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Abstract—When digital signal processing operations are imple-
mented on a computer or with special-purpose hardware, errors and
constraints due to finite word length are unavoidable. The main cate-
gories of finite register length effects are errors due to A/D conver-
sion, errors due to roundoffs in the arithmetic, constraints on signal
levels imposed by the need to prevent overflow, and quantization of
system coefficients. The effects of finite register length on implemen-
tations of linear recursive difference equation digital filters, and the
fast Fourier transform (FFT), are discussed in some detail. For these
algorithms, the differing quantization effects of fixed point, floating
point, and block floating point arithmetic are examined and com-
pared.

The paper is intended primarily as a tutorial review of a subject
which has received considerable attention over the past few years.
The groundwork is set through a discussion of the relationship
between the binary representation of numbers and truncation or
rounding, and a formulation of a statistical model for arithmetic
roundoff. The analyses presented here are intended to illustrate
techniques of working with particular models. Results of previous
work are discussed and summarized when appropriate. Some ex-
amples are presented to indicate how the results developed for
simple digital filters and the FFT can be applied to the analysis of
more complicated systems which use these algorithms as building
blocks.

I. INTRODUCTION

N PRACTICE, digital signal processing requires the rep-
J:[ resentation of sequence values in a binary format with a

finite register length. The effect of the finite word-length
constraint manifests itself in several different ways. If a se-
quence to be processed is derived by sampling an analog
waveform, then the finite word-length constraint requires
that the analog-to-digital conversion produce only a finite
number of values. This represents quantization of the input
waveform. Even when we start with data representable with
a finite word length, the result of processing will naturally
lead to values requiring additional bits for their representa-
tion. For example, a b-bit data sample multiplied by a b-bit
coefficient results in a product which is 2b bits long. If in a re-
cursive digital filter we do not quantize the result of arith-
metic operations, the number of bits required will increase
indefinitely, since after the first iteration 2b bits are required,
after the second iteration 3b bits are required, etc. The effect
of quantization in such a context depends on such factors as
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whether we are considering fixed-point or floating-point arith-
metic, and whether for fixed-point arithmetic we are using a
representation of numbers in terms of fractions or integers,
or perhaps a mixture. We will be treating the case of fixed-
point arithmetic and floating-point arithmetic separately.
For fixed-point arithmetic, it is natural in a signal processing
context to consider a register as representing a fixed-point
fraction. In this way the product of two numbers remains a
fraction and the limited register length can be maintained by
truncating or rounding the least significant bits. With this
type of representation the result of addition on fixed-point
fractions need not be truncated or rounded but it can increase
in magnitude so that the sum eventually is not a fraction.
This effect is commonly referred to as overflow, and can be
handled by requiring that the input data be sufficiently small
so that the possibility of overflow is avoided. In considering
floating-point arithmetic, dynamic range considerations gen-
erally can be neglected due to the large range of representable
numbers, but quantization is introduced both for multiplica-
tion and for addition.

A third effect of finite word length is inaccuracies in pa-
rameter values. While generally signal processing parameters
are initially specified with unlimited accuracy, they can only
be utilized with finite word length. This effect is similar to the
effect which arises in implementing analog processing using
inaccurate circuit elements. There are two possible approaches
to handling the inaccuracies in parameter values. One possi-
bility is to develop design procedures which inherently are
insensitive to parameter inaccuracies. An alternate is to choose
specifications which are consistent with the limited register
length. There is a certain amount that is understood about
the effect of inaccuracies in parameter values, but for the
most part present results lead to guidelines rather than hard
design or analytical strategies.

In the following discussion the relationship between the
binary representation of numbers and truncation or rounding
is discussed and a statistical model for arithmetic roundoff is
presented. This statistical model is then applied to the anal-
ysis of fixed-point and floating-point rounding errors in
digital filters. The analysis includes a consideration of the
effect of dynamic range in developing and comparing signal-
to-noise ratios for fixed-point and floating-point filters. It
is not always possible to treat the effects of arithmetic round-
off in terms of a simple statistical model. Some approaches
and results are available in the literature on the limit cycle
behavior of digital filters due to arithmetic roundoff, and a
discussion of some of these results is included.

For the analysis of arithmetic roundoff in computation of
the discrete Fourier transform using the fast Fourier trans-
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form (FFT) algorithm a statistical model is used. With this
model the signal-to-noise ratio is developed and compared
for fixed-point and floating-point arithmetic.

While for any given filter configuration or spectral anal-
ysis problem it can be difficult to carry out a detailed anal-
ysis of the effects of finite register length there are a number
of general guidelines that can be distilled from the results pre-
sented here. In Section IV some examples and guidelines are
presented for filters implemented with fixed-point arithmetic
and with floating-point arithmetic as well as for filters im-
plemented with the FFT.

This paper is intended primarily as a tutorial review of a
subject which has received considerable attention over the
past few years. The analyses which are presented here are
selected to illustrate techniques of working with particular
models. Previous work is freely referenced, discussed, and
borrowed from.

II. NUMBER REPRESENTATION AND ITS
EFFECT ON QuUaNTIZATION

A. Fixed-Point and Floating-Point Numbers

The manner in which finite word-length effects are mani-
fested is closely tied to the way in which numbers are repre-
sented.

Digital computers and special purpose digital hardware
for the most part use a number representation with a radix of
2, i.e., a binary representation. Therefore, a number is repre-
sented by a sequence of binary digits which are either zero
or unity. Just as a decimal number is represented as a string
of decimal digits with a decimal point dividing the integer
part from the fractional part, the sequence of binary digits
is divided by a binary point into those representing the in-
teger part of the number and those representing the frac-
tional part. Thus if A denotes the location of the binary point,
the binary number 100110110 has the decimal value of (128
FOX22H0X2'+1 X209+ (0 X271 4+1 X272+ 1 X2734-0 X 279).
This representation always corresponds to a positive number.

The manner in which arithmetic is implemented in a
digital computer or in a special purpose hardware depends on
where in the register the binary point is located. For fixed-
point arithmetic, the implementation is based on the assump-
tion that the location of the binary point is fixed. The manner
in which addition is carried out will not depend on the location
of the binary point for fixed-point arithmetic as long as it is
the same for every register. For multiplication, however, the
location of the binary point must be known. For example,
consider the product of the two 4-bit numbers 1001, and
00114. In general, of course, the product of two b-bit numbers
will be 2b bits long. The 8-bit product of the above number is
00011011,. If, on the other hand, we consider the 4-bit frac-
tions 41001 and 10011, then the 8-bit product is 400011011,
In digital filtering applications, it is usually necessary to ap-
proximate the 2b-bit product of two b-bit numbers by a b-
bit result. In integer arithmetic this is difficult. With frac-
tional arithmetic, on the other hand, this can be accomplished
by truncating or rounding to the most significant & bits. For
multiplication with fractions, overflow can never occur since
the product of two fractions is a fraction. Thus for the 4-bit
example previously mentioned, the product 400011011 can be
approximated by 40001 (truncation) or 40010 (rounding).

An alternative to fixed-point arithmetic is a floating-point
representation. In this case, a positive number Fis represented
as F=2°M, where M, the mantissa, is a fraction between 1/2
and 1, and ¢, the characteristic, can be either positive or
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negative. The product of two floating-point numbers is
carried out by multiplying the mantissa as fixed-point frac-
tions and adding the characteristics. Since the product of the
mantissas will be between 1/4 and 1, a normalization of the
mantissa and corresponding adjustment of the characteristic
may be necessary. The sum of two floating-point numbers is
carried out by scaling the mantissas of the smaller number to
the right until the characteristics of the two numbers are
equal and then adding the mantissas. For example, consider
the sum of Fy and F» with Fy=4 and F.= 5/4. Then in floating-
point notation, Fy =2, and Fy=21/, with

(=3 decimal)
21000 (=0.5 decimal)

c1 = 11A

M,

l

co = 14 (=1 decimal)

M, = 41010 (=35/8 decimal).

In order to carry out the addition, ¢» must be changed to equal
¢ and My must be adjusted accordingly. Thus first the repre-
sentation of F»is changed to Fu=2%237, with

11,
100101

52:

-
M 2

Il

in which case the mantissas can now be added. The resulting
sum is F=2°1 with c=11, and 1/ =110101. In this case the
sum of 1y and M,is a fraction between 1/2 and 1 and therefore
no further adjustment of ¢ has to be carried out. In a more
general case, the sum may not be in that range, and conse-
quently, ¢ would be adjusted to bring the mantissa into the
proper range. From this example it should be clear that in
general with floating-point arithmetic, the mantissa can ex-
ceed the register length and must therefore be truncated or
rounded for both addition and multiplication whereas this is
only neccssary for multiplication in the fixed-point case. On
the other hand, if the result of addition in the fixed-point
case exceeds the register length, truncation or rounding
will not help, i.e., the dynamic range has been exceeded. Thus
while floating point introduces error due to arithmetic round-
off, it provides much greater dynamic range than fixed point.
As we will see later, both of these effects must be considered
when comparing fixed-point and floating-point realizations
of digital filters.

B. Representation of Negative Numbers

There are three common means used for representing
fixed-point negative numbers. The first, and most familiar, is
sign and magnitude, i.e., the magnitude (which is of course
positive) is represented as a binary number and the sign is
represented by the leading binary digit which, if 0 corresponds
toa + and if 1 corresponds to a — (or vice versa). Thus for
example, in sign and magnitude 0,0011 represents 3,16 and
110011 represents —3/16. Two other related representations
of negative numbers are often referred to as one’s-comple-
ment and two’s-complement representations. Considering all
numbers to be fractions, a positive number is represented as
before. For two’s complement representation a negative num-
ber is represented by 2.0 minus its magnitude. For example
—(040110) in sign and magnitude is represented as 151010
in two’s-complement since 10,000—0,0100=1,1010. For
one’s-complement, the negative number is represented by
subtracting the magnitude from the largest number repre-
sentable in the register. Thus —(0,0110) is represented by
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(1,1111) —(0,0110) = 1,1001. One’s complement representa-
tion is equivalent to representing a negative number by the
bit-by-bit complement of its magnitude. The choice of repre-
sentation for negative numbers in a particular system is
usually based almost entirely on hardware considerations.

