Supplementary Materials for

Creation of a Bose-condensed gas of $^{87}$Rb by laser cooling
Jiazhong Hu,*† Alban Urvoy,* Zachary Vendeiro, Valentin Crépel, Wenlan Chen,
Vladan Vuletić†

*These authors contributed equally to this work.
†Corresponding author. Email: jiazhong@mit.edu (J.H.); vuletic@mit.edu (V.V.)

Published 24 November 2017, Science 358, 1078 (2017)
DOI: 10.1126/science.aan5614

This PDF file includes:

Materials and Methods
Figs. S1 to S4
Table S1
References
Materials and Methods

Experimental details

The two trapping beams differ in frequency by 160 MHz to avoid interference effects and their powers can be independently controlled by separate acousto-optic modulators. The intensity of the circularly polarized optical pumping beam on the D$_1$ transition at 795 nm is set to an off-resonant scattering rate $\Gamma_s \sim 2 \times 10^3$ s$^{-1}$ for the $|F = 2, m_F = 1\rangle \rightarrow |F = 2, m_F = 2\rangle$ transition at a detuning $\Delta_2/(2\pi) = -630$ MHz. An electro-optic modulator generates side-bands at 6.8 GHz, and the power ratio between the two frequency component is set to have a 3 times stronger scattering rate on the $|F = 1, m_F = 1\rangle \rightarrow |F = 2, m_F = 2\rangle$ transition. This prevents the atoms that have decayed to the $|F = 1\rangle$ state from undergoing heating Raman transitions. The atoms are imaged after a time-of-flight of typically 1.3 ms via absorption imaging on the cycling transition of the D$_2$-line, in the plane defined by the lattice beams, and at a 20° angle relative to the X lattice beams (see Fig. 1 of the main text). We summarize the relevant experimental parameters in Table S1.

Estimation of the phase space density $D$

We measure the kinetic energies $K_{xy}$ and $K_z$, and compare them to the trapping vibrational frequencies $\omega_{xy}$ and $\omega_z$. Hence, we estimate the relative ground state occupation along each direction when the chemical potential is zero. Assuming $T_\beta$ ($\beta = x, y$ or $z$) is the temperature along direction $\beta$ with the vibrational frequency $\omega_\beta$, the kinetic energy $K_\beta$ is related to $T_\beta$ by

$$K_\beta = \frac{1}{4} \hbar \omega + \frac{1}{2} \hbar \omega \frac{1}{e^{\hbar \omega / k_B T_\beta} - 1}.$$  \hfill (S1)

Then, we know the relative ground state occupation is

$$p_{0,\beta} = 1 - e^{-\frac{\hbar \omega_\beta}{k_B T_\beta}} = \frac{2}{4 K_\beta \hbar \omega_\beta + 1}. \hfill (S2)$$

2
The occupation of the 3D ground state is

\[ P_0 = p_{0,x}p_{0,y}p_{0,z} = \frac{2}{4K_z \hbar \omega_z + 1} \left( \frac{2}{4K_{xy} \hbar \omega_{xy} + 1} \right)^2. \]  

(S3)

Thus the phase space density \( \mathcal{D} \) is calculated as

\[ \mathcal{D} = N_1 P_0 = N_1 \frac{2}{4K_z \hbar \omega_z + 1} \left( \frac{2}{4K_{xy} \hbar \omega_{xy} + 1} \right)^2 \approx N \frac{\hbar \omega_z}{k_B T_z} \left( \frac{2}{4K_{xy} \hbar \omega_{xy} + 1} \right)^2, \]  

(S4)

where \( T_z = 2K_z/k_B \gg \hbar \omega_z/k_B \) is the measured temperature along \( z \). \( K_x = K_y = K_{xy} \) is the measured kinetic energy along \( x \) or \( y \), and \( N_1 \) is the peak atom number per lattice tube.

### Gaussian fit to the wings of the distribution

After we measure the velocity distribution of the ballistic expansion, we choose two lines (dashed orange in Fig. S1) on the slopes of the distributions, separating the central peak and the wings parts. These two lines are fixed for all the measurements with 1.3 ms expansion time. We fit a Gaussian function (red solid lines) to the data points lying outside of the two lines. Then we subtract the fitted Gaussian function from the data points to fit a non-negative quadratic function and add it to the top of the Gaussian fit (green solid lines).

### Three-body recombination measurement

It was previously reported that three-body losses are strongly reduced in a one-dimensional cloud (27, 28). Indeed we are not able to measure any significant three-body loss in the tubes. Therefore we measured the three-body recombination rate in a two-dimensional geometry by transferring the atoms to the Y optical lattice (i.e. by merging the tubes in the x direction) after the final cooling for 10 ms, and measuring the atom number as a function of the holding time (Fig. S2).

