to 10 mW,

the molecular photon scattering by the strong downleg cannot be neglected, while the

atomic photon scattering by the upleg is relatively small, since the upleg frequency

is far detuned from the Li 𝐷1 and 𝐷2 lines. Close-to-perfect Raman transfer to the

ground state could be possible using one of the excited states deep in the excited 𝑐3Σ+

125



Figure 6-10: Illustration of a Raman transition from free atoms to the rovi-
brational ground state of NaLi 𝑎3Σ+. 𝑣* = 26, 𝑁 = 1, 𝑚𝑁 = −1 in the 𝑐3Σ+

potential is chosen as an intermediate excited state as an example. 𝜎− polarization
for both upleg (green arrow) and downleg (blue arrow) beams are used. High inten-
sity upleg pulse with 𝜎− polarization indicated with a dashed green arrow can drive
transitions from the ground state (𝑣 = 0, 𝑁 = 0,𝑚𝑁 = 0) to vibrational states with
𝑁 = 1,𝑚𝑁 = −1 in the 𝑐3Σ+ potential. Small fraction of 𝜎+ due to polarization
impurity of the upleg can drive transitions from the ground state to excited states in
the 𝑐3Σ+ potential with 𝑁 = 1,𝑚𝑁 = 1.
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potential if laser coherence time was not limited and collisional losses were negligible.

Eliminating collisional loss could possibly be achieved by having only one Na and

Li atom per each 3D optical lattice site or optical tweezer. However, as the optical

frequency difference between the upleg and downleg is several THz, one cannot use a

single laser source for both pulses, and the coherence time of these beams are expected

to be not much smaller than 1 ms. Here, we will assume that the laser coherence time

is only 50 𝜇s 13. Under these conditions, the maximum transfer occurs when Loss|tot ≈

Loss|M ≈ Ω2
down

4Δ2
M

· ΓM · t𝜋 is minimized. If we set the 𝜋 pulse duration 𝑡𝜋 = 4𝜋Δ𝑀

Ω𝑢𝑝Ω𝑑𝑜𝑤𝑛
to

be at most the coherence time 𝑡𝐶 , we find that Loss|tot ≈ 4𝜋
Ω2

up·tC
· ΓM, and therefore,

less loss for larger upleg FCF. On the other hand, for case ii) Ω𝑑𝑜𝑤𝑛 ≲ Ω𝑢𝑝, which is

achieved with an intermediate state 32 ≤ 𝑣* ≤ 52, the molecular loss by the downleg

pulse becomes significantly smaller than the atomic loss if far detuned (|Δ𝑀 | > Γ𝑀).

Similarly, the total loss is expressed as Loss|tot ≈ Loss|A =
Ω2

A

4Δ2
A
·ΓA · tC, and therefore

the loss is smaller for lower 𝑣*. However, we are more limited by small two-photon

Rabi coupling strength, and unable to be in the far detuned limit. Therefore, the total

loss Loss|tot ≈ Loss|M =
Ω2

up+Ωdown

4Δ2
M

· ΓM · tC ≈ 4𝜋2
(︁

1
Ω2

up
+ 1

Ω2
down

)︁
· ΓM, and less loss

through 𝑣* with smaller
(︁

1
Ω2

𝑢𝑝
+ 1

Ω2
𝑑𝑜𝑤𝑛

)︁
. A strong correlation between the maximum

transferred population to the ground state and the FCFs can be seen in Fig. 6-11.

Assuming 30 𝜇m beam waists for upleg and downleg beams instead of 50 𝜇m allows

at least a factor of few higher transfer efficiency for transitions with relatively small

upleg FCF as it allows further transfer within 50 𝜇s. However, as will be discussed

later in the chapter, this will create larger inhomogeneity, causing larger two-photon

detuning during the Raman transition.
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Figure 6-11: Maximum transfer to the ground state of NaLi 𝑎3Σ+ poten-
tial as a function of intermediate excited vibrational state 𝑣*. Transfer
efficiency to the ground state was numerically calculated for atomic densities of
𝑛𝑁𝑎 = 𝑛𝐿𝑖 = 5 × 1014cm−3 with the upleg power of 300 mW and downleg power
of 10 mW. Molecule+atom collisional loss is ignored only in the blue plot. Blue and
red plots are the results with the upleg and downleg beam waists of 50 𝜇m and the
green plot is the result with 30 𝜇m. Polarization purity of the two Raman beams are
assumed to be 95 % and the pulse duration is limited to 50 𝜇s.
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Figure 6-12: Franck-Condon factors between vibrational states in 𝑎3Σ+ and
𝑐3Σ+ potentials. They are calculated from ab initio potentials. Free-to-bound (𝑣*)
FCFs of 𝑛 = 5× 1014 cm−1 are indicated in black.
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Figure 6-13: Maximum transfer to the ground state of NaLi 𝑎3Σ+ potential
as a function of intermediate excited vibrational state 𝑣*. Transfer efficiency
to the ground state was numerically calculated for atomic densities of 𝑛𝑁𝑎 = 𝑛𝐿𝑖 =
5 × 1014cm−3 with the upleg power of 300 mw and downleg power of 10 mW except
for 𝑣 = 10. The blue and purple data are with the downleg power of 100 𝜇W. Beam
waist, polarization purity and pulse duration of the two Raman beams are assumed
to be 30 𝜇m, 95 % and at most 50 𝜇s respectively except for 𝑣 = 10. Pulse duration
to 𝑣 = 10 is limited to 1 ms.
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6.3 Free to intermediate vibrational state 𝑣

The goal of this section is to optimize the free-to-bound transition by exploring Ra-

man transitions from free to an intermediately bound vibrational state in the 𝑎3Σ+

potential. As mentioned in the previous sections, for Raman transition from free to

Feshbach state (a high-lying vibrational state in 𝑎3Σ+ potential), high atomic and

molecular photon scattering by the upleg acting on the downleg path is the main

limiting factor while for transfer to the ground state 𝑣 = 0, 𝑁 = 0 (a low-lying vibra-

tional state), molecular photon scattering by weak upleg Rabi frequency is the main

limiting factor. Collisional loss is a common factor in both cases.

Choosing a vibrational state 𝑣 with a large binding energy can decouple the down-

leg and upleg paths by creating a large frequency difference of the two Raman beams.

However, low-lying vibrational states 𝑣 tend to have a small FCF with a highly excited

vibrational state 𝑣* in the 𝑐3Σ+ potential and therefore require the use of low-lying 𝑣*

that has a small Frank-Condon factor (FCF) with the atomic scattering wavefunction.

The calculation of FCF between different 𝑣 and 𝑣* is plotted in Fig.6-12.

Transfer efficiency to a bound state 𝑣 from free atoms including atomic and molec-

ular photon scattering loss and collsional loss is numerically calculated and plotted

in Fig.6-13. The duration of the Raman pulse is restricted to at most 50 𝜇s for

𝑣 < 10 and 1 ms for the final state 𝑣 = 10. Atomic densities are assumed to be

𝑛𝑁𝑎 = 𝑛𝐿𝑖 = 5× 1014cm−3, the upleg and downleg power are set to 300 mW and 10

mW except for 𝑣 = 10. The blue and purple data for 𝑣 = 10 in Fig.6-13 are with a

downleg power of 100 𝜇W. The beam waist, polarization purity and pulse duration of

the two Raman beams are assumed to be 30 𝜇m, 95 % and at most 50 𝜇s, respectively,

except for 𝑣 = 10. The transfer efficiency to the 𝑣 = 8 state reaches more than 50

% through 𝑣* = 48, which is greater than what can be achieved by transfer to the

13In principle, one can achieve longer coherence time by using cavity lock to a stabilized cavity.
However, we initially thought our STIRAP lasers for coherent transfer of NaLi in the Feshbach state
to the ground state is in the order of 50 𝜇s from the fact that the transfer efficiency drops for longer
STIRAP pulses. However, we later noticed that this is possibly due to AC Stark shifts in the order
of 10 kHz causing large two-photo detunings. Although we assumed that the coherence time of
two Raman beams for free-to-bound transfer is only 50𝜇s, this is probably one of the worse we can
achieve
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Feshbach state, which is ∼ 25% or to the ground state, which is ∼ 6%.

6.4 Comparison of three all-optical methods

We have explored three approaches: four-photon Raman transfer via Feshbach state,

direct two-photon transfer to the rovibrational ground state, and four-photon transfer

via intermediate vibrational state. The first approach is the most obvious approach,

and therefore the first approach we considered, which is simply replacing a Feshbach

resonance with a Raman transition. This approach allows using a single laser source

for both Raman beams, and having long coherence time (∼ 1 ms or more). However,

the large photon scattering rate prevents one from taking advantage of this long

coherence time. The second approach, direct transfer to the ground state, is the most

simple among the three. Photon scattering is relatively small, due to the large binding

energy of the ground state. However, the transfer efficiency is mainly limited by weak

Rabi coupling strength or short two-photon coherence time. The analysis of the

last approach is to find the middle ground of the first two approaches. The transfer

to state 𝑣 = 8, 𝑁 = 0 gave the best performance, and here we only focus on this

particular state among different paths of the third approach. Figure 6-14 is the result

of the three approaches for different atomic densities. Transfer efficiency increases for

higher densities until collisional loss becomes significant. For example, for transfer to

𝑣 = 0, 𝑁 = 0, the transfer efficiency is rather lower when 𝑛 = 5 × 1015 cm−3 than

when 𝑛 = 5 × 1014 cm−3. Table 6.2 shows the list of limiting factors for efficient

Raman transfer, comparing the three approaches for different atomic densities.
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Figure 6-14: Maximum transfer to a vibration state 𝑣 in NaLi 𝑎3Σ+ potential
as a function of atomic density. Transfer efficiency to three different bound states
are numerically calculated for different atomic densities with the upleg power of 300
mW and downleg power of 10 mW except for 𝑣 = 10. 𝑣 = 10, 𝑁 = 2 is with the
downleg power of 100 𝜇W. Beam waist, polarization purity and pulse duration of the
two Raman beams are assumed to be 30 𝜇m, 95 % and at most 50 𝜇s respectively
except for 𝑣 = 10. Pulse duration to 𝑣 = 10 is limited to 1 ms.
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6.4.1 AC stark shifts

So far, all calculations have been done with perfect compensation of AC Stark shifts

driven by the two Raman beams. Although there are ways to experimentally com-

pensate for these light shifts [113], it can be challenging to completely cancel them

out, and single-photon and two-photon detunings may vary during a Raman transfer.