For the representation of negative floating-point numbers
there are a variety of conventions that have been used. In
this paper we will consider the sign of the number to be asso-
ciated with the mantissa so that the mantissa is a signed
fraction. The representation of this signed fraction can of
course be in sign and magnitude, one’s-complement of two’s-
complement notation.

C. A Model for Arithmetic Roundoff

In formulating a model for arithmetic roundoff, we shall
consider both fixed-point numbers and mantissas of floating-
point numbers to be represented as b+ 1-bit binary fractions,
with the binary point just to the right of the highest order bit
(or sign bit). This convention represents no loss of generality,
and its convenience has been alluded to above. The numerical
value (for positive numbers) of a one in the least significant
bit is 272, and this quantity can be referred to as the width of
quantization,

As indicated previously, the effect of finite register length
on the result of arithmetic operations depends on whether
fixed-point or floating-point arithmetic is used, and how nega-
tive numbers are represented. Let us consider first the effect
of truncation and rounding in the fixed-point case. For sign
and magnitude, one’s-complement and two’s-complement,
the representation of positive numbers is identical and, con-
sequently, so is the effect of truncation and rounding. If Er
denotes the error due to truncation, i.e., the value after trun-
cation minus the value before truncation, this error will al-
ways be negative for positive numbers. That is, the effect of
truncation is to reduce the value of the numbers. More
specifically, if b, denotes the number of bits (exclusive of sign)
after truncation, and b, denotes the number of bits before
truncation, then the result satisfies 0 > Er> — (2792 —27b1),

With sign and magnitude representation of negative num-
bers, truncation reduces the magnitude of the number and the
error Fp satisfies 0 <Er <(27%2—27) For a two’s-comple-
ment negative number represented by the bit string 14, ai,
as, + + -, ap,, the magnitude is given by

M1 = 2.0 — X1
where
b1
=14 2 a;270.
i=1
Truncation to bs bits (b:<b:) produces the bit string 14, a1,
@s, * * -, tp,, where now the magnitude is
My, = 2.0 — xs
with
ba
gy =14 D a27i
=1

The change in magnitude is

b1
AM=M2—‘M1= Z a1~2“f

i=byt1
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Rounding Truncation Truncation
-1e2t<am-x  (2’s complement) ('s lement and sign
5% . 2.., 02Q(x)-x >27b and magnitude
02Q(x)~x>27%; x>0
0sQ(x)-x<27b, x<0
Fig. 1. Transfer characteristics for rounding and truncation.

and it is easily seen that
0 < AM < 2702 — 2781,

Hence the effect of truncation for two’s-complement negative
numbers is to increase the magnitude of the negative number;
the truncation error is negative, and satisfies 0 > £ > — (27
— 2—’)1).

For a one’s-complement negative number represented by
the bit string 1a, a1, @, + * -, as,, the magnitude is given by

M, = 2.0 — 2701 — Xy
and truncation to b; bits yields a magnitude
M,=20— 272 — x

where x; and x, are as defined above. The change in magnitude
is

b1
AM =My— M= 2, a2i— (202—2%

imbat1
and now
0> AM > — (2702 — 270,

Hence the effect of truncation for one’s complement negative
numbers is to decrease the magnitude of the negative num-
ber: the truncation error is positive, and satisfies 0< E7< 2792
— b1

The effect of rounding, of course, will be the same inde-
pendent of how negative numbers are represented and the
rounding error will always be greater than or equal to
(—1/2)27% and less than or equal to (41/2)27%. The effect of
truncation and rounding for the fixed-point case is summarized
in Fig. 1, where x represents the value before truncation or
rounding and Q(x) represents the value after. In the figure it
is assumed that x can take on a continuous range of values,
corresponding to by =  in the discussion above, and that the
quantized word length is b bits plus sign.

For the case of floating-point arithmetic, the effect of
truncation or rounding is reflected only in the mantissa. It is
convenient in the floating-point case to describe the error in a
multiplicative sense rather than in an additive sense as is
done in fixed-point arithmetic. In other words, for a floating-
point word, if x represents the value before truncation or
rounding and Q(x) represents the value after, then we express
Q(x) as equal to x(1+¢€). For the case of rounding, for example,
the error in the mantissa is between =+27%/2, and conse-
quently the error in the value of the floating-point word is

2—b
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Fig. 2. (a) Probability density function for rounding noise. (b) Proba-

bility density function for noise due to two's-complement truncation.

or, since Q(x) —x=ex

270 27
<ex < 2¢-
2 2

— Qe

and since 27! <x < 2° we can write that for the case of round-
ing —27?<e<27? In a similar manner we can show that for
one’s-complement and for sign and magnitude truncation
0>e>—2-27% For two’s-complement truncation

0>e> — 2.2
0<e< 220

x>0
x < 0.

D. Siatistical Model of Arithmetic Roundoff

A convenient means for analyzing the effect of quantiza-
tion is to represent the error statistically [1], [2]. In par-
ticular, for the case of fixed-point arithmetic and rounding Er
is represented as a random variable with a probability density
shown in Fig. 2(a). For the case of two’s-complement trunca-
tion, the probability density is shown in Fig. 2(b).

In each of these cases, the assumption is that the random
variable E7 is independent of x. For one’s complement and
sign magnitude truncation, this assumption cannot be made
since the mean value of the error is directly correlated with
the sign of x. In the analysis that follows for fixed-point arith-
metic, the discussion is phrased in terms of rounding. The re-
sults are easily modified for two's-complement truncation. In
particular the variance of the noise is identical for both cases.
However, for rounding the noise is zero mean and for two's-
complement truncation it is not zero mean.

For the floating-point case, the parameter € is considered
to be a random variable which is independent of x. In that
case the assumption of independence is reasonable for round-
ing, sign and magnitude truncation, and one’s-complement
truncation, but not for two’s-complement truncation. The
random variable € is bounded by —27?<e<27* We will gen-
erally assume e to be uniformly distributed in this range with a
variance ¢¢>=(1/3)27%, Empirical work has shown that the
distribution is not quite uniform so that while ¢.% is propor-
tional to 27%, the constant of proportionality is slightly less
than 1/3. However, the interpretation of the results depends
primarily on the proportionality to 272,

I1I. FiNiTE REGISTER LEXGTH EFFECTS
FOR DrcitaL FiLters [3]
A. Introduction

The basic arithmetic operations involved in implementa-
tion of a digital filter are multiplication by a constant and
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addition. For fixed-point arithmetic, roundoff is introduced
only after the multiplication. Because of the possibility of
overflow due to addition, there is a dynamic range limitation
in fxed-point filters. In contrast, floating-point filter imple-
mentation has a much less severe dynamic range constraint,
although arithmetic roundoff is introduced due to both multi-
plication and addition. In the next sections we will first de-
velop the statistical analysis of arithmetic roundoff for fixed-
point filters including dynamic range considerations. This is
followed by a statistical analysis for flcating-point arithmetic
and a discussion of zero input limit cycle behavior for fixed-
point arithmetic.

B. Statistical Analysis of Fixed-Point Errors in a Digital
Filter 4], 5]

In many situations it is reasonable to model the effect of
rounding in a digital filter by a simple statistical model. The
approach is to model the effect of the rounding at each multi-
plier by a white-noise source uniformly distributed in ampli-
tude between plus and minus (1/2)27%. Each of the noise
sources is assumed to be linearly independent of each other
and of the input. Experimentally these assumptions have
been justified for a broad class of inputs including random
signals, speech, etc. The model is clearly not valid for certain
inputs, such as constant inputs. If the impulse response from
the kth noise source to the output is s(#) then the steady-
state output noise variance due to the kth noise source is

Unkz = 0-62 Z hk2(”) (1)

n=0

where o.2=(1/12)2"%. Since all the noise sources are as-
sumed to be uncorrelated, the total output noise is

0.02 = Z JokZ- (2)
§

For example, if we consider the first-order filter in Fig. 3 one
noise source is introduced. In this case, the impulse response
from the noise source input to the output is k(1) =a u_,(n)
where #_1 denotes a unit step sequence, so that

1 1
g7 = — 2

127 1—ga

(3)

For a second-order filter with oae complex pole pair there are
two noise sources as indicated ir: Fig. 4. The resulting output
noise is

2 14 72 1
ol = — 22b< > (4)
12 1 —72 41— 272cos 20

C. Dynamic Range Considerations for Fixed-Point Filiers

As indicated previously, the possibility of overflow must
be considered in the implementation of digital filters with
fixed-point arithmetic. With the convention that each fixed-
point register represents a signed fraction, each node in the
filter must be constrained to maintain a magnitude less than
unity in order to avoid overflow. Letting x(#) denote the filter
input and y,(n) and ki (n) denote the output and unit sample
response for the kth node in the filter, then

yi(n) = i hi()x(n — 7). (5

If xmax denotes the maximum of the absolute value of the in-



OPPENHEIM AND WEINSTEIN: EFFECTS OF FINITE REGISTER LENGTH

=y (n)

€(n)
a
Fig. 3. Noisy first-order filter (fixed point).
l—-' y(n)
x{n) — -] Z"

€, (n)

2rcos @

-r2

Fig. 4. Noisy second-order filter (fixed point).

put then

( yk(n) ‘ S Fmax Z | llk(r) L . (6)

Thus, since we require that ] yk(n)' <1, (6) requires that

Trmax < 1 / >
=0

Equation (7) thus provides an upper bound on the maximum
value of the input to insure that no overflow occurs in the kth
node. For a general input (7) in fact provides a least upper
bound, i.e., if the maximum value of the input exceeds the
bound, overflow can occur. This is a consequence of the fact
that equality can be achieved in (6) with a sequence x(n) for
which at n=m,, x(n,—r) = [sgn I(¥)] for r=0 to . (Where
sgn (x) =1 for x>0 and sgn (x) = —1 for x<0.) Thus in the
most general case, (7) is required to guarantee that no over-
flow occurs. The condition in (7) would generally be satisfied
by applying attenuation to the signal at the filter input.

