Compiled by Zahi Karam

Signal:

Nonlinear filtering of convolved signals
Oppenheim, A. V.;
Quarterly Progress Report, No: 80, Research Lab of Electronics, MIT
Pages: 168 – 175

Generalized Superposition
Oppenheim, A. V.;
Information and Control, 11, 1967
Pages: 528 – 536

Signal analysis by homomorphic prediction
Oppenheim, A. V.; Kopec, G. E.; Tribolet, J. M.;
Pages: 327 – 332

Signal detection and extraction by cepstrum techniques
Kemerait, R. C.; Childers, D. G.;
Pages: 745 – 759

Nonlinear filtering of multiplied and convolved signals
Oppenheim, A. V.; Schafer, R. W.; Stockham, T. G.;
Pages: 437 - 466

The heuristics of cepstrum analysis of a stationary complex echoed Gaussian signal in stationary Gaussian noise
Bogert, B.; Ossanna, J.;
Information Theory, IEEE Transactions on, Volume: 12, Issue: 3, Jul 1966
Pages:373 – 380

Signal detection and extraction by cepstrum techniques
Kemerait, R.; Childers, D.;
Pages:745 – 759

A probabilistic analysis of time delay extraction by the cepstrum in stationary Gaussian noise
Hassab, J.; Boucher, R.;
Signal delay and waveform estimation through differential cepstrum averaging
Reddy, G.; Rao, V.;
Pages: 1487 - 1489

Signal distortions that result from minimum phase signal recovery using cepstral processing
Rice, T.R.; Gray, J.E.; Blair, W.D.;
Pages: 380 - 384

A method of cepstral enhancement for detection and parameter estimation of echoes
Armstrong, B.; Ahmed, N.;
Pages: 160 - 164 vol.1

Moment of cepstrum and its applications
Khare, A.; Yoshikawa, T.;
Pages: 2692 - 2702

Minimum phase signal derived from root cepstrum
Nagarajan, T.; Kamakshi Prasad, V.; Murthy, H.A.;
Electronics Letters, Volume: 39, Issue: 12, 12 Jun 2003
Pages: 941 - 942

Phase and magnitude extraction using cepstrum and higher order statistics
Al-Smadi, A.; Smadi, M.M.;
Pages: 52 - 55 Vol.1

Reduction of blocking artifacts by cepstral filtering
Cho, N. I.
Signal Processing, 81, 3, Mar, 2001
633-642

Analysis Of Signal Extraction, Echo Detection And Removal By Complex Cepstrum In Presence Of Distortion And Noise
Hassab, J. C.; Boucher, R.
Journal Of Sound And Vibration, 40, 3, 1975
321-335

Cepstrum Of Mixed Phase Signal Sequence Based On Moments
Khare, A.; Yoshikawa, T.
Finite Length Cepstrum Modeling - A Simple Spectrum Estimation Technique
Nadeu, C.
Signal Processing, 26, 1, Jan, 1992
49-59

Signal-Processing By Cepstrum Analysis
Rodel, E.
Technisches Messen, 60, 1, Jan, 1993
35-42

On The Statistics Of Estimated Reflection And Cepstrum Coefficients Of An
Autoregressive Process
Tourneret, J. Y.; Lacaze, B.
Signal Processing, 43, 3, May, 1995
253-267

Potentialities of cepstral analysis in refining the reciprocal delays, and amplitudes of signals
Zverev, V. A.; Stromkov, A. A.
Acoustical Physics, 47, 5, Sep-Oct, 2001
572-577

Computation:

The computation of two-dimensional cepstra
Dudgeon, D. E.;
Pages: 476 – 484

A new phase unwrapping algorithm
Tribolet, J. M.;
Pages: 170 - 177

On the convergence interval of the power cepstrum (Corresp.)
Hassab, J.;
Information Theory, IEEE Transactions on, Volume: 20, Issue: 1, Jan 1974
Pages: 111 – 112

Computation of the complex cepstrum by factorization of the z-transform
Steiglitz, K.; Dickinson, B.;
Pages: 723 – 726
On the computation of the complex cepstrum
Bhanu, B.; McClellan, J.;
Pages: 583 - 585

On the use of discrete cosine transform in cepstral analysis
Hassanein, H.; Rudko, M.;
Pages: 922 – 925

Calculating the complex cepstrum without phase unwrapping or integration
Bednar, J.; Watt, T.;
Pages: 1014 – 1017

The two-dimensional differential cepstrum
Raghuramireddy, D.; Unbehauen, R.;
Pages: 1335 – 1337

Fast cepstrum analysis using the Hartley transform
Steckner, M.C.; Drost, D.J.;
Pages: 1300 - 1302

Cepstrum analysis using discrete trigonometric transforms
Fangming Wang; Yip, P.;
Pages: 538 - 541

Time-domain cepstral transformations
Sokolov, R.T.; Rogers, J.C.;
Pages: 1161 - 1169

New cepstrum algorithms
Pienaar, F.H.;
Pages: 105 - 107

Efficient mapping of cepstrum algorithms on a reconfigurable CORDIC system
Merakos, P.; Mariatos, E.; Birbas, M.; Birbas, A.; Frantzeskakis, E.; Karathanasis, H.;
EUROMICRO 94. System Architecture and Integration. Proceedings of the 20th
A cepstrum chip: architecture and implementation
An-Nan Suen; Jhing-Fa Wang; Yuen-Lin Chiang;
Circuits and Systems, 1995. ISCAS '95., 1995 IEEE International Symposium on,
Volume: 2, 28 April-3 May 1995
Pages:1428 - 1431 vol.2

Asymptotically exact computation of differential cepstrum using FFT approach
Zazula, D.;
Electronics Letters, Volume: 34, Issue: 9, 30 April 1998
Pages:842 - 844

Frequency-shift: a way to reduce aliasing in the complex cepstrum
Bysted, T.K.;
Electronics, Circuits and Systems, 1998 IEEE International Conference on, Volume:
3, 7-10 Sept. 1998
Pages:557 - 560 vol.3

New definition of cepstral calculus
Zazula, D.;
Signal Processing Proceedings, 1998. ICSP '98. 1998 Fourth International Conference on,
Volume: 12-16 Oct. 1998
Pages:27 - 30 vol.1

DCT based pseudo complex cepstrum
Muralishankar, R.; Ramakrishnan, A.G.;
International Conference on, Volume: 1, 13-17 May 2002
Pages:I-521 - I-524 vol.1

Properties And Computation Of The Multidimensional Differential Cepstrum
Daka, R.; Unbehauen, R.
Frequenz, 39, 6, 1985
146-153

A Simple Formula For Computation Of The Two-Dimensional Differential Cepstrum
Daka, R.; Unbehauen, R.
Frequenz, 39, 11, 1985
310-312

Improved Cepstrum Performance Through Windowing Of Log Spectrum
Hassab, J. C.; Boucher, R. E.
Journal Of Sound And Vibration, 58, 4, 1978
597-598

Real-Time Cepstrum Computation Based On An Advanced Cordic Processor
Metafas, D. E.; Nikolaidis, S. S.; Goutis, C. E.
Microprocessing And Microprogramming, 37, 1-5, Jan, 1993
57-60

On The Computation Of Complex Cepstrum Through Differential Cepstrum
Reddy, G. R.; Rao, V. V.
Signal Processing, 13, 1, Jul, 1987
79-83

Formulas For Computation Of 2-D Logarithmic And 2-D Differential Cepstrum
Rossmanith, H.; Unbehauen, R.
Signal Processing, 16, 3, Mar, 1989
209-217

Cepstrum Aliasing And Calculation Of Hilbert Transform
Stoffa, P. L.; Buhl, P.; Bryan, G. M.
Geophysics, 39, 4, 1974
543-544

Asymptotically exact computation of differential cepstrum using FFT approach
Zazula, D.
Electronics Letters, 34, 9, Apr 30, 1998
842-844

The Choice Of The Complex Cepstrum Calculation Algorithm
Zelenkov, A. V.
Radiotekhnika I Elektronika, 26, 10, 1981
2095-2109

Speech/Audio

Homomorphic analysis of speech
Oppenheim, A. V.; Schafer, R. W.;
Pages: 221 – 226

Speech analysis by homomorphic prediction
Kopec, G. E.; Oppenheim, A. V.; Tribolet, J. M.;
Pages: 40 – 49

Predictive coding in a homomorphic vocoder
Oppenheim, A. V.; Weinstein, C. J.;
Audio and Electroacoustics, IEEE Transactions on, Vol: 19, No: 3 Sep 1971
Pages: 243 – 248

Speech analysis-synthesis system based on homomorphic filtering
Oppenheim, A. V.;
Pages: 458 - 465

Short-time spectrum and “cepstrum” Techniques for vocal-pitch detection
Noll, A. M.;
Pages: 458 - 465
Short-time cepstrum pitch detection
Noll, A. M.; Schroeder, M.R.;
Pages: 1030

Cepstrum Pitch Determination
Noll, A. M.;
Pages: 293 – 309

Minimum and mixed phase speech analysis-synthesis by adaptive homomorphic deconvolution
Quatieri, T. F.;
Pages: 328 – 335

Blind deconvolution through digital signal processing
Stockham, T. G.; Cannon, T. M.; Ingebertsen, R. B.;
Pages: 678 – 692

Experiments with echo detection in the presence of noise using the power cepstrum and a modification
Loew, M.; Shankar, R.; Mucciardi, A.;
Pages: 307 – 310

Low bit rate cepstral vocoder using the log magnitude approximation filter
Imai, S.;
Pages: 441 - 444

Analysis and representation of composite signals by cepstral inverse filtering
Derby, J.;
Pages: 214 – 217

A new method of Cepstrum analysis by using comb lifter
Pages: 19 – 22

Cepstral synthesis of Japanese from CV syllable parameters
Imai, S.; Abe, Y.;
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP
Attenuation and dispersion compensation via cepstral processing
Chen, C.; Roemer, L.;
Pages: 1080 – 1084

Cepstral analysis technique for automatic speaker verification
Furui, S.;
Pages: 254 – 272

Direct (nonrecursive) relations between cepstrum and predictor coefficients
Schroeder, M.;
Pages: 297 – 301