By fitting the theoretical model for the three-body loss, we obtain an initial loss timescale of \( \tau = 300 \) ms. Assuming a thermal velocity distribution for the atoms and averaging over the
Gaussian density profile in each trap and over the different lattice sites in the 1D lattice, we obtain the following relation between the initial peak density \( n \) in the 2D gas and \( \tau \):

\[
n = \left( \frac{9}{\tau K} \right)^{1/2} = 5.3 \times 10^{14} \text{ cm}^{-3}.
\]  

(S5)

Here we used the value \( K = 1.1 \times 10^{-28} \text{ cm}^6\text{s}^{-1} \) from (26) as the three-body loss coefficient for the \( |5S_{1/2}, F = 2\rangle \) state for a classical (non-condensed) gas. This density is also consistent with the peak atom number per tube derived from the atomic temperature and trap vibrational frequencies.

Detuning dependence of the cooling sequence

We also test a few different detuning for the optical pumping beam of dRSC. For each detuning setting, the laser intensity was adjusted to maintain a scattering rate of \( \Gamma_s \sim 2 \times 10^3 \text{ s}^{-1} \) on the \( |5S_{1/2}, F = 2, m_F = 1\rangle \rightarrow |5P_{1/2}, F = 2, m_F = 2\rangle \) transition. When using exactly the same cooling sequence as described in the main text, we succeed to produce a condensate also at a the smaller detuning \( \Delta_2/(2\pi) = -100 \text{ MHz} \) (Fig. S2C) but not at \( \Delta_2/(2\pi) = -20 \text{ MHz} \) or +40 MHz (Fig. S2A-B).

Velocity distribution of the Z and X direction

We measure the velocity distributions of the Z and X directions with 1.3 ms ballistic expansion time (Fig. S4). It shows a bimodal velocity distribution along the vertical direction and a Gaussian distribution along the horizontal direction. Near 95% atoms are in the vibrational ground state of X (or Y) direction. The velocity (momentum) distribution is showing the Gaussian profile of the vibrational ground state.

BEC regime
For our parameters, at the critical temperature for quantum degeneracy of $k_B T \approx \hbar \omega_{xy}$, the system is at the boundary between a 3D gas and a 1D gas (25). Furthermore, the dimensionless interaction parameter $\gamma = mg_1/\hbar^2 n_1$ (20), where $n_1$ is the 1D density, and $g_1 \sim 2\hbar \omega_{xy} a$ is the interaction strength for the 3D scattering length $a$, for our system is $\gamma \approx 2.7$ at the peak 1D density. This means that the system is also at the boundary between a weakly interacting Thomas-Fermi gas ($\gamma \ll 1$, for high linear density $n_1$) and a strongly correlated Tonks gas ($\gamma \gg 1$, for low $n_1$) (20, 23, 24). In fact, the latter has been measured to exhibit substantially lower collisional two-body and three-body loss due to the reduced correlation function (27, 28). This effect may also help further reduce the light-induced loss during dRSC in the near-1D geometry. We estimate average final thermalization rate as $10^3$ s$^{-1}$, including a factor of 5 reduction for $\gamma \approx 2.7$ (33), and a factor of $e^{-1.5}$ reduction for $k_B T < 2\hbar \omega_r$ (34).
Figure S1: The method of Gaussian fit to the wings of the distribution.
Figure S2: Atom number in the $|F = 2\rangle$ state as a function of the holding time in the Y lattice. The blue solid line is a fit to the analytic solution of the three-body loss decay, with an initial loss timescale of $\tau = 300$ ms.
Figure S3: Velocity distribution of the atoms along the Z direction after 80 ms of cooling in the final cooling stage, for various detunings of the cooling beam $\Delta \omega/(2\pi) = -20$ MHz (A), $\Delta \omega/(2\pi) = +40$ MHz (B) and $\Delta \omega/(2\pi) = -100$ MHz (C), averaged over 100 repetitions. The data is fitted with a bimodal distribution in the same way as in Fig. 2 of the main text.
Figure S4: Velocity distribution of the Z (vertical) and X (horizontal) directions with 1.3 ms expansion time. The trap is instantaneously turned off (\(<\) 100 ns) and the final stage cooling time is 200 ms. The red line is a Gaussian fit to the wings of the distribution.
### Table S1: Experimental parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap wavelength ( \lambda )</td>
<td>1064 nm</td>
</tr>
<tr>
<td>Power of each trapping beam</td>
<td>1.1 W</td>
</tr>
<tr>
<td>Waist</td>
<td>18 ( \mu )m</td>
</tr>
<tr>
<td>( \omega_{xy}/(2\pi) )</td>
<td>180 kHz</td>
</tr>
<tr>
<td>( \omega_{zD}/(2\pi) )</td>
<td>4.5 kHz</td>
</tr>
<tr>
<td>( \omega_z/(2\pi) )</td>
<td>6.3 kHz</td>
</tr>
<tr>
<td>Trap depth in the 1D lattice ( U/h )</td>
<td>13 MHz</td>
</tr>
<tr>
<td>Magnetic field ( B )</td>
<td>0.23 G</td>
</tr>
<tr>
<td>( \Delta_1/(2\pi) )</td>
<td>−660 MHz</td>
</tr>
<tr>
<td>( \Delta_2/(2\pi) )</td>
<td>−630 MHz</td>
</tr>
</tbody>
</table>
References and Notes


19. Supplementary materials.