Therefore, it is important to analyze the size of light shifts caused by the Raman

beams and the effects on free-to-bound transfer efficiencies. AC stark shifts can be

broken down mainly into two parts: AC Stark shifts on the downleg path and on

the upleg path. Here, we define the AC Stark shift on the downleg (upleg) path as

a change in the energy difference between the intermediate excited state, 𝑒, and the

final state (initial state), 𝑓 (𝑖), as illustrated in Figure 6-15. There are three leading

terms of the AC Stark shift on the downleg (up) path: The light shift of state 𝑒 and

𝑓 (𝑖) driven by the downleg (upleg) coupling between these two states, the light shift

of state 𝑒 by the upleg (downleg) coupling between state 𝑒 and 𝑖 (𝑓), and the light

shift of state 𝑓 (𝑖) by the upleg (downleg) coupling between state 𝑓 (𝑖) and nearby

excited states, 𝑒′𝑗s. However, the light shift of state 𝑖 by the downleg is relatively

small among these terms, and the two AC Stark shifts are approximated as:

AC Stark shift on the downleg path

≈ (Ω𝑓,𝑒
𝑑𝑜𝑤𝑛)

2

2Δ𝑀

+
(Ω𝑖,𝑒

𝑢𝑝)
2

4Δ𝑀

+
∑︁
𝑗

[︃
(Ω

𝑓,𝑒′𝑗
𝑑𝑜𝑤𝑛)

2

4Δ𝑀

+
(Ω

𝑓,𝑒′𝑗
𝑢𝑝 )2

4(𝐸𝐵 +Δ𝑀)

]︃
(6.7)

AC Stark shift on the upleg path

≈ (Ω𝑓,𝑒
𝑑𝑜𝑤𝑛)

2

4Δ𝑀

+
(Ω𝑖,𝑒

𝑢𝑝)
2

2Δ𝑀

(6.8)

where, Ω𝑦,𝑧
𝑥 is the coupling strength between state 𝑦 and 𝑧 by a Raman beam 𝑥, Δ𝑀

is the single-photon detuning, and 𝐸𝐵 is the binding energy of the final state 𝑓 . The

common factors in Eq. 6.7 and 6.8 serve as changes in single-photon detuning during
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Figure 6-15: Illustration of a lambda type two-photon transition with multi-
ple excited states near an intermediate excited state. Initial state 𝑖 is coupled
to an excited state 𝑒 by a upleg beam with coupling strength of Ω𝑖,𝑒

𝑢𝑝. Final state 𝑓
is coupled to an excited state 𝑒 by a downleg beam with coupling strength of Ω𝑓,𝑒

𝑑𝑜𝑤𝑛.
There may be non-zero coupling between state 𝑖 or 𝑓 and other excited states 𝑒′𝑗s with

coupling strength of Ω
𝑦,𝑒′𝑗
𝑥 where 𝑥 = 𝑢𝑝, 𝑑𝑜𝑤𝑛 and 𝑦 = 𝑖, 𝑓 . Δ𝑀 is the single-photon

detuning, Δ′
𝑗 is the upleg (downleg) detuning from transition 𝑖 (𝑓) to 𝑒′𝑗, and 𝐸𝐵 is

the binding energy of the final state, 𝑓 .
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a Raman transition, and the effective single-photon detuning is given by:

Δ̄𝑀 ≈ Δ𝑀 +
(Ω𝑓,𝑒

𝑑𝑜𝑤𝑛)
2

4Δ𝑀

+
(Ω𝑖,𝑒

𝑢𝑝)
2

2Δ𝑀

. (6.9)

On the other hand, the difference between Eq. 6.7 and 6.8 serve as the change in

two-photon detuning, and if the system is on two-photon resonance in the limit of

weak light coupling, the effective two-photon detuning is given by:

𝛿𝑀 ≈ 𝛿𝑀 +
(Ω𝑓,𝑒

𝑑𝑜𝑤𝑛)
2

4Δ𝑀

−
(Ω𝑖,𝑒

𝑢𝑝)
2

2Δ𝑀

+
∑︁
𝑗

[︃
(Ω

𝑓,𝑒′𝑗
𝑑𝑜𝑤𝑛)

2

4Δ𝑀

+
(Ω

𝑓,𝑒′𝑗
𝑢𝑝 )2

4(𝐸𝐵 +Δ𝑀)

]︃

= 𝛿𝑀 + 𝛿𝑑𝑜𝑤𝑛 + 𝛿𝑢𝑝

(6.10)

where 𝛿𝑑𝑜𝑤𝑛 and 𝛿𝑢𝑝 are defined as:

𝛿𝑑𝑜𝑤𝑛 ≡ (Ω𝑓,𝑒
𝑑𝑜𝑤𝑛)

2

4Δ𝑀

+
∑︁
𝑗

(Ω
𝑓,𝑒′𝑗
𝑑𝑜𝑤𝑛)

2

4Δ𝑀

𝛿𝑢𝑝 ≡ −
(Ω𝑖,𝑒

𝑢𝑝)
2

2Δ𝑀

+
∑︁
𝑗

(Ω
𝑓,𝑒′𝑗
𝑢𝑝 )2

4(𝐸𝐵 +Δ𝑀)
.

(6.11)

The effective single-photon and two-photon detunings are calculated for three different

free-to-bound transitions: transfer to 𝑣 = 0, 𝑁 = 0 via 𝑣* = 26, transfer to 𝑣 =

8, 𝑁 = 0 via 𝑣* = 47 and transfer to 𝑣 = 10, 𝑁 = 2 via 𝑣* = 48. The results

are in Table 6.3. AC Stark shift by the upleg acting on the downleg path plays a

major role in creating two-photon detuning. To what extent AC stark shifts should

be compensated in order to maintain the transfer efficiencies obtained from complete

compensations can be estimated by comparing the calculated shifts with the Raman

pulse duration. In other words, effective two-photon detuning must be much less than

the inverse of the Raman pulse duration to prevent a significant decrease in transfer.

For this, both Raman beams and additional laser beams that may be used for light

shift compensation must be intensity, polarization, and frequency stabilized to meet

this condition. Laser intensity fluctuations and light shift compensation fluctuation

are required to be much less than 2.5 %, 0.9 % and 0.15 % for transfer to state 𝑣 = 0,
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𝑁 = 0, state 𝑣 = 8, 𝑁 = 0, and 𝑣 = 10, 𝑁 = 2, respectively.

Meeting the estimated laser requirements can be already demanding even though

we only considered nearby excited molecular states in NaLi 𝑐3Σ potential. Including

also the states in the NaLi 13Π potential is important for an accurate analysis. As the

AC Stark shift by the upleg acting on the downleg path takes a dominant part of the

two-photon detuning, we now focus only on 𝛿𝑢𝑝. The calculations of 𝛿𝑢𝑝 by 𝑐3Σ+ and

𝑏3Π+ are listed in Table 6.4. 𝛿𝑢𝑝 by 𝑐3Σ+ and 𝑏3Π+ are comparable in size and add up

to create even larger two-photon detuning. Therefore, laser intensity fluctuations and

light shift compensation fluctuation are rather required to be much less than 1.5 %,

0.39 % and 0.08 % for transfer to state 𝑣 = 0, 𝑁 = 0, state 𝑣 = 8, 𝑁 = 0, and 𝑣 = 10,

𝑁 = 2 respectively. For example, if the two Raman beams have a Gaussian profile

with a beam waist of 30 𝜇 m and the atomic clouds are in an isotropic harmonic

trap leading to density of 1014 cm−3 and 4 𝜇m cloud size, without any light shift

compensation, the free-to-bound transfer efficiencies become 0.1 %, 0.4 %, and 0.05

% instead of 5.1 %, 46.7 %, and 12.4 % as listed in Table 6.3 and 6.4.

An intermediate excited state, which allows the upleg wavelength to be at a ‘magic

wavelength’ (causes a significantly smaller AC Stark shift), is worth exploring at this

point. The calculations of 𝛿 taking into account the potentials 𝑐3Σ+ and 𝑏3Π are given

in Fig. 6-16. For example, when transferring free atoms to the 𝑣 = 0, 𝑁 = 0 state,

choosing an excited intermediate state 𝑣* = 3 or 𝑣* = 12, which requires a upleg

wavelength of ∼ 930.822 nm, gives a smaller AC Stark shift compared to choosing

𝑣* = 26. 𝛿 is approximately 0.25 MHz and 0.6 MHz respectively, and without any

light shift compensation, under the same condition explained above, the free-to-bound

transfer efficiency is 1.8 % and 0.7 % instead of 5%, and 3.2% respectively. These are

higher than 0.1 %, which we can achieve with 𝑣* = 26.
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In conclusion, all-optical transfer from free atoms to the NaLi rovibrational ground

state of the 𝑎3Σ+ potential is not straightforward. A simple replacement of the

well-established method of creating loosely bound Feshbach molecules with a two-

photon Raman transition will lead to a transfer efficiency of less than 0.1%. However,

careful selection of a Raman transition path (use of ‘magic wavelength’) or using

additional lasers for light shift compensation may achieve a few percent or higher

transfer efficiency to the ground state.
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Final
State

Upleg
Power
(Downleg
Power)

𝛿𝑢𝑝 (𝑐3Σ+) 𝛿𝑢𝑝 (𝑏3Π)
Transfer
Efficiency
(Time)

Laser
Requirements

𝑣 = 0
𝑁 = 0
(𝑣*=26)

300 mW
(10 mW) ∼ -800 kHz ∼ -500 kHz 5.1 %

(50 𝜇s)

𝛿𝐼 ≪ 1.5%
724.315 nm,
713.561 nm
(6.238 THz)

𝑣 = 8
𝑁 = 0
(𝑣*=48)

300 mW
(10 mW) ∼ -12 MHz ∼ -11 MHz 46.7 %

(11 𝜇s)

𝛿𝐼 ≪ 0.39%
671.684 nm,
671.334 nm
(232.9 GHz)

𝑣 = 10
𝑁 = 2
(𝑣*=47)

300 mW
(100 𝜇W) ∼ 100 MHz ∼ 85 MHz 12.4 %

(6.5 𝜇s)

𝛿𝐼 ≪ 0.08%
672.108 nm,
672.099 nm
(5.85 GHz)

Table 6.4: AC Stark shifts and laser requirements including NaLi 𝑏3Π po-
tential. Calculation is with atomic densities of 1 × 1014 cm−3, Raman beam waists
of 30 𝜇m, and maximum pulse duration of 50 𝜇s.

141



Figure 6-16: Free-to-bound transfer efficiencies and two-photon detuning
from both 𝑐3Σ+ and 𝑏3Π potentials. (a) Numerically calculated transfer efficien-
cies from free atoms to a bound state via different intermediate excited state 𝑣* are
plotted for three different final bound states. (b),(c) and (d) are total effective two-
photon detuning 𝛿 including all the states in 𝑐3Σ+ and 𝑏3Π potentials. Data in square,
circle, and triangle correspond to transfer to state 𝑣 = 0, 𝑁 = 0, state 𝑣 = 8, 𝑁 = 0,
and state 𝑣 = 10, 𝑁 = 2 respectively.
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Chapter 7

Summary and Outlook

7.1 Summary

This thesis described collision studies on 23Na6Li molecules in the triplet ground state.

It explained a spectroscopic investigation of Feshbach resonances in two possible spin-

polarized 23Na6Li+23Na collisions from near 0 to 1400 G magnetic bias field using

combined experimental and theoretical quantum chemistry approach. By focusing on

analysis of the Feshbach spectrum solely on the basis of the experimental observations,

we could rule out some of the possible coupling mechanism for the resonances, and

estimate the number, lifetime, and size of stable NaLi-Na complexes. Together with

coupled-channel calculations, although they cannot predict the position of resonances,

for the first time, questions on the dominant interactions that are responsible for the

resonances and the background loss, the qualitative difference between the two spin-

stretched states, and the nature of the complex could be answered.

It also described the first observation of a Feshbach resonance between rovibra-

tional ground-state molecules at ultracold temperatures. This discovery was made

by careful search through a magnetic bias-field range of 1500 G with triplet NaLi

molecules in the lower-stretched hyperfine state. The resonance rises from a back-

ground loss at the universal limit, which is not compatible with the most commonly

studied models of ultracold collisions. The more than hundred-fold enhancement of

loss observed implies the existence of a remarkably long-lived collision complex in a
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system with barrier-free reactions in all channels [29] and requires full phase coher-

ence for the flux reflected at short range destructively interferes with the quantum

reflected flux. This result is surprising and raises many questions for future work.