Cepstral residual vocoder for improved quality speech transmission at 4.8 kbps
Malah, D.;
Pages: 622 – 625

Comparison of pitch detection by cepstrum and spectral comb analysis
Martin, P.;
Pages: 180 – 183

Cepstral analysis synthesis on the mel frequency scale
Imai, S.;
Pages: 93 – 96

Spectral analysis using generalised cepstrum
Kobayashi, T.; Imai, S.;
Pages: 1235 – 1238

Cepstral analysis of electroacoustic transducers
Bauman, P.; Lipshitz, S.; Vanderkooy, J.;
Pages: 1832 – 1835

A new model for the short-time complex cepstrum of voiced speech
Verhelst, W.; Steenhaut, O.;
Effects of representative distortion and noise on wavelet recovery via the complex cepstrum
Fuller, C.; Elliott, K.; Tavakkoli, S.; O'Brien, W.; Hurst, C.;
Pages:1641 – 1644

A weighted cepstral distance measure for speech recognition
Tohkura, Y.;
Pages:761 – 764

Cepstral methods for the determination of reflection coefficients for dispersive systems
Hammond, J.; Khalili, N.; Clarkson, P.;
Pages:2835 – 2838

A weighted cepstral distance measure for speech recognition
Tohkura, Y.;
Pages:1414 – 1422

Weighted cepstral distance measures in vector quantization based speech recognizers
Applebaum, T.; Hanson, B.; Wakita, H.;
Pages:1155 – 1158

Nonminimum phase system identification via cepstrum modeling of higher-order cumulants
Nikias, C.; Renlong Pan;
Pages:980 – 983

Cepstral domain stress compensation for robust speech recogniton
Yeunung Chen;
Pages:717 – 720

A VQ-based preprocessor using cepstral dynamic features for large vocabulary word recognition

Cepstral domain talker stress compensation for robust speech recognition

A VQ-based preprocessor using cepstral dynamic features for speaker-independent large vocabulary word recognition

The complex cepstrum of higher order cumulants and nonminimum phase system identification

Variants of cepstrum based speaker identity verification

Spoken-word recognition using dynamic features analysed by two-dimensional cepstrum
Ariki, Y.; Mizuta, S.; Nagata, M.; Sakai, T.; Communications, Speech and Vision, IEE Proceedings I [see also IEE Proceedings-Communications], Volume: 136, Issue: 2, April 1989 Pages: 133 – 140

A comparative study of cepstral lifters and distance measures for all pole models of speech in noise

A cepstral based speaker recognition system

Hierarchical phoneme discrimination by hidden Markov modelling using cepstrum and formant information
Robust cepstral based pitch determination
Signals, Systems and Computers, 1989. Twenty-Third Asilomar Conference on
, Volume: 2 , Oct. 30-Nov. 1, 1989
Pages:744 – 748

Nonlinear multiplicative cepstral analysis for pitch extraction in speech
Hodgson, L.; Jernigan, M.E.; Wills, B.L.;
Conference on , 3-6 April 1990
Pages:257 - 260 vol.1

Robust pitch determination via SVD based cepstral methods
Andrews, M.S.; Picone, J.; Degroat, R.D.;
Conference on , 3-6 April 1990
Pages:253 - 256 vol.1

Cepstral analysis of systems with dispersion
Khalili, N.; Hammond, J.K.;
Conference on , 3-6 April 1990
Pages:2423 - 2426 vol.5

Adaptive filtering based on cepstral representation-adaptive cepstral analysis of speech
Conference on , 3-6 April 1990
Pages:377 - 380 vol.1

Design and evaluation of optimal cepstral lifters for accessing articulatory codebooks
Meyer, P.; Schroeter, J.; Sondhi, M.M.;
Pages:1493 – 1502

Pitch determination using the cepstrum of the one-sided autocorrelation sequence
Nadeu, C.; Pascual, J.; Hernando, J.;
Conference on , 14-17 April 1991
Pages:3677 - 3680 vol.5

Noise-robust speech recognition using a cepstral noise reduction neural network architecture
Sorensen, H.B.D.;
Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on
L1 and L2 normed cepstral distance controlled distortion performance [speech quality]
Schroeder, J.E.; Kubichek, R.F.;
Pages:41 - 44 vol.1

A cepstral noise reduction multi-layer neural network
Sorensen, H.B.D.;
Pages:933 - 936 vol.2

Fast self-adapting broadband noise removal in the cepstral domain
Wu, C.S.; Nguyen, V.V.; Sabrin, H.; Kushner, W.; Damoulakis, J.;
Pages:957 - 960 vol.2

Reverberant speech enhancement using cepstral processing
Bees, D.; Blostein, M.; Kabal, P.;
Pages:977 - 980 vol.2

Calculation of LPC-based cepstrum coefficients using mel-scale frequency warping
van der Merwe, C.J.; du Preez, J.A.;
Pages:17 - 21

Formant estimation from cepstral coefficients using a feedforward memoryless neural network
Pages:673 - 678 vol.4

An adaptive algorithm for mel-cepstral analysis of speech
Pages:137 - 140 vol.1

On the asymptotic statistical behavior of empirical cepstral coefficients
Merhav, N.; Lee, C.-H.;
Pages:1990 – 1993
Speech modelling using cepstral-time feature matrices in hidden Markov models
Vaseghi, S.V.; Conner, P.N.; Milner, B.P.; Communications, Speech and Vision, IEE Proceedings I, Volume: 140, Issue: 5, Oct. 1993
Pages:317 – 320

Subband or cepstral domain filtering for recognition of Lombard and channel-distorted speech
Pages:79 - 82 vol.2

A dynamic cepstrum incorporating time-frequency masking and its application to continuous speech recognition
Pages:668 - 671 vol.2

Source waveform recovery in a reverberant space by cepstrum dereverberation
Pages:157 - 160 vol.1

Two-dimensional cepstral distance measure for speech recognition
Pages:672 - 675 vol.2

Robust voice activity detection using cepstral features
Pages:321 - 324 vol.3

Mel-cepstral distance measure for objective speech quality assessment
Pages:125 - 128 vol.1

Application of cepstrum techniques to the measurement of the normal incident sound absorption coefficient of road surfaces in-situ
Pages:25 - 31

Morphological constrained feature enhancement with adaptive cepstral compensation (MCE-ACC) for speech recognition in noise and Lombard effect
Hansen, J.H.L.;
Pages: 598 – 614

Nonlinear cepstral equalisation method for noisy speech recognition
Pages: 397 – 402

Noisy speech recognition using cepstral-time features and spectral-time filters
Vaseghi, S.V.; Milner, B.P.; Humphries, J.J.;
Pages: II/65 - II/68 vol.2

Environment normalization for robust speech recognition using direct cepstral comparison
Fu-Hua Liu; Stern, R.M.; Acero, A.; Moreno, P.J.;
Pages: II/61 - II/64 vol.2

Robust cepstral features for speaker identification
Assaleh, K.T.; Mammone, R.J.;
Pages: I/129 - I/132 vol.1

Noisy adaptive cepstral coefficients and its application to noisy speech recognition
Lee-Min Lee; Jen-Kwang Chen; Hsiao-Chuan Wang;
Pages: 347 - 350 vol.1

Cepstrum based deconvolution for speech dereverberation
Petropulu, A.P.; Subramaniam, S.;
Pages: I/9 - I/12 vol.1

Speech modelling using cepstral-time feature matrices and hidden Markov models
Milner, B.P.; Vaseghi, S.V.;
Pages: I/601 - I/604 vol.1

Speech coding based on adaptive mel-cepstral analysis
Pages: I/197 - I/200 vol.1
Spectral quantization of cepstral coefficients

Hagen, R.;
Pages: I/509 - I/512 vol.1

On the limitations of cepstral features in noise

Openshaw, J.P.; Masan, J.S.;
Pages: II/49 - II/52 vol.2

Adaptive cepstral analysis of speech

Pages: 481 - 489

Regularized estimation of cepstrum envelope from discrete frequency points

Cappe, O.; Laroche, J.; Moulines, E.;
Pages: 213 - 216

The use of robust cepstral features obtained from pole-zero transfer functions for speaker identification

Zilovic, M.S.; Ramachandran, R.P.; Mamone, R.J.;
Pages: 1058 - 1061 vol.2

Processing of LPC Cepstrum for Speech Coding

Moriya, T.;
Pages: 83 - 84

Cepstral prefiltering for time delay estimation in reverberant environments

Stephenne, A.; Champagne, B.;
Pages: 3055 - 3058 vol.5

Pole-filtered cepstral mean subtraction

Naik, D.;
Pages: 157 - 160 vol.1

CELP coding based on mel-cepstral analysis

Supplementary orthogonal cepstral features
Assaleh, K.T.;
Pages:413 - 416 vol.1

Multivariate-Gaussian-based cepstral normalization for robust speech recognition
Moreno, P.J.; Raj, B.; Gouvea, E.; Stern, R.M.;
Pages:137 - 140 vol.1

Regularization techniques for discrete cepstrum estimation
Cappe, O.; Moulines, E.;
Pages:100 – 102

Mandarin speech recognition using segment-based cepstral comparison in noisy conditions
Shin-Lun Tung; Yau-Tarng Juang;
Pages:1542 – 1543

Spectral magnitude normalisation and cepstral coefficient transform for noisy-Lombard speech recognition
Sang-Mun Chi; Yung-Hwan Oh;
Pages:1761 – 1763

On the use of residual cepstrum in speech recognition
Jialong He; Li Liu; Palm, G.;
Pages:5 - 8 vol. 1

Cepstral compensation by polynomial approximation for environment-independent speech recognition
Raj, B.; Gouvea, E.B.; Moreno, P.J.; Stern, R.M.;
Pages:2340 - 2343 vol.4

New cepstral representation using wavelet analysis and spectral transformation for robust speech recognition
Wassner, H.; Chollet, G.;
Pages:260 - 263 vol.1
Channel and noise normalization using affine transformed cepstrum
Xiaoyu Zhang; Mammone, R.J.;
Pages:1993 - 1996 vol.4

CELP coding system based on mel-generalized cepstral analysis
Pages:318 - 321 vol.1

