Hardware Architectures for Deep Neural Networks

MICRO Tutorial

October 16, 2016

Website: http://eyeriss.mit.edu/tutorial.html

Massachusetts Institute of Technology

Speakers

Joel Emer

Senior Distinguished Research Scientist

NVIDIA

Professor

MIT

Professor MIT

Yu-Hsin Chen PhD Candidate MIT

Outline

- Overview of Deep Neural Networks
- DNN Development Resources
- Survey of DNN Computation
- DNN Accelerators
- Network Optimizations
- Benchmarking Metrics for Evaluation
- DNN Training

Participant Takeaways

- Understand the key design considerations for DNNs
- Be able to evaluate different implementations of DNN with benchmarks and comparison metrics
- Understand the tradeoffs between various architectures and platforms
- Assess the utility of various optimization approaches
- Understand recent implementation trends and opportunities

Background of Deep Neural Networks

AI and Machine Learning

Artificial Intelligence

Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Brain-Inspired Machine Learning

How Does the Brain Work?

- The basic computational unit of the brain is a neuron
 → 86B neurons in the brain
- Neurons are connected with nearly **10¹⁴ 10¹⁵ synapses**
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

Spiking-based Machine Learning

Spiking Architecture

- Brain-inspired
- Integrate and fire
- Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016] http://www.research.ibm.com/articles/brain-chip.shtml

Machine Learning with Neural Networks

Neural Networks: Weighted Sum

Many Weighted Sums

Deep Learning

What is Deep Learning?

Why is Deep Learning Hot Now?

ImageNet Challenge

IM GENET

Image Classification Task:

1.2M training images • 1000 object categories

Object Detection Task:

456k training images • 200 object categories

ImageNet: Image Classification Task

GPU Usage for ImageNet Challenge

Deep Learning on Images

- Image Classification
- Object Localization
- Object Detection

- Image Segmentation
- Action Recognition
- Image Generation

Deep Learning for Speech

- Speech Recognition
- Natural Language Processing
- Speech Translation
- Audio Generation

Deep Learning on Games

Google DeepMind AlphaGo

Medical Applications of Deep Learning

Brain Cancer Detection

Image Source: [Jermyn et al., JBO 2016]

Deep Learning for Self-driving Cars

Connectomics – Finding Synapses

Image Source: MIT

Mature Applications

Image

- Classification: image to object class
- Recognition: same as classification (except for faces)
- Detection: assigning bounding boxes to objects
- Segmentation: assigning object class to every pixel

Speech & Language

- Speech Recognition: audio to text
- Translation
- Natural Language Processing: text to meaning
- Audio Generation: text to audio
- Games

Emerging Applications

- Medical (Cancer Detection, Pre-Natal)
- Finance (Trading, Energy Forecasting, Risk)
- Infrastructure (Structure Safety and Traffic)
- Weather Forecasting and Event Detection

This tutorial will focus on image classification

27

Opportunities

\$500B Market over 10 Years!

Image Source: Tractica

Opportunities

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

- Greg Diamos, Senior Researcher, SVAIL, Baidu

Overview of Deep Neural Networks

DNN Timeline

- 1940s: Neural networks were proposed
- 1960s: Deep neural networks were proposed
- 1990s: Early hardware for shallow neural nets

- Example: Intel ETANN (1992)

- 1998: LeNet for MNIST
- 2011: Speech recognition using DNN (Microsoft)
- 2012: Deep learning starts supplanting traditional ML

AlexNet for image classification

- Early 2010s: Rise of DNN accelerator research
 - Examples: Neuflow, DianNao, etc.

Publications at Architecture Conferences

• MICRO, ISCA, HPCA, ASPLOS

So Many Neural Networks!

|||iT 🔞

http://www.asimovinstitute.org/neural-network-zoo/

Image Source: Stanford

Image Source: Stanford

Each synapse has a weight for neuron activation

Weight Sharing: multiple synapses use the same weight value

Image Source: Stanford

Image Source: Stanford

Popular Types of DNNs

- Fully-Connected NN
 - feed forward, a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
 - feed forward, sparsely-connected w/ weight sharing
- Recurrent NN (RNN)
 - feedback
- Long Short-Term Memory (LSTM)
 - feedback + Storage

Inference vs. Training

- Training: Determine weights
 - Supervised:
 - Training set has inputs and outputs, i.e., labeled
 - Reinforcement:
 - Output assessed via rewards and punishments
 - Unsupervised:
 - Training set is unlabeled
 - Semi-supervised:
 - Training set is partially labeled
- Inference: Apply weights to determine output

Optional layers in between CONV and/or FC layers

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

a plane of input activations a.k.a. **input feature map (fmap)**

← S -

Element-wise Multiplication

Sliding Window Processing

Many Input Channels (C)

CONV Layer Implementation

 $0 \leq n < N, 0 \leq m < M, 0 \leq y < E, 0 \leq x < F,$

$$E = (H - R + U)/U, F = (W - S + U)/U.$$

Shape Parameter	Description
N	fmap batch size
M	# of filters / # of output fmap channels
C	# of input fmap/filter channels
H/W	input fmap height/width
R/S	filter height/width
E/F	output fmap height/width
U	convolution stride

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

1411

Traditional Activation Functions

 Image Source: Caffe Tutorial

Modern Activation Functions

Image Source: Caffe Tutorial

Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 (E = F = 1)
- Filters as large as input fmaps (R = H, S = W)
- Implementation: Matrix Multiplication

FC Layer – from CONV Layer POV

Pooling (POOL) Layer

- Reduce resolution of each channel independently
- Increase translation-invariance and noise-resilience
- Overlapping or non-overlapping \rightarrow depending on stride •

Шіг

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:

III T

Normalization (NORM) Layer

- Batch Normalization (BN)
 - Normalize activations towards mean=0 and std.
 dev.=1 based on the statistics of the training dataset
 - put in between CONV/FC and Activation function

Believed to be key to getting high accuracy and faster training on very deep neural networks.

BN Layer Implementation

• The normalized value is further scaled and shifted, the parameters of which are learned from training

Normalization (NORM) Layer

- Local Response Normalization (LRN)
 - Tries to mimic the inhibition scheme in the brain

Now deprecated!

Relevant Components for Tutorial

- Typical operations that we will discuss:
 - Convolution (CONV)
 - Fully-Connected (FC)
 - Max Pooling
 - ReLU