In addition to the exploration of magnetically tuneable scattering resonances,
23Na6Li molecules in the triplet potential are suitable for magnetic trapping. With

an improved experimental setup that allows magnetic trapping of 23Na6Li molecules,

quantitative studies on various collisions in the magnetic trap was demonstrated by

quantum state control of molecules and atoms. The molecular density is a factor

of 105 higher than that of other magnetically trapped ultracold molecules [20, 100],

and the temperature is ≈ 1𝜇𝐾. This enabled observation of both atom-molecule

and molecule-molecule collisions in the ultracold regime and sympathetic cooling of
23Na6Li by evaporative cooling of 23Na in the magnetic trap.

This new method allows studies of molecular collisions in a photon-free environ-

ment. Experiments probing photo-induced loss for ultracold molecular systems in

optical traps have been reported using chopped optical dipole traps or repulsive box

potentials made with blue-detuned light. However, even for the longest dark times

and the lowest intensities, photo-induces loss could not be completely suppressed, and

loss rates consistent with universal loss were observed [50,103,104]. For magnetically

trapped molecules, photo-induced losses can be studied with arbitrarily small light

intensities.

Lastly, this thesis described numerical and theoretical work on finding a condition

for all-optical creation of molecules using Raman transitions from 23Na and 6Li atoms

to 23Na6Li molecules. The well-established method for creating ultracold bialkali

molecules is by ultracold assembly which requires a Feshbach resonance to be at an

experimentally accessible bias field and magnetic field stabilization within the width

of the Feshbach resonance for an efficient magnetic association. All-optical creation

of molecules is expected to broaden the choice of ultracold molecules to a larger pool

and eliminate going to high magnetic fields. However, we discovered that all-optical

transfer from free atoms to the NaLi rovibrational ground state of the 𝑎3Σ+ potential

is not straightforward. Simple replacement of the well-established method of creating
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loosely bound Feshbach molecules with a two-photon Raman transition will lead to

a transfer efficiency of less than 0.1%. With careful selection of a Raman transition

path (use of ‘magic wavelength’) or using additional lasers for light shift compensation,

we expect to achieve transfer efficiency comparable to that of the scheme with the

Feshbach resonance.

7.2 Outlook

7.2.1 Mysteries of non-universal reactive collisions

For chemically stable collisions, one would expect loss rates below the universal limit

and for highly reactive collisions, loss rates at the universal limit. Many experiments

found loss rate constants at or close to the universal value predicted for reactive

collisions even for non-reactive molecules. It has been proposed that this is possibly

due to “sticky collisions” connected with long-lived complexes [37–39, 89, 101] and

intense trap light, which can induce photo-chemistry. Recent experiments [40,50,102]

showed that optical traps can cause short lifetimes of molecules and are not truly

conservative, but others [103,104] showed inconclusive results, and the reason for fast

loss in non-reactive systems still remain as an open question.

In addition, we have now observed several types of highly reactive collisions where

loss rates do not match the universal limit. Our collision studies in a magnetic trap

show that NaLi molecules with various collision partners have loss rates that deviate

from the universal limit although they are all reactive. First, 𝑝-wave loss rate between

NaLi molecules in the upper-stretched state was measured to be a factor of 2 higher

than the universal limit in a 1,596 nm 1D lattice [33] although molecules in the

lower-stretched state decay at the universal limit [73] as expected. This was initially

thought to be originating from an error in the trap volume estimation of the 1D

optical lattice or additional loss due to the trapping light or magnetic force at high

field. However, we observed the same factor of 2 in a light-free magnetic trap with low

bias field near the trap bottom. Second, 𝑠-wave collisions in NaLi spin mixtures and
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NaLi+Na mixture have loss rates much lower than the universal limit. Although all

collision systems are reactive, the absorption probability at close range is much lower

than one. This is well understood for the collisions in the spin-stretched Na+NaLi

mixture [29, 33] where the quartet potential in the input channel is non-reactive,

and inelastic collisions are only possible via spiflips. However, this explanation does

not apply to the 𝑠-wave molecule-molecule collisions. This is a new open question

that is not explained with existing models. In addition, a Feshbach resonance has

been observed between molecules in a strongly reactive input potential [73]. These

observations suggest that collisional resonances and collisional complexes should occur

more generally and motivate more systematic studies of collisions involving NaLi and

collision partners in various hyperfine states, and also for other molecules [112].

7.2.2 Towards a deeply degenerate gas of NaLi

Sympathetic cooling of NaLi by evaporation of Na atoms has been demonstrated

in this work and also in [34]. In particular, this thesis described the microwave

evaporation of Na in a magnetic trap to cool NaLi molecules. This increased the

phase space density of the molecules by a factor of ≈ 16. This can be further improved

but is eventually limited by the slow Na thermalization rate, which is significantly

slower than the rate of elastic collisions between Na and NaLi. Using a second trap

for Na that enhances the thermalization rate should allow cooling into the quantum-

degenerate regime.

Another approach toward a deeply degenerate gas of NaLi is to have somewhat

lossy evaporation, but compensate for this by increasing the numbers of trapped atoms

and molecules. In Chapter 6, we explored the possibility of all-optical formation of

NaLi in the triplet ground state. Although this method cannot increase the atom-

to-molecule conversion efficiency but can only do a similar job, it allows complete

elimination of optical trapping. Combining the magnetic trapping that we saw in

Chapter 5 and all-optical formation of molecules can be a new direction to achieve

a higher number of molecules, since multiple transfer steps from one trap to another

that cause significant loss of atoms or molecules can also be eliminated.
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7.2.3 Creation of stable qubits with rotational states

The work of this thesis mainly focused on molecular collisions and quantum chem-

istry. However, ultracold molecules are also recognized as a new platform for quantum

computing and quantum information processing. Qubit coherence times are critical

to the performance of any robust quantum computing platform. With state-of-the-art

technology, the most stable rotational qubits that have been reported have a coher-

ence time of 100 ms [122]. Even with careful tuning of the angle between the optical

trap polarization and the applied magnetic field to a ’magic’ angle that greatly re-

duces the differential polarizability, the dominant decoherence mechanism was still

the differential polarizability between two qubit states. With minor technical up-

grades to our apparatus, stable microwave-induced dipoles or rotational state qubits

can be achieved. In the light-free magnetic trap, we expect to produce dipoles with

a coherence time that is even longer than the record long coherence time.

For example, rotational qubits 1√
2
(|𝑁 = 0,𝑚𝑁 = 0,𝑚𝑆 = 1,𝑚𝐼Na

= 3/2,𝑚𝐼Li
= 1⟩

+ |𝑁 = 1,𝑚𝑁 = 1,𝑚𝑆 = 1,𝑚𝐼Na
= 3/2,𝑚𝐼Li

= 1⟩) with collision energy of 1 𝜇K are

estimated to have a coherence time of ∼ 1.2 second in a magnetic trap 1. However, the

dominant decoherence mechanism of rotational qubits for NaLi in the triplet state is

the mixing between different electron spin states due to the intramolecular spin-spin

coupling2. This leads to a coherence time of ≈ 200 ms (𝑡𝑐 ≈ ℎ
Δ𝜇×Δ𝐵×10−4 ≈ 200 ms)

which is, without careful adjustment for suppressed differential polarizability, still

longer than the longest previously observed coherence time.

1NaLi has rotational 𝑔-factor 𝑔𝑟 ≈ 0.06 based on simple analysis provided in [123] which divides
the nuclear and electron contributions to 𝑔𝑟 and provides how they scale with mass. Using this
estimate value for 𝑔𝑟, coherence time of a superposition state ℎ/(𝑔𝑟 × 𝜇𝑁 ×Δ𝐵) ≈ 1.2 s (where the
magnetic field inhomogeneity, Δ𝐵, is approximately 20 mG in this case.)

2spin-rotation coupling contribution is relatively small. Approximatetely, the 𝑁 = 0
upper-stretched state, |𝑁 = 0,𝑚𝑁 = 0,𝑚𝑆 = 1,𝑚𝐼Na = 3/2,𝑚𝐼Li = 1⟩, is mixed with
the state |𝑁 = 2,𝑚𝑁 = 2,𝑚𝑆 = −1,𝑚𝐼Na = 3/2,𝑚𝐼Li = 1⟩ by 0.02%. 𝑁 = 1 upper-
stretched state, |𝑁 = 1,𝑚𝑁 = 1,𝑚𝑆 = 1,𝑚𝐼Na

= 3/2,𝑚𝐼Li
= 1⟩ is mixed with state

|𝑁 = 3,𝑚𝑁 = 3,𝑚𝑆 = −1,𝑚𝐼Na
= 3/2,𝑚𝐼Li

= 1⟩ by 0.01%.
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Appendix A

A.1 Circuit designs

Part Value MFG

C(IN) 22× 10−6 F FK11X7R1C226M

C(IN_OC) 10−7 F SR205E104MAR

C(OUT_OC) 10−7 F SR205E104MAR

CH(IN_L) CHOKE PE-1812ACC101STS

CH(IN_R) CHOKE PE-1812ACC101STS

CH(OUT_L) CHOKE PE-1812ACC101STS

CH(OUT_R) CHOKE PE-1812ACC101STS

DC-DC(IN) 5V - 9V Converter PDS1-S5-S9-S

DC-DC(OUT) 5V - 9V Converter PDS1-S5-S9-S

F(SIG) 2K FMP100JR-52-2K2

L(IN) 3.3× 10−7 F AR205F334K4R

L(OUT) 3.3× 10−7 F AR205F334K4R

LPF 15× 10−9 F RCER72A153K0DBH03A

L_IN 680× 10−6 H DC630R-684K

OUT SMA Connector 5-1814832-1

R(BI_B) 1 kΩ FMP100JR-52-1K

R(BI_F) 1 kΩ FMP100JR-52-1K

R(IN) 10−7 F SR205E104MAR
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Table A.1 continued from previous page

Part Value MFG

R(OUT) 10−7 F SR205E104MAR

R(S) 2 kΩ FMP100JR-52-2K2

R(TRAN) 2 kΩ FMP100JR-52-2K2

R0 470 Ω FMP100JR-52-470R

T1 2N3904 2N3904BU

U$1 OPTOCOUPLER FOD0720

U$2 ICBUFFER SN74AHCT1G125DCKR

U$5 SIGNAL_JUMPER 1729089

VCC SMA Connector 5-1814832-1

VREG(IN) 5V VOLTAGEREG L7805CV

VREG(OUT) 5V VOLTAGEREG L7805CV

Table A.1: Parts of a PCB design for digital control

instrumentation.
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Figure A-1: Schematic of a PCB design for digital control instrumentation.
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Figure A-2: Board of a PCB design for digital control instrumentation.
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Figure A-3: Schematic of PCB design for analog signal buffer.
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Figure A-4: Board of PCB design for analog signal buffer.

Figure A-5: Circuit diagram of Li MOT fluorescence trigger and 60Hz trig-
ger.
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Appendix B

B.1 Coupled-channels calculations

This section describes quantum mechanical coupled-channel calculations for Na-NaLi

scattering which were carried out by Tijs Karman. The calculations include the

electronic interactions, the Zeeman interaction with the magnetic field, the mag-

netic dipole-dipole interaction, and the spin-rotation and spin-spin couplings. The

electronic interaction is partitioned into two-body interactions that are taken from

experiment [25,124,125], and a non-additive three-body interaction that is calculated

with state-of-the-art coupled-cluster calculations that are described in a forthcoming

paper [126]. We assume that the molecular bond length is fixed at the equilibrium

position of the triplet potential, which naively cannot explain the chemical reactions

that form singlet NaLi or Na2 molecules at the low-spin potential. In our coupled-

channel calculations, we model these by imposing an absorbing boundary condition at

𝑅 = 4.5 𝑎0, which can be reached on the low-spin potential, but not on the high-spin

potential, which is highly repulsive at these short distances.

For simplicity we start by ignoring hyperfine and vibrational degrees of freedom.