Speaker recognition model using two-dimensional mel-cepstrum and predictive neural network
Kitamura, T.; Takei, S.;
Pages:1772 - 1775 vol.3

Compensated mel frequency cepstrum coefficients
Vergin, R.; O'Shaughnessy, D.; Gupta, V.;
Pages:323 - 326 vol. 1

On a cepstral technique for pitch control in the high quality text-to-speech type system
MyungJin Bae; SangHyo Lee;
Pages:803 - 806 vol.2

Reducing the environmental sensitivity of cepstral features for speaker recognition
Openshaw, J.P.; Mason, J.S.;
Pages:721 - 724 vol.1

Time-frequency representation based cepstral processing for speech recognition
Fineberg, A.B.; Yu, K.C.;
Pages:25 - 28 vol. 1

A fast algorithm for finding the adaptive component weighted cepstrum for speaker recognition
Zilovic, M.S.; Ramachandran, R.P.; Mammone, R.J.;
Pages:84 - 86
Frame-synchronous adaptation of cepstrum by linear regression
Delphin-Poulat, L.; Mokbel, C.;
Pages:420 – 427

Phonetically adaptive cepstrum mean normalization for acoustic mismatch compensation
Morishima, M.; Isobe, T.; Takahashi, J.;
Pages:436 – 441

Efficient encoding of mel-generalized cepstrum for CELP coders
Pages:1355 - 1358 vol.2

Cepstrum-based filter-bank design using discriminative feature extraction training at various levels
Biem, A.; Katagiri, S.;
Pages:1503 - 1506 vol.2

A cepstral method for analysis of acoustic transmission characteristics of respiratory system
Jingping Xu; Jingzhi Cheng; Yanjun Wu;
Biomedical Engineering, IEEE Transactions on , Volume: 45 , Issue: 5 , May 1998
Pages:660 – 664

Speaker identification based on the use of robust cepstral features obtained from pole-zero transfer functions
Zilovic, M.S.; Ramachandran, R.P.; Mammone, R.J.;
Pages:260 - 267

Cepstral behaviour due to additive noise and a compensation scheme for noisy speech recognition
Pages:316 – 321

On a modified cepstral pitch control technique for the high quality text-to-speech type system
JeongJin Kim; MyungJin Bae;
Pages:616 – 619
Hybrid combination of knowledge- and cepstral-based features for phoneme recognition
Merwe, R.V.D.; Du Preez, J.A.;
Pages:63 - 66

An LPC cepstrum processor for speech recognition
In-Chul Hwang; Sung-Nam Kim; Young-Woo Kim; Soo-Won Kim;
Pages:233 - 236 vol.4

A modified cepstrum method for pitch extraction
Kobayashi, H.; Shimamura, T.;
Pages:299 - 302

Automatic speech recognition based on cepstral coefficients and a mel-based discrete energy operator
Tolba, H.; O'Shaughnessy, D.;
Pages:973 - 976 vol.2

A wideband CELP speech coder at 16 kbit/s based on mel-generalized cepstral analysis
Pages:161 - 164 vol.1

On second order statistics and linear estimation of cepstral coefficients
Ephraim, Y.; Rahim, M.;
Pages:965 - 968 vol.2

Multi-resolution cepstral features for phoneme recognition across speech sub-bands
McCourt, P.; Vaseght, S.; Harte, N.;
Pages:557 - 560 vol.1

Quantization of cepstral parameters for speech recognition over the World Wide Web
Digalakis, V.; Neumeyer, L.; Perakakis, M.;
Pages:989 - 992 vol.2
Improved scale-cepstral analysis in speech
Pages:637 - 640 vol.2

Cepstrum-based pitch detection using a new statistical V/UV classification algorithm
Ahmadi, S.; Spanias, A.S.;
Pages:333 – 338

Generalized mel frequency cepstral coefficients for large-vocabulary speaker-independent continuous-speech recognition
Verigin, R.; O'Shaughnessy, D.; Farhat, A.;
Pages:525 – 532

On second-order statistics and linear estimation of cepstral coefficients
Ephraim, Y.; Rahim, M.;
Speech and Audio Processing, IEEE Transactions on, Volume: 7, Issue: 2, March 1999
Pages:162 – 176

A comparison of speaker identification results using features based on cepstrum and Fourier-Bessel expansion
Pages:289 – 294

Quantization of cepstral parameters for speech recognition over the World Wide Web
Digalakis, V.V.; Neumeyer, L.G.; Perakakis, M.;
Selected Areas in Communications, IEEE Journal on, Volume: 17, Issue: 1, Jan. 1999
Pages:82 – 90

Cepstrum third-order normalisation method for noisy speech recognition
Yong Ho Suk; Seung Ho Choi; Hwang Soo Lee;
Electronics Letters, Volume: 35, Issue: 7, 1 April 1999
Pages:527 – 528

Bandwidth expansion of speech based on vector quantization of the mel frequency cepstral coefficients
Enbom, N.; Kleijn, W.B.;
Pages:171 – 173

New cepstrum frequency scale for neural network speaker verification
Cristea, P.; Valsan, Z.;
Iterative cepstrum-based approach for speech dereverberation
Kennedy, R.A.; Radlovic, B.D.;
Pages:55 - 58 vol.1

A speech feature based on Bark frequency warping-the non-uniform linear prediction (NLP) cepstrum
Yoon Kim; Smith, J.O., III;
Applications of Signal Processing to Audio and Acoustics, 1999 IEEE Workshop on , 17-20 Oct. 1999
Pages:131 – 134

Optimization of mel-cepstrum for speech recognition
Donghoon Hyun; Chulhee Lee;
Pages:500 - 503 vol.1

Channel-robust speaker identification using modified-mean cepstral mean normalization with frequency warping
Garcia, A.A.; Mammone, R.J.;
IEEE International Conference on , Volume: 1 , 15-19 March 1999
Pages:325 - 328 vol.1

Hierarchical subband linear predictive cepstral (HSLPC) features for HMM-based speech recognition
Chengalvarayan, R.;
IEEE International Conference on , Volume: 1 , 15-19 March 1999
Pages:409 - 412 vol.1

GA-based noisy speech recognition using two-dimensional cepstrum
Chin-Teng Lin; Hsi-Wen Nein; Jiing-Yuan Hwu;
Speech and Audio Processing, IEEE Transactions on , Volume: 8 , Issue: 6 , Nov. 2000
Pages:664 – 675

Digital audio watermarking in the cepstrum domain
Sang-Kwang Lee; Yo-Sung Ho;
Pages:744 – 750

On approximating line spectral frequencies to LPC cepstral coefficients
Hong Kook Kim; Seung Ho Choi; Hwang Soo Lee;
Speech and Audio Processing, IEEE Transactions on , Volume: 8 , Issue: 2 , March 2000
Pages:195 – 199
Noise robust Chinese speech recognition using feature vector normalization and higher-order cepstral coefficients
Xia Wang; Yuan Dong; Hakkinen, J.; Viikki, O;
Pages: 738 - 741 vol.2

Musical instrument recognition using cepstral coefficients and temporal features
Eronen, A.; Klapuri, A.
Pages: I1753 - I1756 vol.2

Adaptive mel cepstral analysis based on UELS method
Imai, S.
Pages: 304 – 309

Chip design of mel frequency cepstral coefficients for speech recognition
Jia-Ching Wang; Jhing-Fa Wang; Yu-Sheng Weng;
Pages: 3658 - 3661 vol.6

Transparent and robust audio data hiding in cepstrum domain
Xin Li; Yu, H.H.
Pages: 397 - 400 vol.1

Speech reconstruction from mel frequency cepstral coefficients and pitch frequency
Chazan, D.; Hoory, R.; Cohen, G.; Zibulski, M.
Pages: 1299 - 1302 vol.3

The use of sub-band cepstrum in speaker verification
Sivakumaran, P.; Ariyaeineia, A.M.
Pages: II1073 - II1076 vol.2

Automatic speaker identification by means of Mel cepstrum, wavelets and wavelet packets
Torres, H.M.; Rufiner, H.L.
Pages: 978 - 981 vol.2

LDA derived cepstral trajectory filters in adverse environmental conditions
Lieb, M.; Haeb-Umbach, R.
Derivation of robust mel frequency cepstral features based on SNR-dependent adaptive filter bank analysis
Hung, W.-W.;
Pages: 1369 – 1370

Comparison of linear prediction cepstrum coefficients and mel-frequency cepstrum coefficients for language identification
Wong, E.; Sridharan, S.;
Pages: 95 – 98

A fuzzy approach for the equalization of cepstral variances
Wei-Wen Hung; Hsiao-Chuan Wang;
Pages: 1611 - 1614 vol.3

Cepstral coefficients, covariance lags, and pole-zero models for finite data strings
Ryrnes, C.I.; Enqvist, P.; Lindquist, A.;
Pages: 677 – 693

Formant weighted cepstral feature for LSP-based speech recognition
Ho Young Hur; Hyung Soon Kim;
Pages: 141 - 144 vol.1

Multiple time resolutions for derivatives of Mel-frequency cepstral coefficients
Pages: 37 - 40

New cepstral zero-pole vocal tract models for TTS synthesis
Vich, R.; Pribil, J.; Smekan, Z.;
EUROCON'2001, Trends in Communications, International Conference on., Volume: 2, 4-7 July 2001
Pages: 459 - 462 vol.2

Robust speech recognition with multi-channel codebook dependent cepstral normalization (MCDCN)
Deligne, S.; Gopinath, R.;
Pages: 151 - 154
Computing Mel-frequency cepstral coefficients on the power spectrum
Molau, S.; Pitz, M.; Schluter, R.; Ney, H.;
IEEE International Conference on, Volume: 1, 7-11 May 2001
Pages: 73 - 76 vol. 1

The implementation of PFCMS using cepstrum information
Hea-Kyoung Jung; Yu-Jin Kim; Jae-Ho Chung;
on, Volume: 2, 6-9 May 2001
Pages: 365 - 368 vol. 2

Evaluation of mel-LPC cepstrum in a large vocabulary continuous speech recognition
Matsumoto, H.; Moroto, M.;
IEEE International Conference on, Volume: 1, 7-11 May 2001
Pages: 117 - 120 vol. 1