If we assume, for example, that the input x(#) is a white-
noise sequence with a uniform amplitude distribution, we
would choose for the case of the first-order filter a maximal
input amplitude of (1—a). For this case, if ¢,? denotes the
variance of the input signal, and ¢,2 denotes the variance of
the output signal, then

0. = <%> (1 — a)?
G5

For this example, we can then compute a noise-to-signal ratio
as the ratio ¢,%/0,2 with the result

.2 1 1

Sl p— 9
‘7.1/2 4 (1 - a)2 ( )

he(r)|,  forall . (7)

(8a)

(8b)

2
Oy

In a similar manner we can derive a noise-to-signal ratio for
the second-order filter shown in Fig. 4. As in the first-order
case, we restrict the maximum input in order to guarantee
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that the dynamic range of the registers is not exceeded. If we
consider the input sequence to be uniformly distributed white
noise, the resulting output noise-to-signal ratio will be

:

1 1 2 2
= - 2‘2”(*7 > | sin [(n + 1)6] | > .

2 sin 8 ,—

2

0 1 i
o~ _ 1 22b< E } h
: 2 n=0

2
Ty

(10)

While it is difficult to evaluate this expression exactly, it is
possible to obtain an upper and lower bound. Since Z:=0| hn’ is
the largest possible output obtainable with an input that
never exceeds unity, it must be larger than the response of
the second-order filter to a sinusoid of unity amplitude at the
resonant frequency. With this consideration, we can write that

< i | 7, [)2 > 1/(1 — 121+ #2— 2rcos20) (11)

since the right-hand side of this inequality is the gain at reso-
nance. Furthermore,

1 0 2 1 ® 2
<ff > | sin [(n + 1)6] |> < < - Zr") . (12)
sin 6§ ,—g sin @,
Therefore, for the second-order case
1 1
— 24‘21)
2 (1 — (1 + 72 — 27 cos 26)
002 1 1
<L (13)
a? 2 sin?§(1 — 7)?

For both the first- and second-order filter an expression for
the noise-to-signal ratio can be obtained which provides some
insight into the behavior of the noise-to-signal ratio as the
poles approach the unit circle. For the first-order filter let
6=1—a so that as 6—0, the pole approaches the unit circle.
Then in terms of §, the noise-to-signal ratio for the first-order
filter is

a,’

(14)

= _ 9w

a,? 4 82

For the second-order filter, let §=1—r so that, again, as §—0
the poles approach the unit circle. Then if we assume that

0«1, we can approximate (1+72—2r cos 260) as
(1 + »> — 27 cos 20) = 4 sin? 6 + &2 (15)

which for 4 sin?8 large compared with 82 we will approximate
as 4 sin? §. Consequently, incorporating this approximation,

o2 1 1
<—> 272k L L= 2T . (16)
2 46%sin26 4,2 2 8%sin26

Thus we observe that the noise-to-signal ratio as considered
thus far can be considered to be proportional to 27%/§2. We
note from this dependence that if § is halved, then to maintain
the same noise-to-signal ratio b must be increased by 1, i.e.,
one bit must be added to the register length. This dependence
provides a convenient basis for comparison of different over-
flow strategies and different kinds of arithmetic.

In the above analysis, the filter input was assumed to be
uniformly distributed white noise. As 8 approaches zero the
frequency response of both the first- and second-order filter
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becomes more selective so that more and more of the input
energy is out of band. An alternative basis for determining
the noise-to-signal ratio is for an input which is sinusoidal.
For this choice of inputs, of course, we would not use the
general condition of (7) to avoid overflow since we can deter-
mine exactly the maximum allowable input amplitude as a
function of the filter parameters.

In particular, if the input is of the form x(#) = xmax cOs #1¢b
then the steady-state output is of the form y(#) = ymax cOs
(np+y). To prevent overflow, ymax must be less than unity
and to maximize the output signal energy, ymax s chosen to be
as large as possible. Thus the maximum noise-to-signal ratio
is obtained when xmax is chosen so that v(n)=cos (np+¢).
Note that in order to choose ¥max in this way, the frequency of
the input signal must be known. For an input sinusoid of un-
known frequency x.x must be attenuated so that overflow
will not occur even in the worst case, where the frequency of
the input coincides with the peak gain in the filter’s transfer
function.

For fixed-point filters, within the validity of the statistical
model for roundoff error, the output noise is independent of
the form and amplitude of the input signal. Thus for this
choice of inputs, the noise-to-signal ratio obtained for the
first-order filter is

% 1 i

— 2*21;

ot 24 1 — a

(17)

If, as before, we let a =1—3§, then for § «1

2—2b

ot 48 5

ol 1

(18)

Thus in this case, the noise-to-signal ratio is proportional to
1/6 rather than 1/6% so that if 6 is multiplied by 1/4 and the
register length is increased by one bit, the noise-to-signal
ratio will remain constant. We can consider the second-
order case in a similar manner. Again for a sinusoidal input,
the output with maximum amplitude has the form y(n)=
cos (np+y) so that the noise-to-signal ratio in this case is

g6 1 1+ 7 1
-~ )
1 — 72 14 74— 2r2cos 20

ay’ 12
Again, choosing r=1—48 with § «1,
0.t 925

= (20)

g’ T 45 sin? 9

so that, as with the first-order filter, the noise-to-signal ratio
is proportional to 1/8 rather than 1/62 The comparison in the
noise-to-signal ratio for a white-noise input and a sinusoidal
input serves to illustrate the dependence of the effect of dy-
namic range considerations on the particular form of the in-
put. In some sense, the two cases considered represent ex-
tremes. As the input becomes more confined to a known nar-
row band of frequencies the above analysis with a sinusoidal
input would be more representative, and as the input becomes
more wide-band the above analysis with a white-noise input
is more representative.

In the above discussion, the noise-to-signal ratio for the
case of white-noise input was derived on the basis that over-
flow must be avoided. In a practical case, a scaling of the in-
put on the basis of (7) can be considered to he somewhat pessi-
mistic since the probability of equality being attained in (7)
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is extremely small. Furthermore, for many filters it is difficult
to compute the sum in (7). Jackson [7] has formulated the
dynamic range constraints on fixed-point digital filters in
terms of L, norms. In particular, let ¥(w), X (w), and H(w)
denote the Fourier transforms of the filter output, input, and
system impulse response, respectively. Then it can be shown
in general that

vy | < [a]lxl1/p +1/g=1 (21)

where || H{|, and || X||, are the L, norm and L, norm of H(w)
and X (w), respectively, where these norms are defined as

= [ 16 i

-

L[ mra]

For example, with H(w) chosen as unity, a consequence of
(21) is that

and

X

|x(n)| <X

‘q, all ¢ > 1.

As another consequence, if we choose p=1, g= «, and use
the fact that the L, norm of ‘X(w)| is the maximum value
of | X (w) | then we obtain the statement that

1 pr
1y(n)\ < max[]X(w)Hgf_r\ H(w)l dw.

As an alternative, with p=2, ¢=2,

ol <[ [T ae ]

[ o]

To prevent overflow in the output we require that
|y(n)* <1 and to insure this from (21) we will require that
|1H|!p!|XHq<1. Consequently, the input must be scaled in
such a way that

X1, < 1/]|H]]. (22)

This condition is somewhat less general than (7) but in many
cases is easier to apply. According to (22) with p=2, ¢=2,
the condition is in terms of the energy in the input signal and
the energy in the system impulse response. For ¢=1, p= «,
(22) provides a bound in terms of the peak value of the mag-
nitude of the transfer function, which is perhaps most ap-
propriate for a sinusoidal input.

For the case of a random input (21) cannot be applied
since the input and output do not have Fourier transforms.
In this case the corresponding condition is phrased in terms of
¢y, (n) the autocorrelation function of the output, ®..(w) the
power density spectrum of the input, and H(w) the magnitude
of the system function. In particular, the inequality corre-
sponding to (21) is

d’!/.l/(’l) < “ i

[oll @l (23a)

or equivalently

IA

|| 1] (23b)

By (1) e

Since, if the input is zero mean, ¢,,(0) =g, it follows that
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;p \(I)”Hq- (24)

o <|lH

Two particular cases of interest are p=1, ¢= % and p= =,
g=1 so that

2
2

2
o <||H

B o (25)

and

o < || B @] (26)

As Jackson points out, (25) implies the most stringent condi-
tion on the input spectrum ®,,(w) whereas (26) implies the
most stringent condition on the transfer function. From (25),
if the input spectrum is white so that ®,,(w) =0, for all w, then

oy < o[ H| (27)

with the input sequence Gaussian, then, the output will over-
flow no more often than the input overflows if

H|, < 1. (28)

More generally, (27) provides a basis for choosing the input
variance to control the maximum percentage of time that the
output can overflow.

D. Statistical Analysis of Roundoff Errors with Floating-Point
Arithmetic

For the case of floating-point arithmetic, noise is introduced
due both to the adds and the multiplies. In analyzing the
effect of floating-point roundoff the effect of rounding will be
represented multiplicatively so that if [x] denotes rounding of
the mantissa in a floating-point number, then

[x] = (1 + ).