The scattering wavefunction is expanded in the basis of fully coupled channel functions

of the form

|(𝑁𝐿)𝐽(𝑠mol, 𝑠atom)𝑆;𝒥ℳ⟩ =
∑︁

𝑀𝐽 ,𝑀𝑆

⟨𝐽𝑀𝐽𝑆𝑀𝑆|𝒥ℳ⟩

× |(𝑁𝐿)𝐽𝑀𝐽⟩ |(𝑠mol 𝑠atom)𝑆𝑀𝑆⟩ (B.1)
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where ⟨𝐽𝑀𝐽𝑆𝑀𝑆|𝒥ℳ⟩ is a Clebsh-Gordan coefficient. The quantum number 𝑁

represents the rotational angular momentum of the NaLi molecule, and 𝐿 the angular

momentum associated with the end-over-end rotation, which are Clebsch-Gordan

coupled to a total mechanical angular momentum 𝐽 with the 𝐵-field project 𝑀𝐽 .

Similarly, 𝑠mol = 0 or 1 denotes the NaLi molecular electronic spin and 𝑠atom = 1/2

is the atomic electronic spin, and 𝑆 the total electronic spin with 𝐵-field projection

𝑀𝑆. In the coupled basis, 𝐽 and 𝑆 are subsequently coupled to a total angular

momentum 𝒥 and a magnetic field projection ℳ =𝑀𝐽+𝑀𝑆. ℳ is strictly conserved,

whereas, for a large enough magnetic field, 𝑀𝑆 becomes a good quantum number

and therefore 𝑀𝐽 = ℳ − 𝑀𝑆 is also a good quantum number. Due to the large

singlet-triplet splitting in the NaLi molecule, 𝑠mol = 0 or 1 is also a good quantum

number. For a separated atom and molecule, 𝑚𝑠mol
and 𝑚𝑠atom would separately

become good quantum numbers, but at chemically relevant distances the exchange

splitting between the doublet and quartet interaction potentials is dominant, so that

𝑆 = 1/2 and 3/2 are good quantum numbers. Hence, we can effectively consider each

|𝑆 𝑀𝑆⟩ state separately, with only perturbatively weak couplings between them. For

each of these spin channels, there are strong and anisotropic interactions that couple

different 𝑁 and 𝐿 channels but conserve 𝐽 and 𝑀𝐽 . The initial channel corresponds

to 𝑠-wave collisions in the spin-stretched ground state, |(00)00⟩ |3/2 3/2⟩.

First, we consider the sensitivity of the scattering rates to the interaction potential

shown in Figure B-1(a). Here, we scale by a factor 1+𝜆 the non-additive three-body

part of the interaction potential, that is, the part that is computed ab initio and is

uncertain up to an estimated 10 %. By modifying the potential by only 0.1 % we find

that the resonances start to shift so that realistically their positions are completely

undetermined, and when the scaling reaches several percent we tune across magnetic

field-independent resonances, indicating that the background scattering length is un-

determined. Next, shown in Figure B-1(b), we again scale the three-body interaction

but now only for the low-spin doublet potential, leaving the high-spin quartet poten-

tial unchanged. In this case, we find that several of the resonances are now completely

independent of the scaling of the low-spin potential up to 𝜆 = 0.1, indicating that are
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these resonances are supported by the high-spin potential, i.e., the resonance states

have well defined 𝑆 = 3/2.

This can be understood as no stable resonance states are supported by the chem-

ically reactive low-spin potential.

The analysis above indicates that the ab initio prediction of resonance positions is

beyond the capability of state-of-the-art calculations. Although the coupled-channels

calculations cannot predict the positions of the resonances, we can still use these

calculations as a “numerical experiment” to investigate the nature of the resonance

states, the coupling mechanisms, and the observed differences between the two spin-

stretched states.

We perform coupled-channels scattering calculations with the interactions scaled

by 1 + 𝜆 and analyze the typical behavior observed for different 𝜆 between −0.1 and

+0.1. Representative magnetic field scans can be seen in Fig. B-2. We observe ap-

proximately 10 resonances for the high-field seeking bottom spin-stretched state and

only around 5 resonances in the low-field seeking top spin-stretched state, respec-

tively. This is in qualitative agreement with the experiment which observes 17 and 8

resonances, respectively. In the companion paper we show that based on the density

of states we would expect to see approximately 10 resonances for either spin-stretched

state [126]. We furthermore show that including molecular vibrations would increase

the density of state by approximately 50 %, which can partially explain the lower

number of observed resonances compared to experiment. We show that including hy-

perfine interactions increases the density of resonances somewhat. With these effects

in mind, one could almost claim quantitative agreement with experiment regarding

the density of resonances, although again it is not possible to ab initio predict their

positions.

One may expect that the high-field seeking state supports more magnetically tun-

able resonances because the other Zeeman states correspond to closed channels – and

hence can support Feshbach resonances – even in the rotational ground state, whereas

closed channels for the low-field seeking state occur only for excited rotational states.

We investigate this in our coupled-channels calculations by artificially excluding the
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Figure B-1: Loss rates as a function of B-field and scaling of the spin-independent
three-body interaction by a factor 1+𝜆 for 𝑁max = 20. This shows scalings within the
uncertainty of at least several percents, the background loss and resonance positions
are undetermined. Several B-independent resonances are observed, where the 𝜆-
scaling tunes the initial spin-stretched potential such that it supports a resonance,
i.e., a bound state near zero energy. Hence, prediction of resonance positions requires
knowledge of the interaction potentials to an accuracy that cannot realistically be
achieved by ab initio calculations.
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Figure B-2: Representative magnetic field scans. Results for the low and high-field
seeking states in orange and blue solid lines. The high-field seeking state typically
shows around 10 resonances below 1500 G, whereas the low-field seeker shows around
half as many resonances. This qualitative difference between the two states is also
observed experimentally. We investigate whether the anisotropy of the electronic
interaction and the spin-spin and spin-rotation coupling act perturbatively, by scaling
down these couplings by a factor of two and scaling the resulting cross section up by
a factor four. Agreement with the full calculation indicates the spin-spin and spin-
rotation coupling act perturbatively, whereas the interaction anisotropy does not.
The coupling mechanism however does involve the anisotropy as turning this off
entirely produces a much smaller cross section dominated by the magnetic dipole-
dipole interaction (dash-dotted line). When both anisotropy and dipole-dipole are
turned off, the calculated cross section is zero.

non-initial Zeeman states in the rotational ground state, see Fig. B-3. Somewhat

surprisingly we find that excluding channels from the calculation does not reduce

the number of resonances for the high-field seeking state, but rather increases the

observed number of resonances for the low-field seeker, where the excluded channels

correspond to asymptotically open channels. In the presence of these open channels

some of the resonances decay rapidly such that they are not resolved, leading to a

lower number of observable resonances, explaining the observed qualitative difference

between the low and high-field seeking states.

Finally, we investigate numerically the coupling mechanism that gives rise to the

observed resonances. As argued above, each resonance state can essentially be as-

signed a molecular and a total electron spin quantum number 𝑠mol = 1 and 𝑆 = 3/2,

161



10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

 0  200
 400

 600
 800

 1000

 1200

 1400

k
 (

c
m

3
/s

)

B (G)

Figure B-3: Representative magnetic field scans. Qualitative differences in the
typical number of resonances for the low and high-field seeker disappear when we
exclude from the calculation channels corresponding to non-initial Zeeman states in
the rotational ground state. Excluding these channels does not reduce the number
of resonances for the high-field seeker, but rather increases the typical number of
resonances for the low-field seeker. In this case, asymptotically open channels are
removed from the calculation, which otherwise would lead to fast decay that renders
some of the resonances unresolved.

as only the non-reactive quartet spin state supports stable resonance states. The

resonance is magnetically tunable only if the Zeeman state 𝑀𝑆 is changes. To cou-

ple states with Δ𝑀𝑆 ̸= 0 a spin-dependent coupling must be involved, such as the

spin-rotation and spin-spin coupling. From the tensor rank of these couplings we can

determine they couple states with the selection rules, 𝐽 = 0 → 1 and |Δ𝑀𝑆| ≤ 1, and

𝐽 = 0 → 2 and |Δ𝑀𝑆| ≤ 2, respectively. Since 𝐽 is approximately a good quantum

number, both mechanisms give rise to distinct and independent resonances. Since

the density of states of the collision complex scales with 2𝐽 + 1 and the differen-

tial magnetic moment is higher for larger |Δ𝑀𝑆| transitions, we conclude that most

– aproximately 75 % – of the resonances are due to spin-spin coupling. Spin-spin

coupling does not occur for 2Σ molecules, and hence is a somewhat unique coupling

mechanism for NaLi(3Σ). To confirm that the role of the spin-dependent interactions

in the coupling mechanism we have performed coupled-channels calculations where

we reduced these couplings by a factor two. The resulting cross section multiplied
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by four is shown as the crosses in Fig. B-2. The agreement with the full calcula-

tion indicates scaling with the square of the coupling strength that is expected for

perturbatively weak spin-dependent couplings. This confirms we can fully assign the

resonances approximately good quantum numbers 𝑠mol = 1, 𝑆 = 3/2, each resonance

also has definite 𝑀𝑆 constrained by Δ𝑀𝑆 ≤ 1 and ≤ 2 selection rules, and 𝐽 = 1 or 2,

for spin-rotation and spin-spin coupling, respectively, whereas the 𝑁 and 𝐿 quantum

numbers are strongly mixed due to the anisotropic interaction at short range.

The coupling mechanism involving the spin-rotation and spin-spin coupling also re-

quires an anisotropic interaction potential. The physical picture is that the anisotropic

interaction with the atom can reorient the molecule, and because the spin is coupled

to the molecular axis by spin-rotation and spin-spin coupling, this can lead to Zee-

man transitions. To confirm this picture we have performed calculations that exclude

interaction anisotropy, shown as the dash-dotted line in Fig. B-2. The resulting cross

section is smaller and results from long-range Zeeman relaxation by the magnetic

dipole-dipole coupling. If both the magnetic dipole-dipole interaction and the in-

teraction anisotropy are switched off, the cross section in our model vanishes. The

role of the interaction anisotropy is non-perturbative, however, as can be seen from

comparison between the solid and dotted line in Fig. B-2, which compares the cross

section from the full calculation to four times the cross section obtained with the in-

teraction anisotropy halved. The crucial and non-perturbative role of the anisotropic

electronic interaction implies that the spectrum of resonances cannot be described by

a simplified model that accounts only for the isotropic long-range 𝑅−6 interaction,

contrary to previous observations of ultracold atom-molecule resonances [71].