Perceptual harmonic cepstral coefficients for speech recognition in noisy environment
Gu, L.; Rose, K.;
IEEE International Conference on, Volume: 1, 7-11 May 2001
Pages: 125 - 128 vol. 1

Alignment-based codeword-dependent cepstral normalization
Huerta, J.M.;
Pages: 451 - 459

A mathematical relationship between full-band and multiband mel-frequency cepstral coefficients
Mak, B.;
Pages: 241 - 244

Optimal root cepstral analysis for speech recognition
Yip, C.S.; Leung, S.H.; Chu, K.K.;
, Volume: 2, 26-29 May 2002
Pages: II-173 - II-176 vol. 2

Blind cepstrum domain audio watermarking based on time energy features
Ching-Tang Hsieh; Pei-Ying Sou;
, Volume: 2, 1-3 July 2002
Pages: 705 - 708 vol. 2

Wavelet packet cepstral analysis for speaker recognition
Kinney, A.; Stevens, J.;
Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth
Audio-visual speech enhancement with AVCDCN (audio-visual codebook dependent cepstral normalization)
Deligne, S.; Potamianos, G.; Neti, C.;
Pages:68 - 71

Identifiability of shaping filters from covariance lags, cepstral windows and Markov parameters
Byrnes, C.I.; Enqvist, P.; Lindquist, A.;
Pages:246 - 251 vol.1

A new developed speech recognition education software in teaching LPC and LPC-derived cepstrum
Hong Kai Sze; Salleh, S.-H.; Sha'ameri, A.Z.;
Pages:1701 - 1704 vol.2

Speaker identification using cepstral analysis
Nazar, M.N.;
Pages:139 - 143 vol.1

A method of recovering vocal tract impulse response based on a new model for complex cepstrum of voiced speech
Zhong Yan-ping; Song-hua Shen;
Pages:1672 - 1675 vol.2

Mel-frequency cepstrum encoding in analog floating-gate circuitry
Pages:IV-671 - IV-674 vol.4

Automatic music summarization based on temporal, spectral and cepstral features
Changsheng Xu; Yongwei Zhu; Qi Tian;
Pages:117 - 120 vol.1

Comparing Jacobian adaptation with cepstral mean normalization and parallel model combination for noise robust speech recognition
Parssinen, K.; Salmela, P.; Harju, M.; Kiss, I.;
A Bayesian approach to speech feature enhancement using the dynamic cepstral prior
Li Deng; Droppo, J.; Acero, A.;
Pages:829-1 - 829-32 vol.1

Cepstrum-domain model combination based on decomposition of speech and noise for noisy speech recognition
Hong Kook Kim; Rose, R.C.;
Pages:I-209 - I-212 vol.1

cepstrum-domain acoustic feature compensation based on decomposition of speech and noise for ASR in noisy environments
Hong Kook Kim; Rose, R.C.;
Pages:435 - 446

Two-dimensional root cepstrum as feature extraction method for speech recognition
Chilton, E.; Marvi, H.;
Pages:815 – 816

Bandwidth extension of narrow band speech using cepstral linear prediction
Jaisimha, S.; Ing Yann Soon;
Pages:1404 - 1407 vol.3

Improved echo hiding using power cepstrum and simulated annealing based synchronization technique
Bin Yan; Sheng-He Sun; Zhe-Ming Lu;
Pages:2142 - 2147 Vol.4

Optimal filtering of noisy cepstral coefficients for robust ASR
Myrvoll, T.A.; Nakamura, S.;
Pages:381 - 386

Mel-cepstrum modulation spectrum (MCMS) features for robust ASR
Tyagi, V.; McCowan, I.; Misra, H.; Bourlard, H.;
AANN models for speaker recognition based on difference cepstrals
Guruprasad, S.; Dhananjaya, N.; Yegnanarayana, B.;
Neural Networks, 2003. Proceedings of the International Joint Conference on,
Volume: 1, 20-24 July 2003
Pages:692 - 697 vol.1

Mo-frequency cepstrum coefficients extraction from infant cry for classification of normal and pathological cry with feed-forward neural networks
Garcia, J.O.; Reyes Garcia, C.A.;
Neural Networks, 2003. Proceedings of the International Joint Conference on,
Pages:3140 – 3145

Clean speech reconstruction from noisy mel-frequency cepstral coefficients using a sinusoidal model
Shao, X.; Milner, B.;
IEEE International Conference on,
Volume: 1, 6-10 April 2003
Pages:1-704 - 1-707 vol.1

Perceptual MVDR-based cepstral coefficients (PMCCs) for robust speech recognition
Yapanel, U.H.; Dharanipragada, S.;
IEEE International Conference on,
Volume: 1, 6-10 April 2003
Pages:1-644 - 1-647 vol.1

Cepstral domain segmental nonlinear feature transformations for robust speech recognition
Segura, J.C.; Benitez, C.; de la Torre, A.; Rubio, A.J.; Ramirez, J.;
Signal Processing Letters, IEEE,
Volume: 11, Issue: 5, May 2004
Pages:517 - 520

Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors
Godino-Llorente, J.I.; Gomez-Vilda, P.;
Biomedical Engineering, IEEE Transactions on,
Volume: 51, Issue: 2, Feb. 2004
Pages:380 - 384

Estimating cepstrum of speech under the presence of noise using a joint prior of static and dynamic features
Li Deng; Droppo, J.; Acero, A.;
Speech and Audio Processing, IEEE Transactions on,
Volume: 12, Issue: 3, May 2004
Pages:218 - 233

Pitch synchronous cepstrum for robust speaker recognition over telephone channels
Kim, Y.J.; Chung, J.H.;
Electronics Letters,
Volume: 40, Issue: 3, 5 Feb. 2004
Pages:207 – 208
Cepstral gain normalization for noise robust speech recognition
Yoshizawa, S.; Hayasaka, N.; Wada, N.; Miyanaga, Y.;
International Conference on , Volume: 1 , 17-21 May 2004
Pages: I - 209-12 vol.1

Higher order cepstral moment normalization (HOCMN) for robust speech recognition
Chang-wen Hsu; Lin-shan Lee;
International Conference on , Volume: 1 , 17-21 May 2004
Pages: I - 197-200 vol.1

Minimum mean square error filtering of noisy cepstral coefficients with applications
to ASR
Myrvoll, T.A.; Nakamura, S.;
International Conference on , Volume: 1 , 17-21 May 2004
Pages: I - 977-80 vol.1

Evidence of vocal cord pathology from the mucosal wave cepstral contents
Gomez, P.; Godino, J.I.; Rodriguez, F.; Diaz, F.; Nieto, V.; Alvarez, A.; Rodellar, V.;
International Conference on , Volume: 5 , 17-21 May 2004
Pages: V - 437-40 vol.5

Text independent speaker recognition using the Mel frequency cepstral coefficients
and a neural network classifier
Seddik, H.; Rahmouni, A.; Sayadi, M.;
Control, Communications and Signal Processing, 2004. First International
Symposium on , 2004
Pages: 631 - 634

Robustness of speech recognition using genetic algorithms and a Mel-cepstral
subspace approach
Selouani, S.A.; O'Shaughnessy, D.;
International Conference on , Volume: 1 , 17-21 May 2004
Pages: I - 201-4 vol.1

Fast adaptive component weighted cepstrum pole filtering for speaker identification
Swanson, A.L.; Ramachandran, R.P.; Chin, S.H.;
Symposium on , Volume: 5 , 23-26 May 2004
Pages: 612 - 615

Robust speech recognition using cepstral domain missing data techniques and noisy
masks
Van Hamme, H.;
International Conference on , Volume: 1 , 17-21 May 2004
Pages: I - 213-16 vol.1
An adaptive short-term postfilter based on pseudo-cepstral representation of line spectral frequencies
Kim, H. K.; Kang, H. G.
Speech Communication, 37, 3-4, Jul, 2002
335-348

Alignment-based codeword-dependent cepstral normalization
Huerta, J. M.
Ieee Transactions On Speech And Audio Processing, 10, 7, Oct, 2002
451-459

Analysis And Correction Of Ground Reflection Effects In Measured Narrow-Band Sound Spectra Using Cepstral Techniques
Miles, J. H.
Journal Of The Acoustical Society Of America, 58, 1975
S109-S109

Application Of Cepstral Techniques To Ground-Reflection Effects In Measured Acoustic Spectra
Miles, J. H.; Stevens, G. H.
Journal Of The Acoustical Society Of America, 61, 1, 1977
35-38

The Application Of Cepstral Techniques To The Measurement Of Transfer-Functions And Acoustical Reflection Coefficients
Bolton, J. S.; Gold, E.
Journal Of Sound And Vibration, 93, 2, 1984
217-233

The Application Of Cepstrum Analysis To The Measurement Of Acoustical Frequency-Response Function
Smirenov, V. D.
Radiotekhnika I Elektronika, 34, 12, Dec, 1989
2563-2568

CELP speech coding based on mel-generarized cepstral analyses
Electronics And Communications In Japan Part Iii-Fundamental Electronic Science, 83, 5, 2000
32-41

Cepstral amplitude range normalization for noise robust speech recognition
Yoshizawa, S.; Hayasaka, N.; Wada, N.; Miyanaga, Y.
Ieice Transactions On Information And Systems, E87D, 8, Aug, 2004
2130-2137

Cepstral And Stationarity Analyses Of Full-Term And Premature-Infants Cries
Tenold, J. L.; Crowell, D. H.; Jones, R. H.; Daniel, T. H.; McPherso.Df; Popper, A. N.
Journal Of The Acoustical Society Of America, 56, 3, 1974
975-980

Cepstral Distance And Frequency Domain
Cepstral domain segmental feature vector normalization for noise robust speech recognition
Viikki, O.; Laurila, K.
133-147

Cepstral prediction analysis of the signal pathway in an ultrasonic A-scan
Ali, M. G. S.; Mohamed, A. R.
Journal Of Sound And Vibration, 236, 4, Sep 28, 2000
609-621

Cepstral representation of speech motivated by time-frequency masking: An application to speech recognition
Aikawa, K.; Singer, H.; Kawahara, H.; Tohkura, Y.
Journal Of The Acoustical Society Of America, 100, 1, Jul, 1996
603-614

