Hardware Architectures for Deep Neural Networks

MICRO Tutorial

October 16, 2016

Website: http://eyeriss.mit.edu/tutorial.html
Speakers

Joel Emer
Senior Distinguished Research Scientist
NVIDIA
Professor
MIT

Vivienne Sze
Professor
MIT

Yu-Hsin Chen
PhD Candidate
MIT
Outline

• Overview of Deep Neural Networks
• DNN Development Resources
• Survey of DNN Computation
• DNN Accelerators
• Network Optimizations
• Benchmarking Metrics for Evaluation
• DNN Training
Participant Takeaways

• Understand the key design considerations for DNNs

• Be able to evaluate different implementations of DNN with benchmarks and comparison metrics

• Understand the tradeoffs between various architectures and platforms

• Assess the utility of various optimization approaches

• Understand recent implementation trends and opportunities
Background of Deep Neural Networks
AI and Machine Learning

“Field of study that gives computers the ability to learn without being explicitly programmed”

– Arthur Samuel, 1959
Artificial Intelligence

Machine Learning

Brain-Inspired

An algorithm that takes its basic functionality from our understanding of how the brain operates.
How Does the Brain Work?

- The basic computational unit of the brain is a neuron → 86B neurons in the brain
- Neurons are connected with nearly $10^{14} – 10^{15}$ synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights – learnable & control influence strength

Image Source: Stanford
Spiking-based Machine Learning

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking
Spiking Architecture

- Brain-inspired
- Integrate and fire
- Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016]

Machine Learning with Neural Networks

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking

Neural Networks
Neural Networks: Weighted Sum

- Image Source: Stanford
Many Weighted Sums

Image Source: Stanford
Deep Learning

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking

Neural Networks

Deep Learning
What is Deep Learning?

Image Source: [Lee et al., Comm. ACM 2011]
Why is Deep Learning Hot Now?

- **Big Data Availability**
 - 350M images uploaded per day
 - 2.5 Petabytes of customer data hourly
 - 300 hours of video uploaded every minute

- **GPU Acceleration**

- **New ML Techniques**
ImageNet Challenge

Image Classification Task:
1.2M training images • 1000 object categories

Object Detection Task:
456k training images • 200 object categories
ImageNet: Image Classification Task

Top 5 Classification Error (%)

- Large error rate reduction due to Deep CNN

- Hand-crafted feature-based designs
- Deep CNN-based designs

[Russakovsky et al., IJCV 2015]
GPU Usage for ImageNet Challenge

Top 5 Error Rate

of entries using GPUs

- 2010: 28%
- 2011: 26%
- 2012: 16%
- 2013: 12%
- 2014: 7%
Deep Learning on Images

- Image Classification
- Object Localization
- Object Detection
- Image Segmentation
- Action Recognition
- Image Generation
Deep Learning for Speech

- Speech Recognition
- Natural Language Processing
- Speech Translation
- Audio Generation
Deep Learning on Games

Google DeepMind AlphaGo
Medical Applications of Deep Learning

• Brain Cancer Detection

Image Source: [Jermyn et al., JBO 2016]
Deep Learning for Self-driving Cars
Connectomics – Finding Synapses

Machine Learning requires orders of Magnitude more computation than other parts

(1) EM
(2) ML Membrane Detection
(3) Watershed
(4) Agglomeration
(5) Merging
(6) Synapses
(7) Skeletons
(8) Graph

Image Source: MIT
Mature Applications

• Image
 o Classification: image to object class
 o Recognition: same as classification (except for faces)
 o Detection: assigning bounding boxes to objects
 o Segmentation: assigning object class to every pixel

• Speech & Language
 o Speech Recognition: audio to text
 o Translation
 o Natural Language Processing: text to meaning
 o Audio Generation: text to audio

• Games
Emerging Applications

• **Medical** (Cancer Detection, Pre-Natal)
• **Finance** (Trading, Energy Forecasting, Risk)
• **Infrastructure** (Structure Safety and Traffic)
• **Weather Forecasting and Event Detection**

This tutorial will focus on image classification

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/
Opportunities

$500B Market over 10 Years!