We make a direct comparison to the scattering calculations with the density of

states computed quantum mechanically using the same channel basis as used in the

scattering calculations in a forthcoming paper [126]. The total number of states from

the quasiclassical estimate is close to the number of resonances from the scattering

calculations, but not in perfect agreement with it, because of the light masses and

relatively weak interactions in the spin-stretched state. We see most of the 3-body

states are between 20 and 40 𝑎0 which is in agreement with the complex size estimated
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from the simple interpretation of the spacing between resonances as rotational energy

splitting of the collision complex.
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Appendix C

C.1 Quasi-2D threshold law for 𝑝-wave collision

Two particles confined axially in an external harmonic trap can be described by the

stationary Schrödinger equation [127]:[︂
− ℏ
2𝜇

+ 𝑈(𝑟) + 𝑉𝑡𝑟(𝑟)

]︂
Ψ(𝑟) = 𝐸Ψ(𝑟). (C.1)

Here, 𝑉𝑡𝑟(𝑟) = 1
2
𝜇𝜔2𝑧2, 𝑈(𝑟) is the interparticle interation and 𝜇 is the reduced

mass. The energy in quasi-2D consists of harmonic oscillator energy and the 2D

kinetic energy given by ℏ2𝑘2
2𝜇

= 𝐸 = 1
2
ℏ𝜔 + ℏ2𝑞2

2𝜇
where 𝑞 is the wavenumber in the 2D

plane. Provided that the van der Waals (vdW) length scale is much smaller than the

oscillator length �̄� ≪ 𝑙𝑜, where �̄� = 2𝜋
Γ( 1

4
)2

(︀
2𝜇𝐶6

ℏ2
)︀1/4

and 𝑙𝑜 =
√︀

ℏ/(𝜇𝜔), so that the

trapping potential can be regarded as constant in the interaction range, the scattering

process can be described by the 𝑠 or 𝑝-wave pseudopotential using the 3D scattering

length or the scattering volume as:

𝑈𝑠(𝑟) =
2𝜋ℏ2𝑎3𝐷𝑠

𝜇
𝛿(𝑟)

𝜕

𝜕𝑟
𝑟

𝑈𝑝(𝑟) =
𝜋ℏ2𝑉 3𝐷

𝑝 (𝑘)

𝜇
∇⃗𝛿(𝑟) 𝜕

3

𝜕𝑟3
𝑟3∇⃗

(C.2)

Here, 𝜇 is the reduced mass, 𝐶6 is the vdW long-range dispersion coefficient, and

the scattering length and volume are defined with the 3D phase shift 𝜂𝑙 by 𝑎3𝐷𝑙 (𝑘) =

− tan 𝜂𝑙/𝑘 and 𝑉 3𝐷
𝑙 (𝑘)− tan 𝜂𝑙/𝑘

3 respectively. The relation between the 2D and 3D

scattering length for 𝑝-wave collision is derived to be:
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|𝑎2𝐷𝑝 |2 =
(︂
3
√
𝜋

2𝑙𝑜

)︂2(︂
𝑞2

𝑘2

)︂2

|𝑙𝑝|2|𝑎3𝐷𝑝 |2

𝛽2𝐷
𝑝 =

(︂
3
√
𝜋

2𝑙𝑜

)︂(︂
𝑞2

𝑘2

)︂
|𝑙𝑝|2𝛽3𝐷

𝑝

(C.3)

where 𝑙𝑝 = (1 − 𝑎3𝐷𝑝 ×𝑊 (0)/(
√
𝜋𝑙3𝑜𝑘

2))−1 and 𝑊 (0) ≈ 0.328 1 from the solution of

the Schrödinger equation C.1 to connect the 2D and 3D scattering lengths given in

ref. [127].

Reactive scattering rate constant in quasi-2D is given as 𝐾 𝑙𝑠
2𝐷 = 𝑔 4ℏ

𝜇
𝛽2𝐷𝑓2𝐷 where

𝑓2𝐷 = (1 + |𝑎2𝐷|2 + 2𝛽2𝐷)−1 [127]. From the relation between the loss rate constant

and the scattering lengths given by Eq.C.3, the quasi-2D loss rate constant for 𝑝-wave

collision can be expressed with 3D scattering parameters as:

𝐾 𝑙𝑠
2𝐷 = 𝑔

4ℏ
𝜇

· 𝛽2𝐷
𝑝 · 𝑓2𝐷

= 𝑔
4ℏ
𝜇

·
[︂(︂

3
√
𝜋

2𝑙𝑜

)︂(︂
𝑞2

𝑘2

)︂
|𝑙𝑝|2𝛽3𝐷

𝑝

]︂
· 𝑓2𝐷

= 𝑔
4ℏ
𝜇

·
(︂
3
√
𝜋

2𝑙𝑜

)︂(︂
𝑞2

𝑘2

)︂[︂
2�̄�1(𝑘�̄�)

2 (𝑠− 1)𝑦𝑠− (𝑠− 2)𝑦

(𝑦𝑠)2 + (𝑠− 2)2

]︂
· |𝑙𝑝|2𝑓2𝐷

= 𝑔
4ℏ
𝜇

·
(︂
3
√
𝜋

2𝑙𝑜

)︂
𝑞2
[︂
(2�̄�1�̄�

2)
(𝑠− 1)𝑦𝑠− (𝑠− 2)𝑦

(𝑦𝑠)2 + (𝑠− 2)2

]︂
· |𝑙𝑝|2𝑓2𝐷

(C.4)

supported by 3D complex scattering length of 𝑝-wave collision expressed with two

dimensionless quantum defect parameters 𝑠 and 𝑦 [88] as 𝑎3𝐷𝑝 = 𝛼3𝐷
𝑝 − 𝑖𝛽3𝐷

𝑝 =

−2�̄�1(𝑘�̄�)
2 𝑦+𝑖(𝑠−1)
𝑦𝑠+𝑖(𝑠−2)

, and thus 𝛽3𝐷
𝑝 = 2�̄�1(𝑘�̄�)

2 (𝑠−1)𝑦𝑠−(𝑠−2)𝑦
(𝑦𝑠)2+(𝑠−2)2

. Eq. C.4 implies that the

3D 𝑝-wave scattering rate is modified by the factor |𝑙𝑝|2 and 𝑞2/𝑘2 with a wavenumber

𝑘𝑝 =
3
√
𝜋

2𝑙𝑜
2. As 3D loss rate constant is proportional to temperature or 𝑘2, this 𝑘2 fac-

tor cancels out with 1/𝑘2 of 𝑞2/𝑘2 in the second line of Eq. C.4 leading to the relation

𝐾 𝑙𝑠
2𝐷 ∝ 𝑞2 · |𝑙𝑝|2𝑓2𝐷, and recovering the linearly dependent loss rate on temperature.

1Scattering length for 𝑠-wave collision is given by |𝑎2𝐷𝑠 |2 =
(︁√

𝜋
𝑙𝑜

)︁2
|𝑙𝑠|2|𝑎3𝐷𝑠 |2 and 𝛽2𝐷

𝑠 =(︁√
𝜋

𝑙𝑜

)︁
|𝑙𝑠|2𝛽3𝐷

𝑠 where, 𝑙𝑠 = (1 + 𝑎3𝐷𝑠 /(
√
𝜋𝑙𝑜)× 𝑙𝑛(𝐵ℏ𝜔/𝜋𝜖))−1 and 𝐵 ≈ 0.9049 [27].

2𝑠-wave scattering rate is modified by the factor |𝑙𝑠|2 with a wavenumber 𝑘𝑠 =
√
𝜋

𝑙𝑜
[27].
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C.2 Long-range coupling

Here we show that the long-range coupling between the two hyperfine states |𝑎⟩ and

|𝑏1⟩ involved in the crossing shown in 4-9 is too weak to explain the observed loss rates.

To explain the observed Feshbach resonance, it is, therefore, necessary to assume the

presence of a short-range loss mechanism. A minimal model for such a mechanism

involves a bound state (channel |3⟩) coupled to the open channels (|𝑎𝑎⟩ and |𝑎𝑏1⟩).

Long-range coupling would occur outside the centrifugal 𝑝-wave barrier of the

input channel. The peak of the barrier is at 241/4 · 𝑅vdw ≈ 7.8 nm where the van

der Waals length 𝑅vdw = 1
2

(︀
2𝜇𝐶6

ℏ2
)︀1/4

, and the inner turning point is at 100 nm at

3.35 𝜇K temperature. In the Born approximation, for a potential of average strength

𝑉0 in an effective volume 4𝜋𝑅3
0/3, the total low energy elastic scattering cross section

𝜎 = 4𝜋(
2𝜇𝑉0𝑅3

0

3ℏ2 )2 (identical to the solution for a spherical square well potential with

radius 𝑅0). Applying this relation to the observed nearly unitarity limited cross

section of 2.95 × 10−11 cm2 corresponding to the loss rate constant of 10−10 cm3s−1

at 1 𝜇K and using the position of the inner turning point to estimate 𝑅0 = 100 nm,

provides a coupling matrix element 𝑉0 of 16 kHz. This is the required value for

coupling outside the 𝑝-wave barrier to be compatible with the observed loss rates.

For inelastic collisions with final wavevector 𝑘′, the rate has an additional factor 𝑘′/𝑘

due to the density of states, but for large 𝑘′, the matrix element will decrease with

𝑘′, so our rough estimate for the required spatial coupling matrix element should also

apply to inelastic collisions.

First, we show that magnetic dipolar interactions [128] which lead to spin exchange

and dipolar relaxation and often limit the lifetime of magnetically trapped atoms, are

very weak outside the barrier. At the position of the 𝑝-wave barrier (𝑅𝑏 = 100 nm),

the interaction between two spins with magnetic moments 2𝜇0, where 𝜇0 is the Bohr

magneton, is 𝑉 𝑚𝐷𝐷 = 0.052 kHz, which is already small. However, due to the

selection rules of the magnetic dipolar interaction (|Δ𝑀𝑆| = 1), a single spin flip

cannot provide coupling between the near-degenerate hyperfine states of interest |𝑎⟩

and |𝑏1⟩, which correspond to 𝑀𝑆 = 1 and 𝑀𝑆 = −1, respectively (see above).
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Therefore, the coupling must involve an intermediate state |𝑘⟩, which is off-resonant

by its Zeeman energy Δ𝑎𝑘 ≃ 1𝜇0 × 300 G ≃ 400 MHz. This further reduces the

magnetic dipolar coupling between the open channels by the factor (𝑉 𝑚𝐷𝐷/Δ𝑎𝑘)
−1 =

7.7 × 106 to much less than 1 mHz. We can thus rule out the magnetic dipolar

interaction as a source of the observed loss.

Spin flips in collisions of 3Σ molecules can also occur via coupling of the incident

channels |𝑎⟩ and |𝑏1⟩ to excited rotational states [129,130]. This mechanism is similar

to that of magnetic dipolar relaxation discussed above, with the excited rotational

states (𝑁 ≥ 1) playing the role of the intermediate Zeeman states. A distinctive

feature of this mechanism is that it is mediated by the anisotropy of the electrostatic

interaction between 3Σ molecules (which couples the 𝑁 = 0 incident states to 𝑁 ≥ 1

closed-channel states of the same𝑀𝑆) and the spin-rotation and spin-spin interactions

in the 𝑁 ≥ 1 manifolds, which couple states of different 𝑀𝑆.

Below, we quantify this molecular spin relaxation mechanism by estimating the

magnitude of the anisotropic coupling between the degenerate open channels |𝑎⟩ and

|𝑏1⟩ due to the excited rotational states at 𝑅 = 100 nm. We find that the strongest

coupling due to the electric dipole-dipole interaction is only 0.05 kHz, and is therefore

too small to explain the observed loss rate.

C.2.1 Coupling matrix elements between degenerate open chan-

nels |𝑎𝑎⟩ and |𝑎𝑏1⟩ due to rotationally excited states

Here, we estimate the matrix elements between the degenerate open channels |𝑎𝑎⟩ and

|𝑎𝑏1⟩ due to long-range interactions between NaLi(𝑎3Σ+) molecules. The interactions

are described by the multipole expansion [131]

𝑉 (R, r𝐴, r𝐵) = (4𝜋)3/2
∑︁

𝜆𝐴,𝜆𝐵 ,𝜆

𝑉𝜆𝐴,𝜆𝐵 ,𝜆(𝑅, 𝑟𝐴, 𝑟𝐵)𝐴𝜆𝐴,𝜆𝐵 ,𝜆(�̂�, 𝑟𝐴, 𝑟𝐵) (C.5)

where 𝐴𝜆𝐴,𝜆𝐵 ,𝜆(�̂�, 𝑟𝐴, 𝑟𝐵) are the angular functions, 𝑉𝜆𝐴,𝜆𝐵 ,𝜆(𝑅, 𝑟𝐴, 𝑟𝐵) are the radial

expansion coefficients [131], �̂� = R/𝑅, and 𝑟𝑖 = r𝑖/𝑟𝑖. To leading order, the ex-

pansion (C.5) contains the electric dipole-dipole, dipole-quadrupole, and quadrupole-
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quadrupole interactions. We assume that the internuclear distances of NaLi molecules

are fixed at their equilibrium values. The rigid rotor approximation is expected to

be extremely accurate since the long-range NaLi-NaLi interactions at 𝑅 = 𝑅𝑏 (see

below) are thousands of times smaller than the spacing between the ground and the

first excited vibrational states of NaLi (ℏ𝜔10 = 40.2 cm−1 [132]). Since we are inter-

ested in long-range physics outside the 𝑝-wave barrier, we will also neglect the spin

dependence of the NaLi-NaLi interaction, which is significant only at very close range

(𝑅 ≤ 10 𝑎0).