Cepstral Techniques For Transducer Measurement
Bauman, P. D.; Lipshitz, S. P.; Scott, T. C.; Vanderkooy, J.
Journal Of The Audio Engineering Society, 32, 12, 1984
1002-1002

Cepstral Techniques For Transducer Measurement.2
Bauman, P. D.; Vanderkooy, J.; Lipshitz, S. P.
Journal Of The Audio Engineering Society, 33, 12, Dec, 1985
1010-1011

The Cepstrum - A Viable Method For The Removal Of Ground Reflections
Syed, A. A.; Brown, J. D.; Oliver, M. J.; Hills, S. A.
Journal Of Sound And Vibration, 71, 2, 1980
299-313

Cepstrum derived from differentiated power spectrum for robust speech recognition
Chen, J. D.; Paliwal, K. K.; Nakamura, S.
469-484

Cepstrum third-order normalisation method for noisy speech recognition
Suk, Y. H.; Choi, S. H.; Lee, H. S.
Electronics Letters, 35, 7, Apr 1, 1999
527-528

Cochannel speaker count labelling based on the use of cepstral and pitch prediction derived features
Lewis, M. A.; Ramachandran, R. P.
Pattern Recognition, 34, 2, Feb, 2001
499-507
Computer identification of musical instruments using pattern recognition with cepstral coefficients as features
Brown, J. C.
Journal Of The Acoustical Society Of America, 105, 3, Mar, 1999
1933-1941

Derivation of robust mel frequency cepstral features based on SNR-dependent adaptive filter bank analysis
Hung, W. W.
Electronics Letters, 37, 22, Oct 25, 2001
1369-1370

The Determination Of Acoustic Reflection Coefficients By Using Cepstral Techniques.1. Experimental Procedures And Measurements Of Polyurethane Foam Bolton, J. S.; Gold, E.
Journal Of Sound And Vibration, 110, 2, Oct 22, 1986
179-202

The Determination Of Acoustic Reflection Coefficients By Using Cepstral Techniques.2. Extensions Of The Technique And Considerations Of Accuracy Bolton, J. S.; Gold, E.
Journal Of Sound And Vibration, 110, 2, Oct 22, 1986
203-222

A 2-Dimensional Cepstrum Approach For The Recognition Of Mandarine Syllable Initials Pai, H. F.; Wang, H. C.
Pattern Recognition, 26, 4, Apr, 1993
569-577

Echo Reduction In Low-Frequency Calibration Using Complex Cepstrum Poche, L. B.; Rogers, P. H.
Journal Of The Acoustical Society Of America, 60, 1976
S25-S25

Estimation of range and depth of a submerged moving object by using noise cepstrum
Wu, G. Q.
835-843

Estimation of the underwater explosion depth from the modified cepstral analysis of sea reverberation
Gromasheva, O. S.; Zakharov, V. A.
Acoustical Physics, 48, 3, May-Jun, 2002
273-278

Evaluation Of The Reverberation Decay Quality In Rooms Using The Autocorrelation Function And The Cepstrum Analysis Srodecki, K.
Acustica, 80, 3, May-Jun, 1994
216-225
Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition
Skowronski, M. D.; Harris, J. G.
Journal Of The Acoustical Society Of America, 116, 3, Sep, 2004
1774-1780

Extraction Of Modal Parameters From The Response Power Cepstrum
Randall, R. B.; Gao, Y.
Journal Of Sound And Vibration, 176, 2, Sep 15, 1994
179-193

Formant Estimation By Linear Transformation Of The Lpc Cepstrum
Broad, D. J.; Clermont, F.
2013-2017

Generalized Cepstral Modeling Of Degraded Speech And Its Application To Speech Enhancement
Kanno, T.; Kobayashi, T.; Imai, S.
Ieice Transactions On Fundamentals Of Electronics Communications And Computer Sciences, E76A, 8, Aug, 1993
1300-1367

The Importance Of Cepstral Parameter Correlations In Speech Recognition
Ljolje, A.
Computer Speech And Language, 8, 3, Jul, 1994
223-232

A 16kb/s wideband CELP-based speech coder using mel-generalized cepstral analysis
Ieice Transactions On Information And Systems, E83D, 4, Apr, 2000
876-883

Low Bit Rate Vocoder Based On An Improved Cepstral Method
Imai, S.; Abe, Y.
Journal Of The Acoustical Society Of America, 64, 1978
S160-S160

Mandarin speech recognition using segment-based cepstral comparison in noisy conditions
Tung, S. L.; Juang, Y. T.
Electronics Letters, 32, 17, Aug 15, 1996
1542-1543

Mel cepstrum parameterization and classification of opera singers' voices
Teresi, E.; De Poli, G.; Ferrero, F.
Acustica, 86, 3, May-Jun, 2000
568-577

Multisegment Multiple Vq Codebooks-Based Speaker-Independent Isolated-Word Recognition Using Unbiased Mel Cepstrum
Zhou, L. A.; Imai, S.
Ieice Transactions On Information And Systems, E78D, 9, Sep, 1995
Optimal temporal decomposition for voice morphing preserving Delta cepstrum
Shiraki, Y.
Ieice Transactions On Fundamentals Of Electronics Communications And Computer Sciences, E87A, 3, Mar, 2004
577-583

Speaking Fo and cepstral periodicity analysis of conversational speech in a 105-year-old woman: Variability of aging effects
Max, L.; Mueller, P. B.
Journal Of Voice, 10, 3, Sep, 1996
245-251

Spectral and cepstral properties of vowels as a means for characterizing velopharyngeal impairment in children
Cleft Palate-Craniofacial Journal, 33, 6, Nov, 1996
507-512

Spectral magnitude normalisation and cepstral coefficient transform for noisy-Lombard speech recognition
Chi, S. M.; Oh, Y. H.
Electronics Letters, 32, 19, Sep 12, 1996
1761-1763

Spectral peak-weighted liftering of cepstral coefficients for speech recognition
Kim, H. K.; Lee, H. S.
Ieice Transactions On Information And Systems, E83D, 7, Jul, 2000
1540-1549

Spectral representation of speech based on mel-generalized cepstral coefficients and its properties
Electronics And Communications In Japan Part Iii-Fundamental Electronic Science, 83, 3, 2000
50-59

Speech Analysis Using 2-Dimensional Cepstrum
Imai, S.; Kitamura, T.
Electronics & Communications In Japan, 59, 12, 1976
55-63

Speech Coding Based On Adaptive Mel-Cepstral Analysis And Its Evaluation
Electronics And Communications In Japan Part Iii-Fundamental Electronic Science, 78, 6, Jun, 1995
50-61

Speech Modeling Using Cepstral-Time Feature Matrices In Hidden Markov-Models
Vaseghi, S. V.; Conner, P. N.; Milner, B. P.
Iee Proceedings-I Communications Speech And Vision, 140, 5, Oct, 1993
317-320
Syllable intelligibility for temporally filtered LPC cepstral trajectories
Arai, T.; Pavel, M.; Hermansky, H.; Avendano, C.
Journal Of The Acoustical Society Of America, 105, 5, May, 1999
2783-2791

Talker Identification By Cepstrum
McKendree, F. S.
Journal of the Acoustical Society of America, 76, SUPPL. 1, 1984
S47

Use Of A-Priori Information In Generalized Cepstral Modeling Of Degraded Speech
Kanno, T.; Kobayashi, T.; Imai, S.
Electronics And Communications In Japan Part Iii-Fundamental Electronic Science,
78, 2, Feb, 1995
53-62

Use Of Cepstrum Method For Arrival Times Extraction Of Overlapping Signals Due To
Multipath Conditions In Shallow-Water
Fjell, P. O.
Journal Of The Acoustical Society Of America, 59, 1, 1976
209-211

Using Mel-frequency cepstral coefficients in missing data technique
Jun, Z.; Kwong, S.; Gang, W.; Hong, Q. Y.
340-346

Other

Cepstrum discrimination function (Corresp.)
Smith, R.;
Information Theory, IEEE Transactions on , Volume: 21 , Issue: 3 , May 1975
Pages:332 – 334

Further derivations of statistical measures in the cepstrum (Corresp.)
Hassab, J.;
Pages:540 - 544

Real Time Wideband Cepstrum Analysis Based on SAW Devices
Jack, M.A.; Grant, P.M.; Collins, J.H.;
Microwave Symposium Digest, MTT-S International , Volume: 77 , Issue: 1 , Jun
1977
Pages:324 – 327

Windowed sinusoidal waveforms analysis using the short time averaged cepstrum
Pages:379 – 383
Application of a cepstral distance measure in evoked potential processing
Rauner, H.; Appel, U.; Wolf, W.;
Pages: 280 – 283

Cepstrum constraints in ME spectral estimation
Lagunas, M.;
Pages: 1442 – 1445

Modeling of two-dimensional random fields by parametric cepstrum
Solo, V.;
Pages: 743 – 750

Implementation of SAW complex cepstrum and its applications
Davidson, J.; Messer, H.; Ur, H.;
Pages: 1823 – 1826

An approximate maximum likelihood ARMA estimator based on the power cepstrum
Kay, S.M.; Jackson, L.B.; Huang, J.; Djuric, P.M.;
Pages: 2344 - 2347 vol.4

Cumulant cepstrum of FM signals and high-resolution time delay estimation
Petropulu, A.; Nikias, C.L.; Proakis, J.G.;
Pages: 2642 - 2645 vol.5

The complex cepstrum and bicepstrum: analytic performance evaluation in the presence of Gaussian noise
Petropulu, A.P.; Nikias, C.L.;
Pages: 1246 – 1256

On the Cramer-Rao bound of finite-length cepstrum spectral estimators
Nadeu, C.; Lleida, E.;
Electronics Letters, Volume: 26, Issue: 14, 5 July 1990
Pages: 987 – 988

Study of the cepstral coefficient probability density function
Tourneret, J.-Y.; Lacaze, B.; Castanie, F.;
Pages: 440 - 443
Ill-conditioned inverse problems: a solution using the complex cepstrum of higher order spectra