Source: Tractica

Image Source: Tractica
From EE Times – September 27, 2016

”Today the job of training machine learning models is limited by compute, if we had faster processors we’d run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater.”

– Greg Diamos, Senior Researcher, SVAIL, Baidu
Overview of Deep Neural Networks
DNN Timeline

- **1940s**: Neural networks were proposed
- **1960s**: Deep neural networks were proposed
- **1990s**: Early hardware for shallow neural nets
 - Example: Intel ETANN (1992)
- **1998**: LeNet for MNIST
- **2011**: Speech recognition using DNN (Microsoft)
- **2012**: Deep learning starts supplanting traditional ML
 - AlexNet for image classification
- **Early 2010s**: Rise of DNN accelerator research
 - Examples: Neuflow, DianNao, etc.
Publications at Architecture Conferences

- MICRO, ISCA, HPCA, ASPLOS

of Publications over the Years

- Micro
- ISCA
- HPCA
- ASPLOS
So Many Neural Networks!

A mostly complete chart of

Neural Networks

http://www.asimovinstitute.org/neural-network-zoo/
DNN Terminology 101

Image Source: Stanford
DNN Terminology 101

Image Source: Stanford
DNN Terminology 101

Each synapse has a **weight** for neuron **activation**

\[Y_{\downarrow j} = \text{activation}(\sum_{i=1}^{3} W_{ij} \cdot X_{\downarrow i}) \]
DNN Terminology 101

Weight Sharing: multiple synapses use the *same* weight value

\[Y_{ij} = \text{activation}(\sum_{i=1}^{3} W_{ij} * X_j) \]
DNN Terminology 101

L1 Input Neurons
e.g. image pixels

Layer 1

L1 Output Neurons
a.k.a. Activations

Image Source: Stanford
DNN Terminology 101

Layer 2

L2 Input Activations

L2 Output Activations

input layer

hidden layer

output layer

Image Source: Stanford
DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected
DNN Terminology 101

Image Source: Stanford
Popular Types of DNNs

- **Fully-Connected NN**
 - feed forward, a.k.a. multilayer perceptron (MLP)

- **Convolutional NN (CNN)**
 - feed forward, sparsely-connected w/ weight sharing

- **Recurrent NN (RNN)**
 - feedback

- **Long Short-Term Memory (LSTM)**
 - feedback + Storage
Inference vs. Training

• **Training: Determine weights**
 - **Supervised:**
 • Training set has inputs and outputs, i.e., labeled
 - **Reinforcement:**
 • Output assessed via rewards and punishments
 - **Unsupervised:**
 • Training set is unlabeled
 - **Semi-supervised:**
 • Training set is partially labeled

• **Inference: Apply weights to determine output**
Deep Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

CONV Layer → Low-Level Features → ... → CONV Layer → High-Level Features → FC Layer → Classes

1 – 3 Layers
Deep Convolutional Neural Networks

- **CONV Layer** → Low-Level Features → \(\cdots\) → **CONV Layer** → High-Level Features → **FC Layer** → Classes

Convolution

Activation
Deep Convolutional Neural Networks

CONV Layer → Low-Level Features → ... → CONV Layer → High-Level Features → FC Layer → Classes

Fully Connected

Activation
Deep Convolutional Neural Networks

Optional layers in between CONV and/or FC layers

CONV Layer → NORM Layer → POOL Layer → CONV Layer → High-Level Features → FC Layer → Classes

Normalization

Pooling
Convolutions account for more than 90% of overall computation, dominating runtime and energy consumption.
Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)
Convolution (CONV) Layer

filter (weights)

input fmap

Element-wise Multiplication
Convolution (CONV) Layer

- **Filter (weights)**
- **Input fmap**
- **Output fmap**
- **Element-wise Multiplication**
- **Partial Sum (psum)** Accumulation
- **An output activation**
Convolution (CONV) Layer

Sliding Window Processing

filter (weights)
Convolution (CONV) Layer

Many Input Channels (C)
Convolution (CONV) Layer

- Many filters (M)
- Many Output Channels (M)
- Input fmap
- Output fmap
Convolution (CONV) Layer

Many Input fmaps (N)