To illustrate the analysis of roundoff errors with floating-point
arithmetic let us consider a first-order filter. Let w(n) denote
the ideal response of the filter, that is, the response with no
roundoff noise and let y(#) denote the response of the filter in
the presence of roundoff noise. Then following Liu and Kaneko
[8] we can write that

aw(in — 1) + x(n)

[av(n — 1)1 4+ &) + 2(2) |1 + £,).
We assume that ¢, and &, are uniformly distributed between
—27%and 27, are uncorrelated from iteration to iteration, are
independent of each other, and also are independent of the
signal. Letting E(n) represent the error in the output, so that

E(n)=y(n) —w(n), we can write from the above two equations
that

En)y — aE(n — 1)
= aw(n — 1)(e. + &) + x(0)E, = u(n)

(29)

(30)
(31)

wn) =

y(n) =

(32)

where we have neglected second-order terms in ¢, £ and L.
Since e and £ are statistically independent of x, and of w(n— 1),
the term #(#n) is easily shown to be a white-noise sequence. Its
variance, of course, depends on the excitation x(n). The
derivation of (32) with the second-order terms neglected cor-
responds to representing the roundoff noise as an additive
noise source that is statistically independent of ‘the signal but
whose variance depends on the signal variance. Specifically,
consider the first-order network drawn in Fig. 5 with the two
noise sources ¢;(n) and ex(#). From the model for multiplier
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84 (n)

g(n)
—(?)
x(n) y (n)
(=]
a
e,(n)
Fig. 5. Noisy first-order filter (floating point).

roundoff noise, the noise source e;(#) is given by

e(n) = ay(n — e, (33)
and the noise source e)(n) is given by
ex(n) = g(n)é.. (39)

The analysis above in which we neglected second-order terms
corresponds in this case to evaluating the variance of e;(#) and
e2(n) by using the mean-square values for y(z—1) and g(n)
that would result if no roundoff noise were present. Therefore,
if we assume that x(#) is a zero-mean white-noise input, with
variance o,2, then the variances of ei(n) and e;(n) are, respec-
tively,

B
|

(35)

= g%yt (n — 1) = a%c 0, 1=
—a

1

o’ (n) = S (36)

22
T 02" —
1

where the bar denotes expected value. Then, since e;(n) and
e:(n) are independent, because ¢, and £, are independent, the
output noise variance is

14 a?

1—a

14 a2

- 7
Rpape (37a)

2
0'0“30'520'1;2 = OOy

where we have assumed again that o and ¢;? are equal. The
output noise-to-signal ratio is
\ 1+ a?

1 — a2

(37b)

Te

ot
We can analyze the effect of roundoff noise in the second-order
filter in a similar manner. In Fig. 6 is shown the network for a
second-order filter with roundoff noise sources included. Note
that since noise sources must be included due to addition, two
summers are included to add the three variables in the feed-
back loop. The noise sources e3(#) and e4(n) represent the noise
due to the multiplies and the noise sources e;(n) and ex(n) rep-
resent the noise due to the additions. With assumptions simi-
lar to those above in which we neglected second-order terms,
we write that

= y(n)er(n)

[y(e) — x(n))ea()
27 cos Oy(n — 1)ez(n)
— r2y(n — 2)es(n)

er(n)
ea(n)
63(”) =

ei(n)

l

(38)
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y(n)

y{n-2)

e,(n

Fig. 6. Noisy second-order filter (floating point).

where €, €, €, and €, are independent random variables with
equal variance o2 If as before, x(n) is assumed to be a white
random process with variance o.% then the output noise-to-
signal ratio for the second-order case is

0o° 74 cos? @
= g’ [1 +G <3r4 +- 1272 cos? 8 — 16 T:—>:| (39)

2 2
ay r

where

(40)

1+r2< 1 )
g r*+ 1 — 4r2cos? 9 + 202 .

For the high gain case, it is possible to compare fixed-point
and floating-point arithmetic by approximating the expres-
sions for the noise-to-signal ratio. For the first-order case,
with a=1—8, and 6«1, the result (37b) for the first-order
filter, can be approximated as

7o’ 1 1
~_—27%_. (41)
g 3 6
Similarly for the second-order filter
a,? 1 34 4cos*o
~ — QT2 — > (42)
g’ 3 45 sin? 6

where in (41) and (42) we have taken ¢.2=(1/3)27%.

For fixed-point arithmetic we recall that for a white-noise
input the noise-to-signal ratio behaved as 1/6% and for a sinus-
oidal input as 1/8. Comparison of (41) and (42) with (14) and
(16) and (18) and (20) indicates a slightly larger noise-to-sig-
nal ratio for floating-point arithmetic as compared with
fixed-point arithmetic with a sinusoidal input of known fre-
quency but a significantly smaller noise-to-signal ratio for
floating-point arithmetic as compared with fixed-point arith-
metic with a white-noise input. It is important to keep in
mind, however, that the noise-to-signal ratios for the fixed-
point filters were computed on the basis that the input signal
was as large as possible. If the input signal level decreases, the
noise-to-signal ratio will increase since the output noise vari-
ance is independent of the input signal level. For floating-point
arithmetic, on the other hand, the output noise variance is
proportional to the output signal variance and as the input
level is scaled up or down so is the roundoff noise. It is also
important to note that the comparison just discussed assumes
that the floating-point mantissa is equal in length to the
entire fixed point word, and does not account for the extra
bits needed for the characteristic. The authors [6] have previ-
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ously compared fixed- and floating-point filters on the basis of
equal total word length. However, in completing such a
comparison one must take account of the large difference in
hardware complexity between implementing floating-point
arithmetic, and adding a few bits to a fixed-point arithmetic
element.

Oppenheim [9] has proposed a realization of recursive
digital filters using block floating-point arithmetic. Here the
input and filter states (i.e., the inputs to the delay registers)
are jointly normalized before the multiplications and addi-
tions are performed in fixed-point arithmetic. The scale factor
(or exponent) obtained during the normalization is then ap-
plied to the final output to obtain a fixed-point output. The
roundoff noise properties of such a realization were studied,
and the noise-to-signal ratio was found to lie between that
for fixed and floating point.

E. Zero-Input Limit Cycle Behavior of Digital Filters for
Fixed-Point Arithmetic

In the preceding discussion the effect of arithmetic round-
off was modelled as an additive white-noise source, uncorre-
lated with the data. Justification of this model assumes that
from iteration to iteration, the input can be expected to pass
through several quantization levels. Consequently, this model
is applied primarily when the input signal has a complicated
behavior and cannot be expected to be valid in general. For
example, consider a first-order filter for which the difference
equation is

Vn = AYn—1 + Xn (43)

and for which the register length for the data is 4 bits and the
coefficient « is 0.5. If the input x, is 7/8 and if rounding is
applied after the arithmetic then on successive iterations of
the filter, the output will be:

yo = 7/8
y=1/2
v, = 1/4
vy = 1/8
v, = 1/8, for n > 4.

Thus due to rounding, the output reaches a steady-state non-
zero value and since the ideal steady-state output is zero, this
nonzero value represents roundoff error. Clearly this kind of
roundoff error cannot be modelled as white noise, but in fact
represents a limit cycle due to the nonlinearity corresponding
to the quantizer which implements the rounding. Limit cycle
behavior of this type was first noted by Blackman [10] who
referred to the amplitude intervals within which these limit
cycles are confined as “deadbands.” Blackman considered
only first-order limit cycles corresponding to a dc behavior in
the deadband. More generally, Jackson [11] has considered
limit cycle behavior in first- and second-order filter sections
with an analysis based on the location of the “effective” poles
in the filter due to roundoff. Following the approach pre-
sented by Jackson, consider a first-order filter with a differ-
ence equation of the form of (43). Due to the register length
constraint, the product ay,.. must be rounded. Let ()’
denote the operation of rounding. If the register length is
(b-+1) bits and if data are represented as fractions then

\ (ay,—1) — ayn*ll < (32,

If y,_5 is such that [ (ayn_l)’| = Iyn—l! then the magnitude of

(44)
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the effective value of the coefficient is unity corresponding to
the pole of the filter being on the unit circle. The range of
values for which this condition is met is

| o] = [ays| < G2 (45)

or
(0.5)2-%

Un—dsr_—lg- (46)

This range of values is referred to as the deadband. Due to
rounding, of course, values within the deadband must be in
steps of 2% For the first-order filter, when the filter state
falls within this range and the input is zero, the effective pole
is on the unit circle and the filter will support a limit cycle
behavior. If the coefficient « is positive, as in the above ex-
ample, the limit cycle response is dc, i.e., has constant mag-
nitude and sign. For « negative the limit cycle behavior has
constant magnitude but alternating sign.

For a second-order filter there is a larger variety of modes
of limit cycle behavior. In particular, consider the second-
order difference equation

VYo = Xp — Blyn—l - 52%—2- (47)

With 8,2 < +483, the filter poles occur as a complex conjugate
pair and with 8;=1 the poles occur on the unit circle. The
approach proposed by Jackson for examining the limit cycle
behavior of the second-order filter corresponds to considering
the filter behavior when the effect of rounding places the effec-
tive poles of the filter on the unit circle. With zero input the
effective poles will be on the unit circle if

Voo | = | (Bovu—o) | < L 270 (48)
or
0.5)2-¢
yaa| < (*i)*‘f ' (149)
1— |8

Thus if the output falls within this range the effective value of
B is unity so that the effective poles are on the unit circle.
With the effective value of 8: as unity, the effective value of
81 controls the oscillation frequency.

A second mode of limit cycle behavior occurs in second-
order filters when the effect of rounding is to place an effective
pole at = +1. As shown by Jackson, the deadband corre-
sponding to this mode is for values less than or equal to
1/(1— ‘61’ +4-B.) in steps of integer multiples of 27%.

While this approach is somewhat heuristic, Jackson has
found that these bounds are consistent with experimental
results and hence he has hypothesized that they represent
necessary and sufficient conditions. These bounds for second-
order filters are summarized in Fig. 7, showing different dcad-
band subregions in the B, 8s plane. The number within an
area in the B;, B: plane represents the maximum magnitude of
the limit cycle in multiples of 27% and the cross hatched region
represents the region for which no limit cycles can occur.

Recently, Parker and Hess [12] have studied the limit
cycle problem further, and found that these bounds are ap-
proximately correct and sufficient, but not necessary. In
other words, there exist some limit cycles outside the regions
specified by Fig. 7.

In addition to the above classes of limit cycles, a more
severe type of limit cycle can occur due to overflow in filters
implemented using one's-complement or two’s-complement
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Fig. 7. Deadband subregions.

arithmetic. These limit cycles have been referred to as over-
flow oscillations [13] and can be avoided by using saturation
arithmetic.