Brooks, D.H.;
Pages:225 - 228 vol.5

Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing

Wear, K.A.; Wagner, R.F.; Insana, M.F.; Hall, T.J.;
Pages:50 - 58

System identification using higher order cepstrum

Gou Fei; Ying-Lin Yu; Chow, T.W.S.;
Pages:813 – 817

The Augmented Cepstrum

Bolton, A.; Viola, M.;
Pages:857 - 860

Hybrid higher order cepstrum and functional link network (HOCFLN) based blind equaliser

Alkulaibi, A.; Soraghan, J.; Hussain, A.;
Pages:446 - 449

System identification using the complex cepstrum and the evolutionary spectral theory

Al-Shoshan, A.I.;
Pages:299 - 302 vol.1

Aliasing in the complex cepstrum of linear-phase signals

Bysted, T.K.;
Pages:1598 - 1602 vol.3

A new noncausal AR system identification method based on cepstrum

Bin-Ning Chen; Xian-Da Zhang;
Pages:2505 - 2508 vol.4

Modified cepstral analysis for accurate estimation of echo parameters in telecommunication networks
Spectral estimation of ARMA processes using ARMA-cepstrum recursion
Kaderli, A.; Kayhan, A.S.;
Pages: 259 – 261

A pseudo-cepstrum based short-term postfilter
Hong Kook Kim; Hong-Goo Kang;
Pages: 99 - 101

Spectral estimation of nonstationary ARMA processes using the evolutionary cepstrum
Kaderli, A.; Kayhan, A.S.;
Signal Processing Letters, IEEE, Volume: 9, Issue: 4, April 2002
Pages: 130 - 132

A modified cepstrum analysis applied to vibrational signals
van der Merwe, N.T.; Hoffman, A.J.;
Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on,
Volume: 2, 1-3 July 2002
Pages: 873 - 876 vol.2

ARMA modelling based on root cepstral deconvolution
Sarpal, S.; Chilton, E.;
Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on,
Volume: 2, 1-3 July 2002
Pages: 745 - 748 vol.2

From frequency to quefrency: a history of the cepstrum
Oppenheim, A.V.; Schafer, R.W.;
Pages: 95 - 106

Jachan, M.; Matz, G.; Hlawatsch, F.;
Volume: 2, 17-21 May 2004
Pages: ii - 757-60 vol.2

Cepstral Analysis Of Broad-Band Radio-Emission - New Possibilities In Radio Astronomy
Afraimovich, E. L.
Astronomy And Astrophysics, 97, 2, 1981
366-372

Cepstral Analysis Of Modulated Radiosignals - New Possibilities Of Sounding
Afraimovitch, E. L.

Geomagnetizm I Aeronomiya, 21, 4, 1981
742-744

Hybrid higher-order cepstrum and functional link network-based blind equaliser
(HOCFLN)
Alkulaibi, A.; Soraghan, J. J.
Signal Processing, 62, 1, Oct, 1997
101-109

Hybrid Electro-Optical Power Cepstrum Analyzer
Baker, L. M.; Krile, T. F.
Journal Of The Optical Society Of America, 71, 12, 1981
1577-1577

Hybrid Electrooptical Power Cepstrum Analyzer
Baker, L. M.; Krile, T. F.
Applied Optics, 21, 17, 1982
3157-3161

Cepstrum Tuning Of A Transversal Filter Equalizer
Balakin, A. A.; Marimont, A. L.
Telecommunications And Radio Engineering, 38-9, 12, 1984
34-38

Separation Of 2 Close Echoes By Power Cepstrum
Balluet, J. C.; Lacoume, J. L.; Baudois, D.
Annales Des Telecommunications-Annals Of Telecommunications, 36, 7-8, 1981
439-456

Hf Multipath Dispersion Measurements Using Cepstral Signal-Processing
Eken, F.; Atmaca, F.; Hepsaydir, E.
Radio Science, 26, 1, Jan-Feb, 1991
15-21

Some Properties Of The Multidimensional Complex Cepstrum And Their Relationship
To The Stability Of Multidimensional Systems
Goodman, D. M.
Circuits Systems And Signal Processing, 6, 1, 1987
3-30

Power Cepstrum Applied To Multi-Peaked Wavelets
Hammond, J. K.; Peardon, L. G.
Journal Of Sound And Vibration, 48, 4, 1976
537-541

Network Function Theory And Complex Cepstrum
Hassab, J. C.
Journal Of Sound And Vibration, 41, 1, 1975
127-128

Discrimination Of Pulsed And Cw Signals Using Saw Power Cepstrum Analysis
Autoregression and cepstrum-domain filtering
Martin, R. J.
Signal Processing, 76, 1, Jul, 1999
93-97

Cepstrum Analysis - Theory, Applications And Calculation
Randall, R. B.; Hee, J.
Wireless World, 88, 1553, 1982
77-80

Cepstrum Analysis - Theory, Applications And Calculation.2
Randall, R. B.; Hee, J.
Wireless World, 88, 1554, 1982
88-90

Cepstrum Analysis
Randall, R. B.; Hee, J.
Wireless World, 88, 1556, 1982
78-80

Power Cepstrum As A Sharpening Function Of The Patterson Map
Sergeeva, M. V.; Kurkutova, E. N.
Doklady Akademii Nauk Sssr, 278, 1, 1984
112-116

A new cepstral prefiltering technique for estimating time delay under reverberant conditions
Stephenne, A.; Champagne, B.
Signal Processing, 59, 3, Jun, 1997
253-266

Estimation Of A Spectral-Function-Argument Trend In The Case Of A Complex Cepstrum Calculation
Zelenkov, A. V.
Radiotekhnikaya I Elektronika, 26, 4, 1981
752-761

An Adaptive Transform Coding System Based On Cepstral Control And Entropy Coding
Zelinski, R.
Frequenz, 36, 7-8, 1982
193-198

Filter Design

A stability test for 2-D recursive digital filters using the complex cepstrum
Ekstrom, M.; Twogood, R.;
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP
Design of minimum-phase FIR digital filters by differential cepstrum

Soo-Chang Pei; Shen-Tan Lu;
Pages:570 – 576

Improved design of minimum-phase FIR digital filters by cepstrum and fast Hartley transform

Pei, S.-C.; Jaw, S.-B.;
Electronics Letters, Volume: 26, Issue: 14, 5 July 1990
Pages:1063 – 1064

Identification of nonminimum phase MA systems using cepstral operations on slices of higher order spectra

Alshebeili, S.A.; Cetin, A.E.; Venetsanopoulos, A.N.;
Pages:634 – 637

Design of minimum-phase digital filters as the sum of two allpass functions using the cepstrum technique

Hai Huyen Dam; Nordebo, S.; Svensson, L.;
Pages:726 - 731

Digital all-pass filter design method based on complex cepstrum

Jovanovic-Dolecek, G.; Diaz-Carmona, J.;
Electronics Letters, Volume: 39, Issue: 8, 17 April 2003
Pages:695 – 697

Closed-form approach to design of all-pass digital filters using cepstral coefficients

Kidambi, S.S.;
Electronics Letters, Volume: 40, Issue: 12, 10 June 2004
Pages:720 - 721

Improved Design Of Minimum-Phase Fir Digital-Filters By Cepstrum And Fast Hartley Transform

Pei, S. C.; Jaw, S. B.
Electronics Letters, 26, 14, Jul 5, 1990
1063-1064

Design Of Minimum-Phase Fir Digital-Filter Through Cepstrum

Reddy, G. R.
Electronics Letters, 22, 23, Nov 6, 1986
1225-1227

2D/Image
Image processing in the context of a visual model
Stockham, T. G.;
Proc. IEEE, vol. 60, July 1972
Pages 828 - 842

Blind deconvolution of spatially invariant image blurs with phase
Cannon, M.;
Pages: 58 – 63

On the cepstrum of two-dimensional functions (Corresp.)
Rom, R.;
Information Theory, IEEE Transactions on , Volume: 21 , Issue: 2 , Mar 1975
Pages:214 – 217

Computation of two-dimensional complex cepstrum
Bhanu, B.;
Pages:140 - 143

Cepstral filtering on a columnar image architecture: a fast algorithm for binocular stereo segmentation
Yeshurun, Y.; Schwartz, E.L.;
Pages:759 – 767

3-D representation from time-sequenced biomedical images using 2-D cepstrum
Mitra, S.; Lee, D.J.; Krile, T.F.;
Pages:401 – 408

On cepstrum approach to sequential image matching
Pengling He; Yuanlong Cai; Dequn Liang;
Pages:797 - 800 vol.2

An accurate stereo correspondence method for textured scenes using improved power cepstrum techniques
Smith, P.W.; Nandhkumar, N.;
Pages:651 – 652

A Cepstrum-based technique for disparity detection in a stereo vision system
An improved power cepstrum based stereo correspondence method for textured scenes
Smith, P.W.; Nandhakumar, N.;
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Volume: 18, Issue: 3, March 1996
Pages: 338 – 348

Comparison of cepstrum based methods for radial blind deconvolution of ultrasound images
Taxt, T.;
Pages: 59 - 64

Taxt, T.;
Pages: 1417 – 1417

Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images
Taxt, T.;
Pages: 666 – 674

Cepstral filtering and analysis of image texture in the Radon domain
Germano Martins, A.C.; Rannayyan, R.M.;
Pages: 466 - 469 vol.1

Texture element extraction via cepstral filtering of projections
Rangayyan, R.M.; Martins, A.C.G.;
Pages: 217 - 219 vol.3

A robust cepstrum-based algorithm for image registration using projections
Sarnel, H.;
Pages: 813 - 816 vol.1

Pseudo cepstrum for assessing stereo quality of retinal images
Awawdeh, A.; Guoliang Fan;
Signals, Systems & Computers, 2003 The Thirty-Seventh Asilomar Conference on
Cepstrum analysis in holographic information systems
Titar, V.P.; Shpachenko, O.V.;
Pages:137 - 139

A scheme of oblivious ghost-watermarking based on cepstral analysis and correlation techniques
Koda, H.; Ogawa, T.; Sakata, S.;
Pages:996 - 999 vol.2

Complex cepstral filtering of images and echo removal in the radon domain
Martins, A. C. G.; Rangayyan, R. M.
Pattern Recognition, 30, 11, Nov, 1997
1931-1938