The radial expansion coefficients in Eq. (C.5) are expressed in terms of the mul-

tipole moments 𝑄𝜆𝑖,0 of the interacting molecules (𝑖 = 𝐴,𝐵)

𝑉𝜆𝐴,𝜆𝐵 ,𝜆(𝑅, 𝑟𝐴, 𝑟𝐵) =
𝑄𝜆𝐴0𝑄𝜆𝐵0

𝑅𝜆+1
𝛿𝜆,𝜆𝐴+𝜆𝐵

· (−1)𝜆𝐴

[(2𝜆𝐴 + 1)(2𝜆𝐵 + 1)(2𝜆+ 1)]1/2

·
[︂
(2𝜆𝐴 + 2𝜆𝐵 + 1)!

(2𝜆𝐴)!(2𝜆𝐵)!

]︂1/2 (C.6)

The leading terms for two interacting neutral polar molecules such as NaLi are

𝑉112(𝑅) = −𝑑
𝐴𝑑𝐵

𝑅3

√︂
2

3
(dipole-dipole),

𝑉123(𝑅) = −𝑑
𝐴𝑄𝐵

20

𝑅4
(dipole-quadrupole),

𝑉224(𝑅) =
𝑄𝐴

20𝑄
𝐵
20

𝑅5

√︂
14

5
(quadrupole-quadrupole).

(C.7)

where 𝑑𝑖 and 𝑄𝑖
20 are the electric dipole and quadrupole moments of the 𝑖-th molecule.

Note that the long-range interaction (C.5) is spin-independent, and hence can only

couple the states of the same 𝑀𝑆, 𝑀𝐼1 , and 𝑀𝐼2 . We use the accurate ab initio

value of the molecule-frame electric dipole moment 𝑑NaLi = 0.167 D [132], and an

approximate value of the electric quadrupole moment ΘNaLi = 10 a.u. based on the

calculated values for Na2 and Li2 from Ref. [133]. Our estimates are not sensitive to

the precise magnitude of ΘNaLi, since the dominant contribution at 𝑅 = 𝑅𝑏 is given

by the electric dipole-dipole interaction.

Figure C-1 shows the radial dependence of the long range interactions between
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Figure C-1: Radial dependence of the dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole interactions of NaLi (𝑎3Σ+) molecules. The 𝑝-wave centrifugal
barrier is also shown (dashed line). The upper and lower bounds on the experimental
collision energies (4.2 𝜇K and 1.8 𝜇K) are marked by green horizontal lines. The
turning points at the centrifugal barrier for these collision energies are 𝑅𝑏 = 89.3 and
136.4 nm, respectively.

two NaLi molecules. While the dipole-dipole interaction dominates outside the 𝑝-

wave barrier (𝑅 ≥ 100 nm) both the dipole-quadrupole and quadrupole-quadrupole

interactions grow in magnitude as 𝑅 becomes shorter. At 𝑅 = 100 nm, the magnitude

of the electric dipole-dipole, dipole-quadrupole, quadrupole-quadrupole, and magnetic

dipole-dipole interaction terms in Eq. (C.7) are (in kHz): 𝑉𝐷𝐷 = −3.446, 𝑉𝐷𝑄 =

−0.339, 𝑉𝑄𝑄 = 0.0273, and 𝑉𝑚𝐷𝐷 = 0.0519.

Equating the barrier energy plotted in Figure C-1 and the endpoints of the ex-

perimental range of collision energies (1.8−4.2 𝜇K), we obtain the corresponding

range of distances of closest approach of two NaLi molecules in the 𝑝-wave channel

as 𝑅𝑏 = 89.3−136.4 nm. For simplicity, we will use a value close to the middle of

this interval, 𝑅𝑏 = 100 nm = 1890 𝑎0, to estimate the magnitude of all long-range

coupling matrix elements.

Having parameterized the anisotropic long-range interaction between two NaLi

molecules (C.7), we now proceed to evaluate its matrix elements between the degen-

erate open channels |𝑎⟩ and |𝑏1⟩. The general matrix elements are given by:
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Figure C-2: Matrix elements of the NaLi-NaLi interaction at 𝑅 = 100 nm as a
function of the channel index labeling the basis states |𝛾𝐴𝛾𝐵𝑙𝑚𝑙𝜂⟩. The initial channel
is |𝑎𝑎, 𝑙 = 1,𝑚𝑙 = 0⟩ and the total angular momentum projection 𝑀tot = −7. The
channel index labels closed channels, in which one or both NaLi molecules are in
their 𝑁 ≥ 1 excited rotational states. Only the matrix elements with the absolute
magnitude exceeding 1 Hz are plotted. The magnetic field 𝐵 = 333 G is tuned near
the crossing between the |𝑎⟩ and |𝑏1⟩ hyperfine-Zeeman levels. Inset: Histogram of
direct coupling matrix elements between the incident channel and lower-lying open
channels, where both NaLi molecules are in the ground 𝑁 = 0 rotational states.
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⟨𝛾𝐴𝛾𝐵𝑙𝑚𝑙𝜂|𝑉 (R, r𝐴, r𝐵) |𝛾′𝐴𝛾′𝐵𝑙′𝑚′
𝑙𝜂

′⟩ (C.8)

where ⟨𝛾𝐴𝛾𝐵𝑙𝑚𝑙𝜂| are the properly symmetrized basis states for two identical molecules

(𝜂 = −1 for identical fermions), 𝛾𝐴 and 𝛾𝐵 refer to the internal hyperfine-Zeeman

states of the molecules, 𝑙 is the orbital angular momentum for the collision, and 𝑚𝑙 is

its projection on the space-fixed quantization axis defined by the external magnetic

field [130]. The initial scattering state of interest corresponds to 𝛾𝐴 = 𝛾𝐵 = 𝑎, 𝑙 = 1,

𝑚𝑙 = 0, and 𝜂 = −1.

The matrix elements are calculated by a straightforward extension of the procedure

described in Ref. [130] to include the hyperfine structure of both NaLi molecules (see

the Supplemental Material of Ref. [134] for more details about the basis functions).

Using a minimal basis including three lowest rotational states of each of the NaLi

molecules (𝑁 = 0−2) and two partial waves (𝑙 = 1, 3), leads to the total number of

coupled channels 𝑁ch = 9908 for the total angular momentum projection 𝑀tot = −7.

We note that this basis set is expected to produce converged results at 𝑅 = 100 nm,

where the largest anisotropic long-range coupling |𝑉𝐷𝐷| = 3.446 kHz is much smaller

than the spacing between the 𝑁 = 0 and 𝑁 = 1 rotational levels (2𝐵𝑒 = 8.4 GHz).

Figure C-2 shows the matrix elements between the incident channel |𝑎𝑎, 𝑙 = 1,𝑚𝑙 = 0⟩

at𝑅 = 100 nm and all final channels. The largest of these matrix elements 𝑉01 ≃1.5 kHz

is due to the long-range electric dipole-dipole coupling between the ground and excited

(𝑁 = 1) rotational states. While these matrix elements do not directly couple the de-

generate channels |𝑎⟩ and |𝑏1⟩, they do contribute to indirect second-order couplings

estimated below. There are also direct couplings between the incident channel and

lower-lying relaxation channels (with single-molecule hyperfine-Zeeman state lower

in energy that the incident state |𝑎𝑎⟩), which occur between the 𝑙 = 1 and 𝑙 = 3

partial waves. These couplings are mediated by the intramolecular spin-spin interac-

tion, which couples the different 𝑀𝑆 components of the 𝑁 = 0 and 𝑁 = 2 rotational

states [129]. As shown in the inset of Figure C-2, the largest of these direct couplings

is about 0.04 kHz, which is too small to be responsible for the observed loss.

It remains to consider the second-oder couplings between two degenerate channels
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|𝑎⟩ and |𝑏1⟩ via rotationally excited states. These couplings are suppressed by the

factor (𝑉01/Δ01)
−1, where Δ01 = 2𝐵𝑒 is the energy of 𝑁 = 1 rotational states relative

to the ground rotational state. Using the values Δ01 = 8.4 GHz and 𝑉01 = 1.5 kHz,

we obtain (𝑉01/Δ01)
−1 = 5.6 × 106, and thus the second-order couplings are smaller

than 1 mHz, and can be neglected.

C.3 Harmonic oscillator model

Resonant dissipation energy in a driven harmonic oscillator via frictional input cou-

pling with damping is fully analogous to the resonant transmission of flux through

a Fabry-Perot cavity explained above. A harmonic oscillator with resonance 𝜔0 and

damping rate 𝛾2 driven at frequency 𝜔 via a frictional input coupling 𝛾1 is described

by the differential equation:

𝑑2𝑞(𝑡)

𝑑𝑡2
+ 𝛾2

𝑑𝑞(𝑡)

𝑑𝑡
+ 𝛾1

𝑑

𝑑𝑡
(𝑞(𝑡)− 𝑞𝑑(𝑡)) + 𝜔2

0𝑞(𝑡) = 0. (C.9)

Here, we assume the drive 𝑞𝑑(𝑡) = 𝑞0 sin𝜔𝑡. By rearranging the terms, we obtain the

more intuitive equation of driven harmonic oscillator with damping 𝛾 = 𝛾1 + 𝛾2

𝑑2𝑞(𝑡)

𝑑𝑡2
+ 𝛾

𝑑𝑞(𝑡)

𝑑𝑡
+ 𝜔2

0𝑞(𝑡) = 𝛾1
𝑑

𝑑𝑡
𝑞𝑑(𝑡). (C.10)

The complete solution of the Eq. C.10 is a superposition of the particular solution,

𝑞𝑝(𝑡) and the homogeneous solution, 𝑞ℎ(𝑡). However, if there is any damping at all in

the system (that is, if 𝛾 > 0), then the homogeneous part of the solution goes to zero

for large t, and we are left with only the particular solution. Therefore, the steady

state solution is given as:

𝑞(𝑡) = 𝑞𝑝(𝑡) =
𝛾1𝑞𝑑𝜔

(𝜔2 − 𝜔2
0)

2 + (𝛾𝜔)2
cos(𝜔𝑡− 𝜑) (C.11)

where 𝜑 is defined by tan𝜑 = 𝛾𝜔/(𝜔2 − 𝜔2
0). Rate of energy dissipated due to 𝛾2,

𝑃𝑜𝑢𝑡 = 𝛾2𝑞(𝑡)
2. Let us calculate the rate at which energy is being dissipated, which
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should be equal to the rate at which work is being done. Starting with Eq. C.9 and

multiplying both sides by 𝑞, we obtain the equation [𝑞𝑞 + 𝜔2
0𝑞𝑞] + 𝛾2𝑞

2 = 𝛾1(𝑞𝑑 − 𝑞)𝑞

that shows that [Rate of change in kinetic and potential energy] + [Rate at which

energy is being dissipated by 𝛾2] = [Power transferred to the system (𝑃𝑖𝑛)]3.