F. Effects of Parameter Quantization in Digital Filters

In the preceding sections we focussed on the effects of
arithmetic roundoff in digital filters. Another consequence of
the requirement of finite register length is that the filter coeffi-
cients cannot be specified exactly. Classical design procedures
generally lead to filter coefficients with arbitrary accuracy and
the implementation of the filter then requires that the coeffi-
cients be modified to fit the available register length. For hard-
ware realizations of digital filters it is, of course, desirable to
keep the register length as small as possible.

One common approach to the problem of parameter quan-
tization is the use of filter configurations or structures which
in some sense are least sensitive to inaccuracies in the param-
eters. One of the difficulties in evaluating the sensitivity of
filter structures is the choice of a meaningful measure of the
sensitivity. Most commonly, the sensitivity of the filter is tied
to the movement of the poles of the filter. For this choice
Kaiser [14] has shown that for a filter with clustered poles a
cascade or parallel combination of first- and second-order sec-
tions provides more accuracy in the pole positions than a
direct form realization. This is basically a consequence of the
fact that for a polvnomial whose roots are clustered, the sensi-
tivity of the roots to changes in the polynomial coefficients
increases as the order of the polynomial increases. Thus the
roots can be more accuratelv controlled if the polynomial is
factored into first- and second-order factors.

Even within the choice of first- and second-order sections
some flexibility remains. For a direct form implementation of
a pole pair as shown in Fig. 8(a) the coefficients are —r? and
2r cos 0. For a given quantization on the coefficients the poles
must lie on a grid in the z plane defined by the intersection of
concentric circles, corresponding to quantization of % and
vertical lines, corresponding to quantization of 2r cos 6. Such
a grid is illustrated in Fig. 8(b). An alternative realization of
a pole pair is the coupled form proposed by Rader and Gold
[15], as shown in Fig. 9(a). In this case the coefficients are
r cos 6 and 7 sin @ and consequently the poles must lie on a
rectangular grid as illustrated in Fig. 9(b). We note, for ex-
ample, that for a given coefficient word length the direct form
permits more accurate placement of poles with 7 close to unity
and 6 large while the coupled form is more advantageous for 8
small. There are, in theory, many other structures in addi-
tion to the direct and coupled forms for implementing pole
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Fig. 8. (a) Direct form implementation of a pole pair.

(b) Grid of allowable pole positions—direct form.

pairs although they are the most commonly considered [16].
Different structures, of course, imply different grids in the z
plane and generally it is advantageous to choose a structure
for which the grid is dense in the region of the z planeiwhere
the poles are to be located. %

With a given choice of structure there remains the ques-
tion as to how the pole locations on the grid should be chosen.
A common procedure is to truncate or round the ideal coeffi-
cients. An alternative used by Avenhaus and Schussler [17]
and also by Steiglitz [18] is to search over the grid in the vi-
cinity of the ideal pole locations to select a grid point which
locally minimizes the maximum error in the filter frequency
response. As an alternative to the use of cascade or parallel
connections of first- and second-order sections, more general
filter structures can be considered. Digital wave filters, as
proposed by Fettweis [19] and investigated by Bingham [20]
and by Crochiere [21], appear to have much less sensitivity
to parameter inaccuracies than the cascade form.

It would, of course, be desirable to incorporate the con-
straint of quantized coefficients into the design of digital fil-
ters. For nonrecursive filters, algorithmic design falls within
the framework of integer linear programming. For recursive
filters, however, the equations become nonlinear. In general,
the development of design procedures with quantized coeffi-
cients remains an important area of research.

IV. EFFECTS OF ARITHMETIC ROUNDOFF IN THE FFT
A. Introduction

The FFT algorithm [22] for computing the discrete Fou-
rier transform (DFT) plays a central role in many signal pro-
cessing applications [23]. As with the implementation of
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Fig. 9. (a) Coupled form implementation of a pole pair.
(b) Grid of allowable pole positions—coupled form.

digital filters, it is important to understand the effect of;finite
register length arithmetic on the performance of the“algo-
rithm. E}iik%

There are many forms of the FFT algorithm and the de-
tailed effects of quantization will differ depending on the
form used. The most commoi:ly used forms of the algorithm
are the radix-2 forms for whicl: the size of the transform com-
puted is an integer power of twvo. For the most part, the dis-
cussion below is phrased in terims of a particular form of the
radix-2 FFT, commonly referred to as the decimation in time
form of the algorithm; the results however are applicable with
only minor modification to the decimation in frequency form.
We feel that most of the ideas employed in the error analysis
of the radix-2 forms of the algorithm can be utilized in other
forms such as mixed radix, etc.

Our approach in analyzing noise in the FFT is basically
statistical. In most cases, the predictions of the models are
supported with experimental data (from Weinstein [24], un-
less otherwise stated). For floating and block floating point
arithmetic, in order to simplify the analysis and obtain con-
crete results, it is convenient to assume a simple, white-noise
model for the signal being transformed. Discussion of how the
results might be expected to change for other types of signals
isincluded, as are experimental noise measurements on FFT’s
of nonwhite signals.

B. The FFT Algorithm

The FFT algorithm is directed toward computing the
DFT of a finite duration sequence f(n), defined as
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Fig. 10. FFT flow graph, N =8.

N—1
F(k) = Y f(n)yWr, W = g—s@rix) (50)
n=0

A flow chart depicting the FFT algorithm for N=8=23 ig
shown in Fig. 10. A specific decimation in time algorithm is
depicted. (An implementation of this particular form of the
algorithm was used for the reported experimental work.)
Some key aspects of this diagram, which are common to all
standard radix-2 algorithms, are as follows. The DFT is com-
puted in y=logs N stages. At each stage, the algorithm passes
through the entire array of N complex numbers, two at a
time, generating a new N number array. The vth array con-
tains the desired DFT. The basic numerical computation
operates on a pair of numbers in the (m-+1)th array. This
computation, referred to as a “butterfly” is

Xoi1(i) = X,(0) + WX,.(5)
Xmi1(f) = Xu(@) — WXu(j). (31)

Here, X,,(4) and X,.(j) represent a pair of numbers in the mth
array, and W is some appropriate integer power of W, that is

W = W» = g2y, (52)

The form of the butterfly computation is actually somewhat
different for a decimation in frequency algorithm, where the
computation is

Xmia(@) = Xu(i) + Xn())
Xoa(5) = [Xn()) — Xu()]W. (33)

At each stage, N/2 separate butterfly computations are car-
ried out to produce the next array. The integer $ varies with
7, j, and m in a manner which depends on the specific form of
the FFT algorithm that is used. Fortunately, our analysis is
not tied to the specific way in which p varies. Also, the specific
relationship between 4, 7, and m, which determines how we
index through the mth array, is not important for the anal-
ysis. The details of the analysis for decimation in time and
decimation in frequency differ somewhat due to the different
butterfly forms, but the basic results for the dependence of
noise-to-signal ratio on N do not change significantly. In our
analysis we will assume a butterfly of the form (51), corre-
sponding to decimation in time.
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C. FFT Roundoff Noise with Fixed-Point Arithmetic

We will model the roundoff noise by associating an inde-
pendent white-noise generator with each multiplier. This
means that a noise source feeds into each node of the signal
flow graph of Fig. 10 (excluding the initial array of nodes,
since we are not considering A/D noise here). Since we are
dealing with complex multiplications, these elemental noise
sources are complex. Defining the complex variance o5? as the
expected squared magnitude of such a noise source, we have

9—2b
. _ -
oR 4 12 (04)

where it is assumed that each of the four real multiplications
used to perform the complex multiplication is rounded sepa-
rately. In Fig. 10, 3 X8=24 such noise sources must be in-
serted. To add the effects of each of the noise sources in eval-
uating the total roundoff noise in the output, we note that the
transmission function from any node in the flow graph to any
other connected node is multiplication by a complex constant
of unity magnitude. Since we assume that all noise sources are
uncorrelated, the noise variance at any output node is equal to
op” times the number of noise sources that propagate to that
node. The general result which is easily verified for the case
N =28 by inspection of Fig. 10 is that (N—1) noise sources
propagate to each output node so that the output noise vari-
ance og? is given by

op? = (¥ — D)op®
which for large N we take as
ot >~ Nog?. (55)

According to this result, the variance of the output noise is
proportional to N, the number of points transformed. The
effect of doubling N, or adding another stage in the FFT, is to
double the output noise variance. Using the assumptions we
have made thus far about the noise generatorsin the FFT (all
uncorrelated, with equal variances), the output noise is white,
1.e., the N noise samples E(k) are mutually uncorrelated, with
independent real and imaginary parts. This follows from the
fact that the output of any buiterfly is white (two outputs un-
correlated with equal variance, real and imaginary parts
uncorrelated) if the input is white. Since the noise sources in
our system are white, and all connected to the output via
some combination of butterfly computations, the output noise
must also be white.

In order to simplify the analysis leading to (55), we have
neglected some details. First, we have associated equal vari-
ance noise sources with all multipliers, including where W =1
and j. In many programmed FFT's these multiplications are
performed noiselessly. If we assume in the analysis that these
multiplications are noiseless, the output noise variance will no
longer be uniform over the output array. For example, the
zeroth output point would be noiseless. The average variance
over the output array will be somewhat lower than the result
in (55), but will retain a linear dependence on N. Second, the
assumption that all noise sources are uncorrelated is contra-
dicted by the fact that the two noise sources associated with a
given butterfly are negatives of each other, and therefore com-
pletely correlated. This does not affect the result for output
noise variance, since the two outputs of a butterfly connect to
a disjoint set of output points. However, it implies that the
output noise samples E(k) are somewhat correlated. These
details are worth mentioning, but not worth analyzing here at
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length, because they cloud the essential ideas of the analysis,
are quite program-dependent, and do not change the essential
character of the dependence of mean-squared output noise
on N.