A new method of measuring the blocking effects of images based on cepstral information
Koda, H.; Tanaka, H.
1274-1282

The Complex Cepstrum Applied To 2-Dimensional Images
Lee, J. K.; Kabrisky, M.; Oxley, M. E.; Rogers, S. K.; Ruck, D. W.
Pattern Recognition, 26, 10, Oct, 1993
1579-1592

Detection Of Wall Vibrations By Means Of Cepstrum Analysis
Nowicki, A.; Marciniak, A.
Ultrasonic Imaging, 11, 4, Oct, 1989
273-282

Analysis Of Sequential Complex Images, Using Feature-Extraction And Two-Dimensional Cepstrum Techniques
Lee, D. J.; Mitra, S.; Krile, T. F.
Journal Of The Optical Society Of America A-Optics Image Science And Vision, 6, 6, Jun, 1989
863-870

Power Cepstrum And Spectrum Techniques Applied To Image Registration
Lee, D. J.; Krile, T. F.; Mitra, S.
Applied Optics, 27, 6, Mar 15, 1988
1099-1106

Presence Of Cepstral Peak In Random Reflected Ultrasound Signals
Kuc, R.; Haghkerdar, K.; Odonnell, M.
Ultrasonic Imaging, 8, 3, Jul, 1986
196-212

Presence Of Cepstral Peak In Random Reflected Ultrasound Signals
Kuc, R.; Haghkerdar, K.; Odonnell, M.
Ultrasonic Imaging, 8, 1, Jan, 1986
69-70

Phase Averaging Of Image Ensembles By Using Cepstral Gradients
Swan, H. W.
Journal Of The Optical Society Of America, 73, 11, 1983
1488-1492

Analytical Expressions Of 2-D Complex Cepstrum
Prasad, K. P.; Unbehauen, R.
Electronics Letters, 19, 20, 1983
831-832

Cepstral Analysis And Speckle-Interferometry Of Broad-Band Images
Afraimovich, E. L.
Radiotekhnika I Elektronika, 27, 2, 1982
271-277

Digital, Ultrasonic, Cepstral, And Spectral-Analysis Of Invitro And Invivo Liver And Kidney
Lizzi, F. L.; King, D. L.; Feleppa, E. J.; Jaremko, N.; Wai, P.
Ultrasonic Imaging, 3, 2, 1981
209-210

Digital, Ultrasonic Characterization Of Vitreal Membranes And Retinal Detachments By Spectral And Cepstral Analysis
Lizzi, F. L.; Feleppa, E. J.; Chang, S.; Herbst, J.
Ultrasonic Imaging, 3, 2, 1981
210-210

Digital Spectral, Cepstral, And Image-Processing Techniques For Tissue Characterization
Lizzi, F. L.; Feleppa, E. J.; Herbst, J.; Jaremko, N.
Ultrasonic Imaging, 2, 2, 1980
175-175

Applications

The application of cepstrum technique in power cable fault detection
Chen, C.; Roemer, L.
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '76, Volume: 1, Apr 1976
Pages: 764 – 767
Ultrasonic measurements of defects in metals using cepstral processing
Shankar, R.; McDonough, R.;
Pages:533 – 537

Power spectral, cepstral, and Hartley analyses of intracardiac electrograms for detection of tachyarrhythmias
Jadvar, H.; Ripley, K.L.; Arzbaecher, R.C.;
Pages:175 – 178

Cepstrum technique for multilayer structure characterization
Lu, X.M.; Reid, J.M.; Soetanto, K.; Weng, L.; Genis, V.;
Pages:1571 - 1574 vol.3

Cepstral coefficients as the new features for electromyography(EMG) pattern recognition
Wen-Juh Kang; Jiue-Rou Shiu; Cheng-Kung Cheng; Jin-Shin Lai; Hen-Wei Tsao; Te-Son Kuo;
Pages:1143 – 1144

The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition [movements classification]
Wen-Juh Kang; Jiue-Rou Shiu; Cheng-Kung Cheng; Jin-Shin Lai; Hen-Wai Tsao; Te-Son Kuo;
Biomedical Engineering, IEEE Transactions on , Volume: 42 , Issue: 8 , Aug. 1995
Pages:777 – 785

Partial Discharge Location on Power Cables Using Cepstrum Analysis
Bidhendi, H.N.; Qi Su;
Pages:278 - 281

On-line signature verification using LPC cepstrum and neural networks
Quen-Zong Wu; I-Chang Jou; Suh-Yin Lee;
Pages:148 - 153

Quantification of brain injury by EEG cepstral distance during transient global ischemia
Hao, L.; Ghodadra, R.; Thakor, N.V.;
Pages:1205 - 1206 vol.3
Improved EMG pattern recognition using the distribution plot of cepstrum
Chih-Lung Lin; Wen-Juh Kang; Cheng-Tao Hu; Shuenn-Tsong Young; Jin-Shin Lai;
Maw-Huei Lee; Te-Son Kuo;
International Conference of the IEEE , Volume: 5 , 29 Oct.-1 Nov. 1998
Pages:2620 - 2622 vol.5

New and used bills classification for cepstrum patterns
Teranishi, M.; Omato, S.; Kosaka, T.;
Pages:3978 - 3981 vol.6

A convolution model and a cepstral filtering algorithm for the reduction of blocking
artifacts
Nam Ik Cho;
, Volume: 2 , 8-11 Aug. 2000
Pages:608 - 611 vol.2

Flight parameter identification from cepstrum tracks
Gao, Y.; Pulford, G.; Sendt, J.; Maguer, A.;
2002
Pages:371 – 375

Differential cepstrum for radar HRR profiles-aligning
Yue Han; Jiangfeng Chen; Bingnan Pei;
TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers,
Pages:73 - 76 vol.1

Autocorrelation and cepstral methods for measurement of tibial cortical thickness
Wear, K.A.;
Pages:655 - 660

Free-field sound measurements of the Caribbean steelpan - an application of
cepstrum analysis
Muddeen, F.; Copeland, B.;
Pages:105 - 110

Cepstrum Analysis Predicts Gearbox Failure
Aatola, S.; Leskinen, R.
Noise Control Engineering Journal, 34, 2, Mar-Apr, 1990
53-59

Cepstral Analysis Of Interfering Delay Signals As Applied To Detection Of
Gravitational Lenses
Afraimovich, E. L.
Astronomy And Astrophysics, 105, 1, 1982
L5-L6

Cepstrum Analysis Of Interfering Delayed Signals As A Tool For Detecting Gravitational Lenses
Afraimovich, E. L.
Soviet Astronomy Letters, 8, 2, 1982
70-71

Cable-Line Diagnostics By Cepstrum Analysis Of The Transmitted Signal
Afraymovich, E. L.
Telecommunications And Radio Engineering, 37-8, 9, 1983
40-43

Cepstrum Signal-Processing For Subsurface Radar Problems
Avvakumov, S. Y.; Aleksandrov, A. I.; Metelkin, V. N.; Finkelstein, M. I.
Radiotekhnika I Elektronika, 29, 11, 1984
2173-2178

Cepstrum Analysis Of The Vibrations Of Rotor Machines
Belyi, A. A.; Gilevskii, S. V.; Mikulovich, V. I.
513-519

Spectrum, FFT and cepstrum analyses pinpoint machinery distress
Bloch, H. P.
Hydrocarbon Processing, 76, 9, Sep, 1997
19-19

Detection of corrugation and wheelflats of railway wheels using energy and cepstrum analysis of rail acceleration
Bracciali, A.; Cascini, G.
Proceedings Of The Institution Of Mechanical Engineers Part F-Journal Of Rail And Rapid Transit, 211, 2, 1997
109-116

Cepstral Domain Zero-Point Analysis For Flaw Size Determination Of Ultrasonic Echoes From Circular Targets
Coyne, P. J.
Materials Evaluation, 40, 10, 1982
1064-1067

Recognition of individual heart rate patterns with cepstral vectors
Curcie, D. J.; Craelius, W.
Biological Cybernetics, 77, 2, Aug, 1997
103-109

Improving The Resolution Of Ultrasonic Echoes From Thin Bondlines Using Cepstral Processing
Dewen, P. N.; Pialucha, T. P.; Cawley, P.
Journal Of Adhesion Science And Technology, 5, 8, 1991
667-689
Acceptance screening of turbopump gears using the cepstrum method
DiMaggio, S. J.
Journal Of Propulsion And Power, 18, 3, May-Jun, 2002
572-576

Use of the moving cepstrum integral to detect and localise tooth spalls in gears
El Badaoui, M.; Antoni, J.; Guillet, F.; Daniere, J.; Velex, P.
Mechanical Systems And Signal Processing, 15, 5, Sep, 2001
873-885

New applications of the real cepstrum to gear signals, including definition of a robust fault indicator
El Badaoui, M.; Guillet, F.; Daniere, J.
Mechanical Systems And Signal Processing, 18, 5, Sep, 2004
1031-1046

Cepstrum Analysis Of Surface-Waves In Acoustic Signature Inspection Of Railroad Wheels
Fahmy, M. N.; Finch, R. D.
Journal Of The Acoustical Society Of America, 75, 4, 1984
1283-1290

Cepstral Analysis Of The Ultrasonic Wave-Forms Obtained From Chronic Liver-Disease
Hepatology, 12, 2, Aug, 1990
405-405

Applying spectrum analysis and cepstrum analysis to examine the cavitation threshold in water and in salt solution
Gudra, T.; Opielinski, K. J.
Ultrasonics, 42, 1-9, Apr, 2004
621-627

Noise-Analysis Applications Made At Rajasthan-Atomic-Power-Station, Including Primary Coolant Flow-Rate Measurements Using N-16 Signal And The Cepstrum Technique Of Analysis
Joshi, S. S.; Arora, K. K.
Progress In Nuclear Energy, 9, 1982
65-73

Application Of Cepstral Techniques For The Determination Of Reflection Coefficients For Dispersive Systems.2. Comparison Between Theory And Experiment
Khalili, N.; Hammond, J. K.
Mechanical Systems And Signal Processing, 7, 5, Sep, 1993
437-449