By substituting for 𝑞(𝑡) and 𝑞𝑑(𝑡) from any particular solution, we can prove that

the average power transferred to the system ⟨𝑃𝑖𝑛⟩ and the rate of energy dissipation

by 𝛾2 ⟨𝑃𝑜𝑢𝑡⟩ are

⟨𝑃𝑖𝑛⟩ = ⟨𝛾1(𝑞𝑑 − 𝑞)𝑞𝑑⟩

=

⟨
𝛾1

(︃
𝑞20𝜔

2 cos2 𝜔𝑡− 𝛾1𝑞
2
0𝜔

3√︀
(𝜔2 − 𝜔2

0)
2 + (𝛾𝜔)2

sin(𝜔𝑡− 𝜑) cos𝜔𝑡

)︃⟩

=
1

2
𝛾1𝑞

2
0𝜔

2

(︃
1− 𝛾1𝜔√︀

(𝜔2 − 𝜔2
0)

2 + (𝛾𝜔)2
sin𝜑

)︃
.

(C.12)

⟨𝑃𝑜𝑢𝑡⟩ =
⟨︀
𝛾2𝑞

2
⟩︀

=

⟨
𝛾2

𝛾21𝑞
2
0𝜔

4

(𝜔2 − 𝜔2
0)

2 + (𝛾𝜔)2
sin2(𝜔𝑡− 𝜑)

⟩
≈ 1

8

𝛾21𝛾2𝑞
2
0𝜔

2

(𝜔 − 𝜔0)2 + (𝛾/2)2

(C.13)

The last line of Eq. C.13 is obtained by taking the limit 𝜔 − 𝜔0 ≪ 𝛾. The ratio of

the power dissipated via 𝛾2 to a quarter of the nominal drive power (drive power at

zero amplitude of the harmonic oscillator) has the exact form as Eq. 4.7.

C.4 Three-state 𝑇 -matrix model of 𝑝-wave resonant

scattering near degeneracies

This section provides a microscopic derivation for Eq. 6.3 which was developed by

our theory collaborator Prof. Timur Tscherbul using an extended nonperturbative

𝑇 -matrix model of 𝑝-wave resonant scattering [86]. The model includes a single 𝑝-
3The rate at which work is done by the drive can be decomposed into two parts: rate of loss as

friction in 𝛾1 and the power transferred to the system (𝑃𝑖𝑛). That is, 𝛾1(𝑞𝑑 − 𝑞)𝑞𝑑 = 𝛾1(𝑞 − 𝑞𝑑)
2 +

𝛾1(𝑞𝑑 − 𝑞)𝑞
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wave bound state (or closed channel) |3⟩ coupled to two open channels: the incident

channel |1⟩ and the outgoing inelastic channel |2⟩ with threshold energies 𝐸1 and 𝐸2

(𝐸1 > 𝐸2). The open channels are separated by the energy gap Δ > 0 such that

𝐸1 = 𝐸2 + Δ. The total energy of the two-molecule system before the collision is

𝐸1(𝑘) = 𝑘2/2𝜇 = 𝑘2/𝑚, 𝜇 = 𝑚/2 is the reduced mass of the two identical molecules

of mass 𝑚, 𝑘 is the wavevector in the incident open channel |1⟩, and we have set

𝐸1 = 0, so that 𝐸2 = −Δ. The incident scattering state in channel |1⟩ is a plane

wave |k⟩ with energy 𝐸1(𝑘) = 𝑘2/𝑚 multiplied by the internal state vector of the

colliding molecules |𝛼⟩.

By summing the diagrammatic expansion for the 𝑇 -matrix, one obtains the fol-

lowing expression for the off-diagonal matrix elements between the open channels 𝛼

and 𝛼′ (𝛼, 𝛼′ = 1, 2) [86]

𝑇𝛼,𝛼′ =
𝐶

𝐿3

𝑘𝑘′𝐹𝛼(𝑘)𝐹𝛼′(𝑘′)

𝐸 − 𝛿 − Σ1 − Σ2

, (C.14)

where 𝐸 = 𝑘2/𝑚 is the collision energy in the incident channel |1⟩ and 𝛿 > 0 is

the energy of the bare p-wave bound state |3⟩, 𝐿3 is the quantization volume, and

𝐶 = cos 𝜃, where 𝜃 is the angle between the incoming and outgoing wavevectors [86].

The functions 𝐹𝛼(𝑘) quantify the coupling between the open and closed channels as a

function of the wavevector 𝑘, and Σ𝛼(𝐸)=
4𝜋
3
(2𝜋)−3

∫︀
𝑞4𝑑𝑞 |𝐹𝛼(𝑞)|2

𝐸−𝐸𝛼(𝑞)
are the open-closed

channel couplings in the energy space. These couplings are crucial as they determine

the resonance width. They can be evaluated by regularizing the diverging terms, and

then setting 𝐹 (𝑞) → 𝐹 (0), which results in the following expression

Σ𝛼(𝐸) = 𝜆𝛼
−𝑖
12𝜋

𝑚(𝑚[𝐸 − 𝐸𝛼(0)])
3/2

− 𝛿
(𝛼)
0 − 𝜂𝛼[𝐸 − 𝐸𝛼(0)]

(C.15)

where 𝜆𝛼 = |𝐹𝛼(0)|2 are the 𝑞 → 0 limits of the open-closed channel couplings, and

the integrals

𝛿
(𝛼)
0 = (6𝜋2)−1

∫︁
|𝐹𝛼(𝑞)|2𝑚𝑞2𝑑𝑞 (C.16)
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𝜂𝛼 = (6𝜋2)−1

∫︁
|𝐹𝛼(𝑞)|2𝑚𝑑𝑞 (C.17)

depend on the exact form of the coupling matrix elements between the open and

closed channels. Note that (i) 𝐸1(0) = 0 and 𝐸2(0) = −Δ by definition, and (ii) the

first term on the right-hand side of Eq. (C.15) is purely imaginary (since we assume

Δ > 0) and thus gives rise to resonance width

𝛾(𝐸,Δ)=(𝛾1 + 𝛾2) + 𝛾𝑑

=− 2Im(Σ1 + Σ2) + 𝛾𝑑

=
𝑚5/2

6𝜋
(𝜆1𝐸

3/2 + 𝜆2(Δ + 𝐸)3/2) + 𝛾𝑑

(C.18)

where we have introduced the intrinsic width 𝛾𝑑 of the 𝑝-wave bound state due to the

coupling to lower-lying inelastic channels other then |1⟩ and |2⟩ [see Figure C-3(a)].

While Ref. [86] assumes that Δ is much larger than all the other energy scales in the

problem, we do not make such an assumption here. Indeed, in our model, the new

Feshbach resonance occurs when Δ → 0.

Defining the resonance shift 𝛿0 = 𝛿10 + 𝛿20 and neglecting the dimensionless terms

𝜂𝛼, which are expected to be very small compared to unity [86], we obtain from Eq.

(C.14)

𝑇𝛼,𝛼′ =
𝐶

𝐿3

𝑘𝑘′𝐹𝛼(0)𝐹𝛼′(0)

𝐸 − (𝛿 − 𝛿0) + 𝑖𝛾(𝐸,Δ)/2
. (C.19)

Here, we have also assumed that the bound-continuum coupling matrix elements 𝐹 (𝑘)

are well approximated by their zero-𝑘 values 𝐹𝛼(0), which is a good approximation in

the limit 𝑘 → 0 (note, however, that this approximation starts to break down as 𝑘𝑅𝑏

approaches 1, where 𝑅𝑏 is the “size” of the 𝑝-wave bound state, as shown below). The

final wavevector in Eq. (C.19) 𝑘′ =
√︀
𝑚(Δ + 𝐸). We are interested in the two-body

inelastic rate for the transition |1⟩ → |2⟩ at fixed collision energy

𝑔2(𝐸,Δ) = |𝑇1,2|2𝜌2(𝑘′)

≃ 1

𝐿6

𝑘2𝑚(Δ + 𝐸)3/2𝜆1𝜆2

[𝐸 − (𝛿 − 𝛿0)]2 + [𝑚
5/2

6𝜋
{𝜆1𝐸3/2 + 𝜆2(Δ + 𝐸)3/2}+ 𝛾𝑑]2/4

(C.20)
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where 𝜌2(𝑘′) = (𝑚/2)3/2
√︀

2(Δ + 𝐸)/2𝜋2 is the density of states in the final channel

|2⟩ [135]. Eq. 6.3 is identical to Eq. (C.20) up to a constant overall scaling factor

and with the intrinsic decay width of state |3⟩ 𝛾𝑑 = 0. This provides a microscopic

justification for the Fabry-Pérot model. In particular, the Fabry-Pérot decay rates

may be expressed as 𝛾1 = 𝑚5/2

6𝜋
𝜆1𝐸

3/2 and 𝛾2 = 𝑚5/2

6𝜋
𝜆2(Δ + 𝐸)3/2, providing insight

into their collision energy and Δ dependence.

We now discuss the main features of the expression for the two-body inelastic

rate (C.20). To this end, consider the expression for the resonance width 𝛾(𝐸,Δ)

in the denominator of Eq. (C.20) given by Eq.(C.18). In addition to the intrinsic

width 𝛾𝑑, the width contains contribution from (i) the coupling between the incident

open channel |1⟩ with the 𝑝-wave bound state 𝛾1 ∝ 𝐸3/2 ∝ 𝑘3, and (ii) the coupling

between open channels |1⟩ and |2⟩ through the bound state 𝛾2 ∝ (𝐸 +Δ)3/2 ∝ (𝑘′)3.

Equation (C.20) shows that the inelastic rate away from the resonance (when

𝐸 − (𝛿 − 𝛿0) > 𝛾1 + 𝛾2) or for 𝛾𝑑 > 𝛾1 + 𝛾2 exhibits the standard 𝑝-wave scaling

𝑔2 ∝ 𝑘2(𝑘′)3 [86]. This seems to apply to the experimental result, which does not see

a change of temperature scaling at the resonance. This is expected to be the common

situation, since Δ/𝐸 > 1 in the experimentally relevant regime. The normal 𝑝-wave

threshold scaling will be modified if the denominator of Eq. C.20 becomes energy-

dependent, which requires the detuning 𝐸 − (𝛿 − 𝛿0) and 𝛾𝑑 to be small compared

to 𝛾1 + 𝛾2. Under these (rather unlikely) conditions, the scaling changes to 𝑔2(𝐸) ∝

𝑘2(𝑘′)3/[𝜆1𝑘
3 + 𝜆2(𝑘

′)3].

C.4.1 Derivation of 𝐹𝛼(𝑘) matrix elements

The p-wave bound state in channel |3⟩ is described by the wavefunction ⟨R|𝜓𝑏⟩ =

𝜓𝑏(R) of the intermolecular separation vector R. For a single p-wave bound state,

the radial and angular variables separate to give 𝜓𝑏(R) = 𝑔1𝑌1𝑚u(�̂�), where 𝑚u is

the projection of the bound state’s angular momentum 𝑙 = 1 on a quantization axis

u. We assume that the bound state is coupled to both of the open channels |k, 𝛼⟩

(𝛼 = 1, 2) via the coupling matrix elements ⟨k, 𝛼|𝑉 |3𝑚𝑘⟩, where ⟨R|k𝛼⟩ = 𝑒𝑖𝑘𝑧 |𝛼⟩

are the scattering states in the open channels 𝛼. Expanding the incoming plane wave
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Figure C-3: a. Schematic of the resonance model with two open channels and a p-
wave bound state trapped behind a centrifugal barrier.

in spherical waves, 𝑒𝑖𝑘𝑧 =
∑︀

𝑙 𝑖
𝑙
√︀

4𝜋(2𝑙 + 1)𝑗𝑙(𝑘𝑅)𝑌𝑙0(𝜃, 𝜑), we see that only the 𝑙 = 1

component couples to the p-wave bound state due to the orthogonality of the spherical

harmonics (and the assumption of isotropic bound-continuum coupling).