In implementing the FFT with fixed-point arithmetic we
must insure against overflow. From (51) it follows that

max H X (9) 1 , 1 Xn(7) ‘ ]
< max [| Xpna () |, | Xuar() 1 (36)

and also that

max [ | Xo1() |, | Xora(5) ] ]
< 2max [| Xu() |, | Xu()|] 57)

Equation (56) implies that the maximum modulus is non-
decreasing from stage to stage so that, if the magnitude of the
output of the FFT is less than unity then the magnitude of
the points in each array must be less than unity,! i.e., there
will be no overflow in any of the arrays.

In order to express this constraint as a bound on the input
sequence, we note that the maximum possible output can be
expressed in terms of the maximum input as

N—1
X( k) max S ‘x(n) max Z l '[/I,/’nk} =N x(n) maxs (58)
n=0
Thus bounding the input sequence so that
la(n)| < 1/N (59)

will prevent overflow. To obtain an explicit expression
for output signal variance, we assume x(#) white, with
real and imaginary parts each uniformly distributed in
(=1/+/2N, 1/+/2N). Then we have

ox?= | X(B)|* = No2 = Y[x(m)|2= —— -  (60)
Combining this with (53) yields
0.‘2
= 3, (61)
agx”~

The assumption of white input signal is not critical here. For
example, if a complex sinusoid x(n) = (1/N) exp j(2wkon/ N+¢)
had been sclected og%/ox? would still be proportional to N?,
which is the essential point of (61).

Equation (57) suggests an alternative procedure for pre-
venting overflow. Since the maximum modulus increases by
no more than a factor of two from stage to stage we can pre-
vent overflow by requiring that {x(n)i <1 and incorporating
an attenuation factor of 1/2 at each stage. Using this step-by-
step scaling, the attainable output signal level (for white
input) is the same as in (60) since the output signal level does
not depend on where the scaling is done, but only on how
much overall scaling is done. However, the output noise level
will be much less than in (55) since the noise introduced at
early stages of the FFT will be attenuated by the scaling
which takes place at the later array. Quantitatively for N =2~

1 Actually one should discuss overflow in terms of the real and imagi-
nary parts of the data, rather than the magnitude. However, lx] <1
implies that |Re (x){ <1 and |Im (x) | <1, and only a slight increase in
allowable signal level is achieved by scaling on the basis of Re and Im
parts.
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1
(62)

N2
or? = op? z:
k=1

x|

where op-? represents the roundoff noise introduced due to
multiplication by W and scaling and will consequently be
slightly higher than ¢g? In particular, if we assume that the
scaling is accomplished with rounding, it can be shown

5
opl = — 22, (63)
Y6
For large N, (62) is approximately
ot = 2op? (64)

and thus is much less than the noise variance resulting when
all of the scaling is carried out on the input data.

Now, we can combine (64) with (60) to obtain the output
noise-to-signal ratio for the case of step-by-step scaling and

white input. We obtain
og? _
- = O6Nop? = (DI\'Y)Z—%

ox

(65)

a result proportional to N, rather than to N2 An interpreta-
tion of (65) is that the rms output noise-to-signal ratio in-
creases as N, or by half a bit per stage. This result was first
obtained by Welch [25]. It is important to note that the as-
sumption of white signal is not essential in the analysis. The
basic result of half-a-bit-per-stage increase holds for a broad
class of signals, with only the constant multiplier in (65)
being signal-dependent. In particular, for a general input with
scaling at each array, the output variance is related to the
variance of the input array by

1 1
ox?=—og = kG lx(n)|2 (66)
so that
5
oy
O’E2
R (67
ox”~ Tz"

where, to reduce noise-to-signal ratio, we would like to make
o, as large as possible but are limited by the constraint
1x(n)l < 1. The result (67) has been verified experimentally
for both wide-band and narrow-band signals [24], [25].

We should also note that the dominant factor causing the
increase of og?/ox® with N is the decrease in signal level
(required by the overflow constraint) as we pass from stage to
stage. According to (63) and (64), very little noise (only a bit
or two) is present in the final array. Most of the noise has
been shifted off by the scalings. However, the mean-squared
signal level has decreased by a factor of 1/N from its initial
value, due to the scalings. Our output consists not of the DFT
defined by (50) but of 1/N times this DFT.

We have assumed straight fixed point computation in this
section, l.e., only preset attenuations were allowed, and we
were not permitted to rescale on the basis of an overflow test.
Clearly, if the hardware or programming facility are such that
straight fixed point must be used, we should, if possible, incor-
porate attenuators of 1/2 at each array rather than using a
large attenuation of the input array.
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ratios for block floating-point FFT.

A third approach to avoiding overflow is the use of block
floating point. In this procedure the original array is normal-
ized to the far left of the computer word, with the restriction
that |x(n)‘ <1; the computation proceeds in a fixed point
manner, except that after every addition there is an overflow
test; if overflow is detected, the entire array is shifted right 1
bit and the computation continues. The number of necessary
shifts are counted to determine a scale factor or exponent for
the entire final array. The output noise-to-signal ratio depends
strongly on how many overflows occur, and at what stages of
the FFT they occur. The positions and timing of overflows
are determined by the signal being transformed, and thus, in
order to analyze noise-to-signal ratio in block floating FFT,
one needs to know the signal statistics. This is in contrast to
the fixed point analysis above, where it was not necessary to
assume specific signal statistics.

The necessary number of right shifts of the array is related
to the peakiness of the DFT of the signal being transformed.
If the constant signal x(n) =1 or the single-frequency input
x(n) = exp j(2x/N)k,n is transformed, the output (with k, an
integer) will consist of a single nonzero point and (for N = 2) v
scalings of the array will be necessary, one for each stage.

A reasonable case to examine is the case of a white input
signal; the DFT of a white signal is white, and one might
expect (since the spectral energy is spread) that scalings at all
stages would not be necessary, and a noise-to-signal ratio
advantage over fixed point would be gained. This problem
can be analyzed theoretically [24] but the analysis is quite
involved and will be omitted. Instead, we will present some
experimental results.

In Fig. 11 experimentally measured values of output
noise-to-signal ratio are presented for block floating FFT’s of
white inputs, using rounded arithmetic. The quantity plotted
is (o5%/27%0,%)"?, the rms noise-to-signal ratio. For com-
parison. a theoretical curve representing fixed point noise-to-
signal ratio (for rounded arithmetic) is also shown. We see
that for white input block floating point provides some ad-
vantages over fixed point, especially for the larger transforms.
For N=2048, the rms noise-to-signal ratio for block floating
point is about 1/8 that of fixed point, representing a 3-bit
improvement.

An experimental investigation was used to examine how
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é—. Re [Xpy 14 0)] + up ()

{5—. Im [x,,,,,m] +vy (i)

Fig. 12.

Noisy butterfly computation (floating point).

the results for block floating point change, when truncation
rather than rounding is used. The results of this experiment
are also shown in Fig. 11. Noise-to-signal ratios are generally
a bit or two worse than for rounding. The rate of increase of
noise-to-signal ratio with IV seems to be about the same as for
rounding.

D. FFT Roundoff Noise with Floating-Point Arithmetic

The effect of arithmetic roundoff with floating-point arith-
metic has been analyzed theoretically and experimentally by
Gentleman and Sande [26], by Weinstein [27], and by
Kaneko and Liu [28]. As with the statistical analysis of
roundoff errors with fixed-point arithmetic, noise is intro-
duced due to each butterfly computation. As with floating-
point errors in digital filters, we neglect second-order error
terms so that noise sources are introduced after each multi-
plication and addition that are assumed to be white but for
which the variance is proportional to the variance of the sig-
nal at that node. Unless the input signal is assumed to be
white, the analysis becomes quite complicated due to the
variation of the variance of the signal and therefore of the
noise sources within each array. Kaneko and Liu have ob-
tained detailed formulas for a general stochastic model of the
input signal. We will confine attention here to the case of
white input signal, where the signal at any array in the FFT
is also white, with constant variance across the array.

In Fig. 12 a typical butterfly computation (only top half)
is indicated, including the noise sources due to multiplication
and addition. The assumption of white input signal implies
that

[Re (X)]F = [Im (Xp)]* = § [ Xn? (68)

and application of our floating-point noise model as in Section
ITI-D yields the noise source variances

Uel2 + 0.622 = 0'952 + 0852 =

*(69)

2
Te,” = 0o

(70)

0l = 05 = 02| X0l
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The variance of the complex noise source Upn = tim~+jim is then

(71)

so that the variance of the noise generated in computing the
(m-+41)th array is 40,2 times the variance of the signal in the
mth array. If the input (zeroth) array is white noise with
variance o, then the noise generated in the (m+1)th array is
2752 (40¢2). If o,m? is the output noise due to the noise gen-
erated in the (m--1)th array, then

| Un|? = 402 Xl

Gom? = 2t Img 2(45 2) = 2N o020,

(72)
Since the noise generated in each array is assumed to be inde-

pendent, the total output noise variance og? is

(73)

o = 2wNolo,l.

By noting that the output signal variance is related to the
input signal variance by

ox® = Na,? (74)
the result follows:
2
o .
i 20, (73)
0'_\’2

A further result, which can be derived from our model, is
an expression for the final expected output noise-to-signal
ratio which results after performing an FFT and an inverse
FFT on a white signal x(n). The inverse FFT introduces just
as much roundoff noise as the FFT itself, and thus the result-
ing output noise-to-signal ratio is

2
—— = 4oy (76)
0.’

or just double the result in (75).

In order to see the implications of (75) or (76) in terms of
register length requirements, it is useful to express these
results in units of bits. We use

(or¥/ox?a?) bits = § logs (2»)

(a7

to represent the number of bits by which the rms noise-to-
signal ratio increases in passing through a floating point FFT.
For example, for y=_8 this represents 2 bits and for v =11 it
represents 2.23 bits. The number of bits of rms noise-to-signal
ratio increases as logs {log: N), so that doubling the number
of points in the FFT produces a very mild increase in output
noise, significantly less than the half-bit-per-stage increase
for fixed-point computation. In fact, to obtain a half-bit in-
crease in the result above, we would have to double », or
square N.