Application Of Cepstral Techniques For The Determination Of Reflection Coefficients For Dispersive Systems.1. Theory And Numerical Results
Khalili, N.; Hammond, J. K.
Mechanical Systems And Signal Processing, 7, 5, Sep, 1993
425-435
Cepstral Analysis As A Tool For Robust Processing, Deverberation And Detection Of Transients
Kim, J. T.; Lyon, R. H.
Mechanical Systems And Signal Processing, 6, 1, Jan, 1992
1-15

Cepstral Analysis Of Hyperfine-Structure In Electron-Paramagnetic Resonance
Kirmse, D. W.
Journal Of Magnetic Resonance, 11, 1, 1973
1-8

Determination Of The State Of Gear Transmissions By The Method Of Cepstrum Analysis
Klimov, A. V.
Soviet Engineering Research, 3, 9, 1983
12-14

Liver-Tissue Characterization By Digital Spectrum And Cepstrum Analysis
Lizzi, F.; King, D.; Feleppa, E.; Jaremko, N.; Wai, P.
Ieee Transactions On Sonics And Ultrasonics, 29, 3, 1982
186-186

Removal Of Spurious Reflections From Computational Fluid Dynamic Solutions With The Complex Cepstrum
Meadows, K. R.; Hardin, J. C.
Aiaa Journal, 30, 1, Jan, 1992
29-34

Ultrasonic Measurement Of Small Vessel Dimensions By Mem Cepstrum
Minamiyama, M.; Yagi, S.
Journal of the Physiological Society of Japan, 50, 8-9, 1988
566

Long-Range Sensing Of Explosive Source Depths Using Cepstrum
Mitchell, S. K.; Bedford, N. R.
Journal Of The Acoustical Society Of America, 58, 1975
S20-S20

Cepstral Analysis Of Background Eeg
Molinari, L.; Dumermuth, G.
Electroencephalography And Clinical Neurophysiology, 66, 4, Apr, 1987
P72-P72

Quantitative-Determination Of Left-To-Right Shunts By Transfer-Function Tf And Cepstral Transformation Cet
Nyitrai, L.; Nagy, Z.
European Journal Of Nuclear Medicine, 9, 7, 1984
A48-A48

Quantitative Determination Of Left-To-Right Shunts By Transfer Function Tf And Cepstral Transformation Cet In Clinical Practice
Nyitrai, L.; Nagy, Z.; Dicso, F.; Rusznak, M.

Cepstrum analysis for surface waves on gels

Autoregressive and cepstral analyses of motor unit action potentials
Pattichis, C. S.; Elia, A. G.
Medical Engineering & Physics, 21, 6-7, Jul-Sep, 1999 405-419

A cepstral transformation technique for dissociation of wide QRS-type ECG signals using DCT
Paul, J. S.; Reddy, M. R.; Kumar, V. J.
Signal Processing, 75, 1, May, 1999 29-39

Cepstral And Direct Analysis Of Electron-Spin Resonance-Spectra Of Substituted Triarylaminium Cation Radicals - Correlation Of Spin Distribution With Substituent Constants
Pearson, G. A.; Rocek, M.; Walter, R. I.
Journal Of Physical Chemistry, 82, 10, 1978 1185-1192

Cepstrum Analysis And Gearbox Fault-Diagnosis
Randall, R. B.
Maintenance Management International, 3, 3, 1982 183-208

Maximum Entropy Method Spectral Estimation Applied To Power Cable Diagnostics Via Cepstrum Processing
Roemer, L. E.; Chen, C. S.
Journal Of The Franklin Institute-Engineering And Applied Mathematics, 310, 3, 1980 145-153

Cepstrum analysis of reflected pressure waves in stenosed arteries
Roffeh, Y.; Einav, S.; Liaw, J.; Whiting, J.; Keren, G.
Medical & Biological Engineering & Computing, 34, 2, Mar, 1996 175-180

Use Of Cepstrum Analysis And Cepstral Imaging In Characterizing Liver-Tissue
Rorke, M. C.; Lizzi, F. L.; King, D. L.; Feleppa, E. J.; Yaremko, M.; Wai, P.
Ultrasonic Imaging, 7, 1, 1985 80-80

The Potential Role Of Cepstral Analysis In Electro Encephalogram Research In Epilepsy
Saltzberg, B.
559-563

Cepstrum Analysis - An Advanced Technique In Vibration Analysis Of Defects In Rotating Machinery
Satyam, M.; Rao, V. S.; Devy, C. G.
Defence Science Journal, 44, 1, Jan, 1994
53-60

Cepstral Analysis Of Backscattered Ultrasound From The Normal And Infarcted Canine Myocardium
Circulation, 70, 4, 1984
396-396

Cepstral Analysis Of Backscattered Ultrasound From The Normal And Infarcted Canine Myocardium
American Heart Association Monograph, 107, 1984
II-396

Cepstral Analysis Of The Backscattered Ultrasound From Normal And Infarcted Myocardium - An Experimental-Study On Ultrasonic Tissue Characterization
824-824

Ultrasonic Tissue Characterization Of Chronic Liver-Disease Using Cepstral Analysis
Gastroenterology, 101, 5, Nov, 1991
1325-1331

Application of cepstral analysis to radar target discrimination using E-pulse cancellation
Wallinga, G. S.; Rothwell, E. J.; Chen, K. M.; Nyquist, D. P.
387-405

Power Cepstrum And Liftered Spectrum Analysis Of Human Pulse Signal
681-686

A new cepstral analysis procedure of recovering excitations for transient components of vibration signals and applications to rotating machinery condition monitoring
Zheng, G. T.; Wang, W. J.
Deconvolution

Blind deconvolution through digital signal processing
Stockham, T. G.; Cannon, T. M.; Ingebretsen, R. B.;
Proc. IEEE 63, 1975
Pages: 678 - 692

Spectral root homomorphic deconvolution system
Lim, J. S.;
Pages: 223 – 233

Deconvolution Using The Complex Cepstrum
Riley, H.B.; Alexander, W.E.;
Pages:854 – 858

Realizing homomorphic systems for convolution by time domain cepstral transformations
Sokolov, R.T.; Rogers, J.C.;
Pages:2257 - 2260 vol.3

Generalized Discrete Cepstral Analysis for Deconvolution of Source-Filter System with Discrete Spectra
Galas, T.; Rodet, X.;
Pages:0_71 - 0_72

Multichannel adaptive blind deconvolution using the complex cepstrum of higher order cross-spectra
Brooks, D.H.; Nikias, C.L.;
Pages:2928 – 2934

Blind convolution using signal reconstruction from partial higher order cepstral information
Petropulu, A.P.; Nikias, C.L.;
Pages:2088 – 2095

Blind system identification based on the complex cepstrum of the cyclic autocorrelation
Hatzinakos, D.;
Pages:726 – 729

A non-parametric cepstral method for blind channel identification from cyclostationary statistics
Li, Y.; Ding, Z.;
Pages:648 - 652 vol.2

Blind system identification based on the complex cepstrum of the cyclic autocorrelation
Hatzinakos, D.;
Pages:726 - 729 vol.1

Nonminimum phase channel deconvolution using the complex cepstrum of the cyclic autocorrelation
Hatzinakos, D.;
Pages:3026 – 3042

A multidimensional isomorphic operator and its properties-a proposal of finite-extent multidimensional cepstrum
Yamada, I.; Sakaniwa, K.; Tsujii, S.;
Pages:1766 – 1785

POTEA: the Power Cepstrum and Tricoherence Equalization Algorithm
Bessios, A.G.; Nikias, C.L.;
Pages:2667 – 2671

On time-domain deconvolution and the computation of the cepstrum
Krajnik, E.;
Pages:1908 - 1911 vol.3

Cepstrum-based deconvolution for speech dereverberation
Subramaniam, S.; Petropulu, A.P.; Wendt, C.;
Pages:392 – 396

Hybrid higher order cepstrum and functional link network (HOCFLN) based blind equaliser
Alkulaibi, A.; Soraghan, J.; Hussain, A.;
System identification using the complex cepstrum and the evolutionary spectral theory

Al-Shoshan, A.I.;
Pages: 299 - 302 vol.1

GEO

The queuefrency analysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe cracking

Bogert, B. P.; Healy M. J. R.;
Time series Analysis, M. Rosenblatt, Ed., 1963
Ch: 15 Pages: 209-243

The application of homomorphic deconvolution to shallow-water marine seismology—part I: Models

Stoffa, P. L.; Buhl, P.; Bryan, G. M.;
Pages: 401 - 416

The application of homomorphic deconvolution to shallow-water marine seismology—part II: Real Data

Buhl, P.; Stoffa, P. L.; Bryan, G. M.;
Pages: 417 - 426

Deconvolution of seismic data using homomorphic filtering

Tribolet, J. M.; Oppenheim, A. V.;
Pages: 68 - 74

Application of homomorphic deconvolution to seismology

Ulrych, T. J.;
Pages: 650 – 660

Homomorphic deconvolution by log spectral averaging

Otis, R. M.; Smith, R. B.;
Pages: 1146 - 1157

Detection And Estimation Of P-Pp Delay Time By Cepstrum Analysis

Sun, D. F. D.
Transactions-American Geophysical Union, 57, 12, 1976
963-963
Application Of Cepstrum Analysis To Discrimination Of Multiple Arrivals At First Zone Distances
Zimdars, M. A.; Taylor, R. W.; Willis, D. E.
Transactions-American Geophysical Union, 57, 2, 1976
85-85

Shear-Wave Properties Of Marine-Sediments Derived From Cepstral Analysis Of Background-Noise
Butler, R.
Geophysical Research Letters, 15, 8, Aug, 1988
836-839

A cepstral F statistic for detecting delay-fired seismic signals
Shumway, R. H.; Baumgardt, D. R.; Der, Z. A.
Technometrics, 40, 2, May, 1998
100-110

A cepstral F statistic for detecting delay-fired seismic signals (vol 40, pg 100, 1998)
Shumway, R. H.; Baumgardt, D. R.; Der, Z. A.
Technometrics, 42, 2, May, 2000
226-226

Application of a cepstral F statistic for improved depth estimation
Bonner, J. L.; Reiter, D. T.; Shumway, R. H.
Bulletin Of The Seismological Society Of America, 92, 5, Jun, 2002
1675-1693