For practical purposes it is convenient to define the bound-continuum couplings

in the 𝑘-space [86]

𝐹𝛼(𝑘) = 𝑖
√
12 ⟨𝛼|𝑉 |3⟩ 1

𝑘

∫︁ ∞

0

𝑔*1(𝑅)𝑗1(𝑘𝑅)𝑅
2𝑑𝑅 (C.21)

where ⟨𝛼|𝑉 |3⟩ is a spin matrix element. The advantage og the 𝐹𝛼(𝑘) matrix elements

is that they have a well-defined 𝑘 → 0 limit. Expanding 𝑗1𝑘𝑅 ≃ 𝑘𝑅/3 + 𝑂((𝑘𝑅)5),

we get

𝐹𝛼(0) = 𝑖
√
12 ⟨𝛼|𝑉 |3⟩ 1

𝑘

∫︁ ∞

0

𝑔*1(𝑅)𝑅
3𝑑𝑅 (C.22)

The approximation 𝐹 (𝑘) ≃ 𝐹 (0) is used in the previous section and in Ref. [86]

to simplify the expression for the 𝑇 -matrix elements near threshold. To assess the

quality of this approximation, we plot in Figure C-4 the coupling matrix element 𝐹 (𝑘)

as a function of the dimensionless parameter 𝑞𝑅𝑏, where 𝑅𝑏 gives the characteristic

size of the p-wave bound state [𝑔1(𝑅) = 𝑅2𝑒−𝑅/𝑅𝑏 ]. We observe that 𝐹 (𝑘) starts to

deviate from unity at 𝑞𝑅𝑏 ≥ 0.01. Using 𝑅𝑏 = 100𝑎0, we see that 𝐹 (𝑘) ≃ 𝐹 (0) is a

good approximation for the incident collision channel (𝑘𝑅𝑏 ≃ 0.1 for 𝐸 = 10 kHz).

This is no longer the case when the open-closed splitting becomes large compared to
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Figure C-4: Coupling matrix elements between the open and closed channels plotted
as a function of the wavevector 𝑘 for two sample bound-state wavefunctions: 𝑔𝑙(𝑅) =
𝑅𝑙+1𝑒−𝑅/𝑅𝑏 with 𝑙 = 1 (top curve) and 𝑙 = 2 (bottom curve). THe couplings are
normalized to unity at 𝑘 = 0.

the collision energy (Δ/𝐸 ≫ 1). We observe from Fig.C-4 that while for Δ/𝐸 = 30

(𝑘′𝑅𝑏 ≃ 0.1) the approximation is still good, it becomes too crude when the energy

release into the final channel exceeds the collision energy by a factor of ≥ 100. In

this situation (which include the one considered in Ref. [86]), the exact 𝑘-dependent

matrix element 𝐹 (𝑘) should be used.
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C.5 Analysis on the two-body inelastic rate expres-

sion

In this section we focus on what we can learn about p-wave resonance from the two-

body inelastic rate for the transition |1⟩ → |2⟩ at fixed collision energy which is

given as Eq. C.20 we simplify the form of the two-body inelastic rate as 𝑔2(𝐸,Δ) =

𝐺 𝛾1𝛾2
Θ2+(𝛾1+𝛾2+𝛾𝑑)2

by redefining a few physical parameters with simplified notations

given as

𝐺 =
24𝜋

𝐿6
𝑚−1/2𝐸−1/2

𝛾1 =
𝑚5/2

6𝜋
𝜆1𝐸

3/2

𝛾2 =
𝑚5/2

6𝜋
𝜆1(Δ + 𝐸)3/2

Θ = 2[𝐸 − (𝛿 − 𝛿0)].

(C.23)

We consider mainly the two cases: (i) sweeping through 𝛾2 or Δ to the optimum

point, and (ii) sweeping through Θ = 0 point for maximum inelastic loss. The inelastic

rate which varies as a function of 𝛾2 has it’s maximum value when 𝛾2 = 𝛾𝑀2 . This

optimum value 𝛾𝑀2 is found by taking the partial derivative of 𝑔2 with respect to 𝛾2

as

𝜕𝑔2
𝜕𝛾2

⃒⃒⃒⃒
𝛾𝑀
2

= 𝐺𝛾1

[︂
1

Θ2 + (𝛾1 + 𝛾𝑀2 + 𝛾𝑑)2
− 2𝛾𝑀2

{Θ2 + (𝛾1 + 𝛾𝑀2 + 𝛾𝑑)2}2

]︂
= 0

→ 𝛾𝑀2 =
√︀

(𝛾1 + 𝛾𝑑)2 +Θ2

(C.24)

As 𝛾2 is tuned away from 𝛾𝑀2 the inelastic rate 𝑔2 decreases. The full width at half

maximum (FWHM) of the loss feature as a function of 𝛾2 is found by finding the two

values of 𝛾𝑚2 in which 𝑔2(𝛾𝑚2 ) = 1
2
𝑔2(𝛾

𝑀
2 ). The two values are given as

𝛾𝑚2 = 2
√︀
(𝛾1 + 𝛾𝑑)2 +Θ2 + (𝛾1 + 𝛾𝑑)

±
√︂[︁

2
√︀

(𝛾1 + 𝛾𝑑)2 +Θ2 + (𝛾1 + 𝛾𝑑)
]︁2

− (Θ2 + (𝛾1 + 𝛾𝑑)2)

(C.25)
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The FWHM is the difference between the two points given in Eq.(C.25). In certain

limits, the FWHM can be simplified as

(𝐹𝑊𝐻𝑀) = 2

√︂[︁
2
√︀

(𝛾1 + 𝛾𝑑)2 +Θ2 + (𝛾1 + 𝛾𝑑)
]︁2

− (Θ2 + (𝛾1 + 𝛾𝑑)2)

Θ≫𝛾1+𝛾𝑑−−−−−−→ 2
√
3Θ = 4

√
3 [𝐸 − (𝛿 − 𝛿0)]

Θ≪𝛾1+𝛾𝑑−−−−−−→ 4
√
2(𝛾1 + 𝛾𝑑).

(C.26)

In the limit in which the intermediate bound state is far away from the incident

channel energetically compared to 𝛾1 and 𝛾𝑑 (Θ ≪ 𝛾1+𝛾𝑑), the maximum loss occurs

when 𝛾2 = Θ and the width indicates the detuning of the intermediate bound state.

In the limit in which the system is close to the Feshbach resonance Θ ∼ 0, the

maximum loss occurs when 𝛾2 = 𝛾1 + 𝛾𝑑 and the width is proportional to 𝛾1 + 𝛾𝑑.

From this analysis, it is difficult to know the absolute value of Θ or 𝛾1 + 𝛾𝑑 from the

experimentally obtained width as we only know the FWHM in the unit of Δ and not

in the unit of 𝛾2.

We now focus on what we can learn from the enhancement of the loss rate. We

assume the incident scattering flux is divided into two parts: fraction 𝜅𝑠ℎ𝑜𝑟𝑡 that is

coupled to states that undergo fast short-range loss and fraction 1 − 𝜅𝑠ℎ𝑜𝑟𝑡 = 𝜅𝑙𝑜𝑛𝑔

that is stable and long-lived. The inelastic loss rate at the background is close to

universal value as we also assume that 𝜅𝑠ℎ𝑜𝑟𝑡 ≫ 𝜅𝑙𝑜𝑛𝑔. The loss rate at the background

𝑔2 = 𝐺 ·𝜅𝑠ℎ𝑜𝑟𝑡 · 𝑡2 where 𝑡2 is the transmission probability of the incident flux at long-

range. We define Γ such that 𝛾1 = 𝜅𝑙𝑜𝑛𝑔Γ. Note that Γ is approximately proportional

to 𝑡2 in the limit of 𝑡 ∼ 1, 𝛾 ≈ 𝛼𝑡2. The factor 𝛼 is unknown. The enhancement

factor in the case of optimizing 𝛾2, is expressed as

𝐶 ≡ 𝑔2(𝛾
𝑀
2 )

𝑔𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑2

=

[︂
𝐺

𝛾1𝛾
𝑀
2

Θ2 + (𝛾1 + 𝛾𝑀2 + 𝛾𝑑)2

]︂ [︀
𝐺 · 𝜅𝑠ℎ𝑜𝑟𝑡 · 𝑡2

]︀−1

=
𝜅𝑙𝑜𝑛𝑔
𝜅𝑠ℎ𝑜𝑟𝑡

· 𝛼 · 𝛾2
Θ2 + (𝛾1 + 𝛾𝑀2 + 𝛾𝑑)2

(C.27)
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where 𝛾𝑀2 is the optimum value of 𝛾2 for maximum loss rate which was calculated in

Eq.(C.24). It is necessary to know what 𝛼 is in order to learn about 𝛾1 and 𝛾𝑑 from

the experimentally observed enhancement factor, ∼ 100. We come back to the same

problem that we encountered from the analysis of FWHM. 𝛼 is directly related to 𝜆1,

and knowing the open-closed channel couplings 𝜆1 and 𝜆2 is necessary to estimate

the lifetime of the collision complex.

The enhancement of total loss in a Fabry–Pérot with a PBS for a given mirror

coupling strength 𝛾1 as illustrated in Figure 4-12(b) can be analyzes in a similar

manner. The loss has two components: transmission of p-polarized light through the

second mirror, 𝑇𝑝(𝜔0, 𝛾2), which varies as a function of the cavity mode frequency

and mirror coupling strength 𝛾2 and reflection of s-polarized light at the PBS, 𝑇𝑠. We

assume s-polarization component is much greater than p-polarization component of

the coupled incoming flux after the mirror M1 (𝜅𝑠 ≫ 𝜅𝑝) and consider two situations.

In the first situation, the spacing between two mirrors are fixed to create either a

resonant or off resonant mode to the incoming light and 𝛾2 is scanned. In the second

situation both 𝛾1 and 𝛾2 are fixed but the Fabry–Pérot resonator mode is scanned

across the mode of the incoming light. The enhancement factors of the two settings,

𝐶1 and 𝐶2, are given respectively as

𝐶1 ≡
𝑇𝑠 + 𝑇𝑝(𝜔0 = 𝜔, 𝛾2 = 𝛾1)

𝑇𝑠 + 𝑇𝑝(𝜔0 = 𝜔, 𝛾2 ≫ 𝛾1 or 𝛾2 ≪ 𝛾1)
≈ 𝜅𝑝
𝜅𝑠

· 2

𝛾2𝜏𝑅𝑇

𝐶2 ≡
𝑇𝑠 + 𝑇𝑝(𝜔0 = 𝜔)

𝑇𝑠 + 𝑇𝑝(𝜔0 = 𝜔 +Δ𝜔)
≈ 𝜅𝑝
𝜅𝑠

· 8𝛾2
(𝛾1 + 𝛾2)2𝜏𝑅𝑇

𝛾1=𝛾2−−−→ 𝜅𝑝
𝜅𝑠

· 2

𝛾2𝜏𝑅𝑇

.

(C.28)

where |Δ𝜔| ≫ (𝛾1 + 𝛾2)/2. The enhancement factors are inversely proportional to

the mirror coupling strength and even for small 𝜅𝑝, large loss enhancement can be

achieved with sufficiently weak mirror couplings.
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