In the analysis leading to (75), we have not considered the
fact that multiplications by 1 can be performed noiselessly.
For a specified radix-2 algorithm, such as the decimation in
time algorithm shown in Fig. 10, these reduced variances for
W =1 and j can be included in the model to obtain a slightly
reduced prediction for output noise-to-signal ratio. However,
for reasonably large N, this modified noise analysis yields only
slightly better predictions of output noise than does the
simplified analysis above.

A consequence of our analysis leading to (75) is that the
output noise is white. This follows from the fact that each
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Fig. 13. (a) Experimental and theoretical noise-to-signal ratios for float-

ing point FFT. (b) Experimental and theoretical noise-to-signal ratios
for floating-point FFT and inverse.

array of noise sources is white. The reduced noise source vari-
ance for W =1 and j implies that for some arrays there will be
a variation of noise source variance over the array. This im-
plies a slight variation of output noise variance over the out-
put array, and thus our modified noise analysis will only pre-
dict an average noisc variance over the output array.

The results discussed above have been verified with excel-
lent agreement as shown in Fig. 13(a) and (b). To obtain this
agreement, however, it was necessary to use randomized
rounding, i.e., randomly rounding up or down when the value
of mantissa was exactly (1/2)27% The modified theoretical
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FFT-inverse FFT; truncation used instead of rounding.

curve shown was obtained by taking into account reduced
noise source variances for W=1 and W=j. Also shown are
experimental results for nonrandomized rounding. These
results were fitted empirically with a curve of the form av?,
but this quadratic dependence was not established theo-
retically. Noise-to-signal ratios were also measured for the
case where truncation rather than rounding was used in the
arithmetic; the results, with empirically fitted quadratic
. curves, are shown in Fig. 14.

Our analysis, and all the above experiments, applied to the
case of white signal. Some experimental investigation has
been carried out as to whether the predictions are valid when
the signal is nonwhite. Specifically, the noise introduced in
computing an FFT was measured for sinusoidal signals of
several frequencies, for =28, 9, 10, and 11. The results, aver-
aged over the input frequencies used, were within 15 percent
of those predicted by (75). In these experiments, the “ran-
domized” rounding procedure was used.

E. Effects of Coefficient Quantization in the FFT

As with the implementation of digital filters, the imple-
mentation of the FFT algorithm requires the use of quantized
coefficients. While a completely definitive study of the effects
of coefficient quantization in the FFT remains to be done, two
approaches have been pursued for which some results have
been obtained.

Although the nature of coefficient quantization is inher-
ently nonstatistical, Weinstein [24] has obtained some useful
results by means of a rough statistical analysis. This sta-
tistical analysis corresponds to introducing random jitter in
the coefficients and determining the output noise-to-signal
ratio due to this noise. While the detailed effect due to coeffi-
cient error due to quantization is different than that due to jit-
ter, it is reasonable to expect that in a gross sense the magni-
tude of the errors is comparable.

To develop this statistical analysis, we let F(%) denote the
DFET of a sequence f(»n) and F(k) the result of transforming
f(n) with a radix-2 FFT algorithm with jittered coefficients.
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Then

Fb) = X foyWm (78)

and

N—1

Ek) = 22 f() . (79)

Because of the form of the FFT algorithm each element Q,;
will be a product of v =1log; N quantized coefficients. Thus

Qi = [ We + 5) (80)
=1
where
II wes = wn (81)

=1

with b bits for the real and imaginary parts of each of the
coefficients, excluding sign, [5i| is less than or equal to
(v/2)27%. Tf we assume that the real and imaginary parts of
the jitter in the coefficients are uncorrelated and uniformly
distributed between plus and minus (1/2)27% then o;2, the
variance of 8; is 032=2"2/6, The error in the computation of
the DFT can be expressed as

N—1

E(R) = F(k) — F(E) = > f(n)(Quw — WrH).

n=0

(82)
From (80) and (81) we can express the factor (2,,— W™) as

(Que — W) = > 6, [] W + higher order terms. (83)
=1 j=1
J#i
If we neglect higher order error terms, and assume that §;
are mutually uncorrelated then the variance of (. — W™) is
equal to »(272/6). Finally, assuming that all elements Q.5 are
uncorrelated with each other and with the input signal, the
output error variance og? is

—26 N—1
or? =v—— > | f(n) |2 (84)
6 n=0
Since from Parseval’s relation
N—1 1 N—1
2 ml=— X [Py 2
n=0 N n=0
= mean-squared output signal  (85)

the ratio of mean-squared output error to mean-squared out-

put signal is thus
| F () ]2>] - <£> 27, (86)

+/ (2

Although we would not expect (86) to predict with great
accuracy the error in an FFT due to coefficient quantization,
it is helpful as a rough estimate of the error. The key result of
(86), which we would like to test experimentally, is that the
error-to-signal ratio increases very mildly with N, being pro-
portional to y=log: N, so that doubling N produces only a
slight increase in the error-to-signal ratio.
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To test this result, experimental measurements on errors
due to coefficient quantization were made. In each run, a
sequence f(n)—white in the sense that all 2NV real numbers
making up the N-psint complex sequence were mutually un-
correlated, with zero means, and equal variances—was ob-
tained using a random number generator. This sequence was
transformed twice, once using a 36-bit coefficient table, and
once using a coefficient table rounded to much shorter word
length (e.g., 12 bits). For each transform, 36-bit accuracy was
used in the arithmetic to make the effect of roundoff error
negligible. The results were subtracted, squared, averaged
over the output array, and divided by the output signal
variance (N times the input signal variance) to obtain an
experimental output error-to-signal ratio. For each value of
N, several random sequences were transformed and the re-
sults were averaged to obtain statistically convergent esti-
mates.

These results are displayed in Fig. 15; the quantity plotted
is op?/2 Por? where op? is the mean-squared output signal as
defined in (85). The theorctical curve corresponding to (86) is
shown, and the circles represent measured output error-to-
signal ratio for the fixed-point case. We note that the experi-
mental results generally lie below the theoretical curve. No
experimental result differs by as much as a factor of two from
the theoretical result, and since a factor of two in og2/g5? cor-
responds to only half-a-bit difference in the rms output error,
it seems that (86) is a reasonably accurate estimate of the
effect of coefficient errors. The experimental results do seem
to increase essentially linearly with v, but with smaller slope
than given in (80).

In the above, fixed-point arithmetic has been assumed.
However, since a block floating-point FFT will generally use
fixed-point coefficients, our results are valid for the block
floating-point case also. With some slight modifications, it is
possible to obtain similar results for the floating-point case.
Except for a constant factor, the floating- and fixed-point
results are the same. Experimental results for the floating-
point case are represented by the solid dots in Fig. 15, and
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are observed to be slightly lower than the results for the fixed-
point case.

A different approach to the characterization of FFT coeffi-
cient quantization has been taken by Tufts, Hersey, and
Mosier [29]. In their analysis the effect of coefficient quantiza-
tion is represented in terms of the level of spurious sidelobes
introduced. In particular, a sequence f(n)=u,(n—n,) where
u,(n) denotes a unit sample, has a DFT with a purely sinus-
oidal real and imaginary part, i.e.,

F(k) = Wnet (87)
and the inverse DFT of F(k) should, of course, have only a
single nonzero component. Due to coefficient quantization,
however, the DFT obtained is

F(R) = Qs (88)

and since the real and imaginary parts are not exactly sinus-
oidal, the inverse DFT, with exact coefficients, of F(k) will
have spurious components. For each of the set of N sequences

fuln) = w,(n — E=0,1,-- -, N —1. (89

Tufts ef al. compute the DFT with quantized coefficients fol-
lowed by the inverse DFT with accurate coefficients. At the
output of the inverse DFT, the size and frequency locations
of the spurious sidelobe components produced due to the
quantized coefficients are observed. Since any function f(n)
can be constructed as a weighted sum

i),

N—1

fln) = Z arfi(n)

k=0

(90)

the spurious sidelobes produced for any f(#) can in principle
be determined by combining the responses due to a set of im-
pulses. But carrying out such a combination is not practical
for arbitrary f(n). Tufts et al. have, however, tabulated the
worse sidelobe levels encountered for any fi(%#) as a function
of the number of bits retained in the coefficients, for the case of
a 64-point FFT and sign-magnitude representation of coeffi-
cients.

V. ExXAMPLES
A. Introduction

In the preceding sections the effects of arithmetic roundoff
have been analyzed for simple (first- and second-order) digital
filtters and the FFT. These algorithms are the basic building
blocks in more complicated digital processing such as a higher
order digital filter or a convolutional filter realized via the
FFT. Examples will be presented in this section to indicate
how some of the ideas developed above can be applied to ana-
lyze and to choose the most advantageous configuration for
such systems. The first two examples concern the realization
of higher order recursive filters and have borrowed from the
work of other authors. The third example deals with an FFT
filter.

B. Fixed-Point Digital Filter in Cascade and Parallel Form

After a digital filter has been spectfied in terms of its poles
and zeroes, and the type of arithmetic has been selected, a
choice must still be made among the various possible con-
figurations of the filter which will differ with respect to the
effects of roundoff noise. An exhaustive study of the selection
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of filter form is beyond the scope of this paper, but an excellent
example of the necessary considerations is given by Jackson
[30] in his analysis of roundoff noise for fixed-point digital
filters realized in cascade and parallel form

Jackson considers two parallel form realizations: the 1P
form where the individual second-order sections are realized,
as shown in Fig. 16, with the poles preceding the zeros, and
the 2P form where zeros precede poles in the individual sec-
tions, as shown in Fig. 17. (Figs. 16 and 17 do not show all the
scaling coefficients needed to prevent overflow.) His analysis
indicates that for a variety of scaling criteria (based on dif-
ferent L, norms? of the input signal) and for varicus measures
of the output noise (such as its total power, or its peak spec-
tral value), the output signal-to-noise ratios of the two forms
are very close. Generally, a very slight advantage will be
gained with the 1P form.