Many Output fmaps (N)
CONV Layer Implementation

\[
O[n][m][x][y] = \text{Activation}(B[m]) + \sum_{i=0}^{R-1} \sum_{j=0}^{S-1} \sum_{k=0}^{C-1} I[n][k][Ux + i][Uy + j] \times W[m][k][i][j],
\]

\[
0 \leq n < N, 0 \leq m < M, 0 \leq y < E, 0 \leq x < F,
\]

\[
E = (H - R + U)/U, F = (W - S + U)/U.
\]

<table>
<thead>
<tr>
<th>Shape Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>fmap batch size</td>
</tr>
<tr>
<td>(M)</td>
<td># of filters / # of output fmap channels</td>
</tr>
<tr>
<td>(C)</td>
<td># of input fmap/filter channels</td>
</tr>
<tr>
<td>(H/W)</td>
<td>input fmap height/width</td>
</tr>
<tr>
<td>(R/S)</td>
<td>filter height/width</td>
</tr>
<tr>
<td>(E/F)</td>
<td>output fmap height/width</td>
</tr>
<tr>
<td>(U)</td>
<td>convolution stride</td>
</tr>
</tbody>
</table>
CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```python
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
        for (x=0; x<F; x++) {
            for (y=0; y<E; y++) {
                O[n][m][x][y] = B[m];
                for (i=0; i<R; i++) {
                    for (j=0; j<S; j++) {
                        for (k=0; k<C; k++) {
                            O[n][m][x][y] += I[n][k][Ux+i][Uy+j] × W[m][k][i][j];
                        }
                    }
                } O[n][m][x][y] = Activation(O[n][m][x][y]);
            }
        }
    }
}
```
Traditional Activation Functions

Sigmoid

\[y = \frac{1}{1 + e^{-x}} \]

Hyperbolic Tangent

\[y = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]
Modern Activation Functions

Rectified Linear Unit (ReLU)

\[y = \max(0, x) \]

Leaky ReLU

\[y = \max(\alpha x, x) \]
\[\alpha = \text{small const. (e.g. 0.1)} \]

Exponential LU

\[y = \begin{cases} x, & x \geq 0 \\ \alpha(e^x - 1), & x < 0 \end{cases} \]
Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 ($E = F = 1$)
- Filters as large as input fmaps ($R = H$, $S = W$)
- Implementation: **Matrix Multiplication**
FC Layer – from CONV Layer POV

filters

input fmaps

output fmaps

filters

input fmaps

output fmaps

filters

input fmaps

output fmaps

filters

input fmaps

output fmaps
Pooling (POOL) Layer

- Reduce resolution of each channel independently
- Increase translation-invariance and noise-resilience
- Overlapping or non-overlapping → depending on stride

Image Source: Caffe Tutorial
Naïve 6-layer for-loop max-pooling implementation:

```c
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
        for (x=0; x<F; x++) {
            for (y=0; y<E; y++) {
                max = -Inf;
                for (i=0; i<R; i++) {
                    for (j=0; j<S; j++) {
                        if (I[n][m][Ux+i][Uy+j] > max) {
                            max = I[n][m][Ux+i][Uy+j];
                        }
                    }
                }
                O[n][m][x][y] = max;
            }
        }
    }
}
```

for each pooled value

find the max with in a window
Normalization (NORM) Layer

- **Batch Normalization (BN)**
 - Normalize activations towards mean=0 and std. dev.=1 based on the statistics of the training dataset
 - put in between CONV/FC and Activation function

Believed to be key to getting high accuracy and faster training on very deep neural networks.

[ioffe et al., ICML 2015]
BN Layer Implementation

- The normalized value is further scaled and shifted, the parameters of which are learned from training data.

\[
y = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \gamma + \beta
\]

- data mean
- data std. dev.
- learned scale factor
- learned shift factor
- small const. to avoid numerical problems
Normalization (NORM) Layer

- Local Response Normalization (LRN)
 - Tries to mimic the inhibition scheme in the brain

Now deprecated!

Image Source: Caffe Tutorial
Relevant Components for Tutorial

• Typical operations that we will discuss:
 – Convolution (CONV)
 – Fully-Connected (FC)
 – Max Pooling
 – ReLU