News: Research Highlights

Tue January 1, 2013

Progress on Laser Cooling of CaF

The internal structure and the long-range dipole-dipole interactions of ultracold polar molecules open new avenues in studying physics such as the quantum simulation of strongly correlated Hamiltonians, ultracold controlled chemistry or precision measurements. At present, a reliable general method to produce an ultracold sample of molecules is desired, but not available. The goal of this...
News type:
Tue January 1, 2013

A Quantum Network of Clocks

The development of precise atomic clocks has led to many scientific and technological advances that play an increasingly important role in modern society. Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision...
News type:
Tue January 1, 2013

Unconventional Magnetism via Optical Pumping of Interacting Spin Systems

We considered strongly interacting systems of effective spins, subject to dissipative spin-flip processes associated with optical pumping. We predicted the existence of novel magnetic phases in the steady state of that system, which emerged due to the competition between coherent and dissipative processes. Specifically, for strongly anisotropic spin-spin interactions, we found ferromagnetic, antiferromagnetic, spin-densitywave, and...
News type:
Tue January 1, 2013

Quantum Logic between Remote Quantum Registers

We considered two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we reviewed the notion of eigenmode-mediated unpolarized spin-chain state transfer and extended the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yielded a natural optimal...
News type:
Tue January 1, 2013

Single-photon Nonlinear optics with Graphene Plasmons

We showed that it was possible to realize significant nonlinear optical interactions at the few photon level in graphene nanostructures. Our approach took advantage of the electric field enhancement associated with the strong confinement of graphene plasmons and the large intrinsic nonlinearity of graphene. Such a system could provide a powerful platform for quantum nonlinear...
News type:
Tue January 1, 2013

Realizing Fractional Chern Insulators in Dipolar Spin Systems

Strongly correlated quantum systems can exhibit exotic behavior controlled by topology. We predicted that the v = 1/2 fractional Chern insulator arose naturally in a two-dimensional array of driven, dipolar interacting spins. As a specific implementation, we analyzed how to prepare and detect synthetic gauge potentials for the rotational excitations of ultracold polar molecules trapped...
News type:
Tue January 1, 2013

Single-photon Nonlinearities in Two-mode Optomechanics

We presented a detailed theoretical analysis of a weakly driven, multimode optomechanical system, in which two optical modes were strongly and near-resonantly coupled to a single mechanical mode via a three-wave mixing interaction. We calculated one- and two-time intensity correlations of the two optical fields and compared them to analogous correlations in atom-cavity systems. Nonclassical...
News type:
Tue January 1, 2013

Phonon-induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing

We proposed and analyzed a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, were mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. That coupling resulted in phonon-mediated effective spin-spin interactions that could be used to generate...
News type:
Tue January 1, 2013

Robustness of Quantum Memories Based on Majorana Zero Modes

We analyzed the rate at which quantum information encoded in zero-energy Majorana modes was lost in the presence of perturbations. We showed that information could survive for times that scale exponentially with the size of the chain both in the presence of quenching and time-dependent quadratic dephasing perturbations, even when the latter had spectral components...
News type:
Tue January 1, 2013

Stretchable Photonic Crystal Cavity with Wide Frequency Tunability

We reported a new approach for the realization of a flexible photonic crystal (PC) cavity that enabled wide-range tuning of its resonance frequency. Our PC cavity consisted of a regular array of silicon nanowires embedded in a polydimethylsiloxane (PDMS) matrix and exhibited a cavity resonance in the telecommunication band that could be reversibly tuned over...
News type:
Page 4 of 18« First...23456...10...Last »