Comparison of the two parallel forms basically reduces to
a comparison of the noise properties of the two forms of sec-
ond-order sections, since the noises from the second-order sec-
tions are simply additive in the output of the parallel form.
Hence the discussion above applies to a comparison of second-
order section realizations. Another form of second-order sec-
tion which could be considered is a coupled form as shown in
Fig. 18. For the case ai=7 cos 6, as=r sin 8, this filter has
poles at z2=re*# and a zero at =7 cos §. The coupled form
noise-to-signal ratio has been compared [24] to ratios for
forms essentially the same as those in Figs. 16 and 17 for the

2 If

Flw) = 3 j(n) exp (—j27ri n)

oo ws

represents the Fourier transform of a signal or of a filter impulse response
f(m), then the corresponding L, norm is

1 wgy 1p
IFlp = (—'f ]F(w)]pdw)
w0

where w, denotes sampling frequency.
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y(n)

Fig. 18. Coupled form for second-order section.

case of white-noise input and an absolute overflow constraint
(through the type of analysis given in Section III-C). The
coupled form was found to have substantially lower noise-to-
signal ratio for filters with high gain and low resonant fre-
quencies. For §=1—7, and §<1, the results vary as

Te

—, ~1/8°sin* 9 (forms of Figs. 16 and 17)

ay

0’(’.

— 1/52 (coupled form). (91)
Ty

The implication of this result, together with the somewhat
reduced coefficient sensitivity for the coupled form, is that
this form may be a good choice in some situations, despite the
fact that its implementation requires four multiplications
instead of three for a pole pair and a single zero.

As stated above, Jackson found not much difference be-
tween the noise properties of the 1P and 2P parallel forms.
However, the situation is more interesting in the case of the
cascade form. Here he finds that large differences are possible
between the roundoff noise outputs of the 1D (poles before
zeros in individual sections) and 2D (zeros before poles in
each section) forms. Also the ordering of the sections and the
pairing of poles and zeros have important effect on the output
signal-to-noise ratio. Jackson's analyses lead to several rules
of thumb for selection of 1D or 2D, for ordering of sections,
and for pairing of poles and zeros.

In general, the choice of configuration depends on which
L, norm of the scaled transfer functions is constrained to pre-
vent overflow and on which L, norm of the output noise spec-
trum is used as a measure of performance. Two L, constraints
on the filter are of particular interest: the p= case, where
the peak value of the transfer function to each possible over-
flow node is constrained; and the p=2 case where the rms
transfer function to each node is constrained. The choice
p = is just slightly less stringent than the absolute overflow
constraint (7), and prevents overflow even when the input is
a narrow-band signal at resonance of the relevant transfer
function. The p =2 constraint is more appropriate for prevent-
ing overflow when the input is wide-band in nature. Two L,
norms on the output noise spectrum are of particular interest:
the =1 norm which measures the total output noise power,
and the =9 norm which measures the peak value of the
spectrum of the output noise.

With regard to selection of 1D or 2D forms, Jackson’s rule
of thumb says to select 1D when p=2, r=0o and 2D when
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p=o0,r=1;for p=2,r=1 and for p=o, r=00, either form
may be selected.

The choice of ordering of sections also depends on the
norms which are selected. For p=2, » = o, the sections should
be ordered in decreasing peakedness, where peakedness is
defined as the peak gain of a section divided by its rms gain.
For p= o, r=1, the sections should be ordered in increasing
peakedness. For p=2, r=1 and for p=00, r=, the choice
of ordering depends on whether form 2D or 1D is chosen for
the individual sections. Decreasing peakedness should be
chosen with form 2D, and increasing peakedness with form
1D.

The rule for pairing of poles and zeros is as follows: Let
|Hn(w)| denote the magnitude of the frequency response of
the nth section, and M, denote the maximum over w of
‘H,.(w)|. Then the pairing should be chosen such that the
maximum over n of M, is minimized.

The above rules are illustrated by Jackson with a specific
filter example—a sixth-order Chebyshev band rejection filter,
and the results are in accord with his rules. He analyzes the
output noise of this filter for parallel forms 1P and 2P and for
all orderings of cascade forms 1D and 2D (with proper pole—
zero pairing). Little difference is seen between the two parallel
forms. For p=2, r = the peak output noise spectrum is 7—12
dB worse for the 2D cascade forms than for the 1D forms;
while for p=o, r=1, the output noise power is 7-12 dB
worse for 1D than for 2D. The effects of pole-zero pairing and
of ordering of sections also follow quite well the rules previ-
ously stated. The parallel forms turn out to be slightly supe-
rior to the best cascade forms with respect to roundoff noise.

As Jackson indicates, these rules of thumb have certain
qualifications and are not always valid. However, they have
been shown to be helpful in a variety of types of examples [31].

C. Choice of Form for Floating-Point Digital Filter

By means of an example, Liu and Kaneko [8] have com-
pared the direct, cascade, and parallel form realizations of a
floating-point digital filter. The flter selected was an eighth-
order low-pass elliptic filter. The noise-to-signal ratio for the
parallel form was about 20 dB worse than for the direct form,
while the cascade form was comparable to (about 1.5 dB
worse than) the parallel form.

Various orderings of cascade form floating-point filters
have not been studied in detail. Probably floating-point
cascade filters are not too sensitive to ordering since large
variations in signal level from stage to stage can be accom-
modated by the floating-point exponent.

A comparison of the noise-to-signal ratio properties of
floating-point second-order sections poles precede
zeros (Fig. 16) and where zeros precede poles (Fig. 17) indi-
cates that at least for white-noise inputs the behavior of the
two forms is essentially identical. For a high-gain second-order
section of low resonant frequency, a coupled form realization
yields some noise-to-signal ratio advantage over both of these
two forms.

where

D. FFT Filter

The results of our roundoff noise analysis for fixed-point
FFT will now be applied to obtain an expression for the out-
put noise-to-signal ratio of a finite impulse response digital
filter, implemented by means of the FFT. The overflow con-
straints of this type of filter will be accounted for in the analy-
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sis. Attention will be focussed on a prototype low-pass filter
with 256-point impulse response and a cutoff frequency of 1/4
the half sampling frequency. Rounded arithmetic will be
assumed.

Let us examine the basic steps in the filtering computation,
tracing the buildup of noise variance as we proceed. First the
FFT is used to compute the DFT of a section of input. In the
implementation of a filter with 256-point impulse response, it
is reasonable to compute a 512-point FFT, where the input
consists of 256 data samples and 256 zeros. Actually 512 real
input samples would be treated simultaneously, by placing
sections of 256 real samples in both the real and imaginary
parts of the input to the FFT. To guarantee against overflow,
a scaling of 1/2 is needed at each stage of the FFT yielding
an overall attenuation of 1/512. The samples of the input
sequence must be less than unity in magnitude. The noise
E\ (k) at the output of this first DFT has variance

5
onl= | Eik) | = ;2'”'

<

(92)

This noise variance is small, because most of the roundoff
noise has been shifted off by the attenuations. However, the
scalings have also caused the mean-squared signal to decrease
by a factor of 1/512.

Next this computed transform is multiplied by a sequence
H(k) representing the DFT of a 512-point sequence #(#n) con-
sisting of the filter impulse response plus 256 zeros. This com-
plex multiplication introduces roundoff noise of variance
27%/3. Assuming that we have chosen ’H(k)! <1, the mean
square of the noise I; becomes reduced by

1 su

> |HW] =B

512 = 93)

a ratio of the filter bandwidth to the sampling frequency.
Thus after the multiplication, the variance of the total noise
Es(k) is

272 5
= —— 4 B-27%,

3 3 (94)

OFa

This noise is not white, but has a component whose spectrum
has been shaped by the filter.

For the example under consideration B=1/4, so
og, & — 272, (93)

) 4
Note that og,? is slightly less than og,* and represents only
about a bit of noise. However, if the signal spectrum is flat,
the mean-squared signal will also be reduced somewhat due
to the multiplication by H(k).

Now an inverse transform is computed to obtain a section
of output. The noise variance at the output of this transform
depends on how many scalings are necessary in the inverse
FFT. In order to determine how many scalings are necessary,
a bound on the output of the circular convolution is required
[32]. For a particular filter, such a bound can be stated as

AM—1

BIQIRSDINRICY (96)

where y(n) is the output and 34 is the length of the impulse
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response. The prototype filter has an impulse response

B = —— [}» (1)t cos 2R

256 = 256
2m(33)n
56 256

zr(ss)q

4+ 0.01995 cos ————

97)
and

Z | h(ny | = 3.12. (98)
n=0

Hence, only two scalings (at the first two arrays) are neces-
sary in the inverse transform. Then, in propagating through
the IFFT (inverse FFT), the variance of the noise Es(k)
increases by a factor of 512/16. (The 512 represents the gain
of the inverse DFT, and the 1/16 is due to the scalings.)
The variance of the additional output noise E3(k) caused by
roundoff in the IFFT can be estimated easily via the method
of Section IV-C. The result is

512 512

op? = a,;,2<~— + A——> Z 2k = (202)272. (99)

8 4 k-1
The total mean-squared output noise is

512
o’ = *lg 0522 -+ 0'1-;.:2 = (226)24217 (1()0)

or in units of bits of rms output noise

1 logy (2% 5?) = 3.91 bits. (101)

The mean-squared output signal can be estimated if
specific statistics are assumed for the input signal x(n). As an
example, assume that x(n) is white with variance ¢.2=2/3.
This variance goes through an attenuation of 1/512 in the
first FFT, an attenuation of B=1/4 due to multiplication by
H(k), and a gain of 512/16 in the inverse transform. The
mean-squared output signal is then

1 1N\ /512N /2 1
EOEE-L o
512/ \4 16 3 96
and the output noise-to-signal ratio is
O'E2
— = (22 000)2-28, (103)
O'y“

Assuming an input noise-to-signal ratio (due to A/D noise)
of (1/4)27%, the noise-to-signal ratio has worsened by a factor
of about 5500, or

1 logs 5500 = 6.15 bits (104)

in passing through the FFT filter.
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