Survey of DNN Hardware

MICRO Tutorial (2016)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen
CPUs Are Targeting Deep Learning

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM– 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi “optimized for deep learning”

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNI/W and AVX512-4FMAPS), October 2016

Image Source: Intel, Data Source: Next Platform
GPUs Are Targeting Deep Learning

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM – 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Source: Nvidia
Systems for Deep Learning

Nvidia DGX-1 (2016)

- 170 TFLOPS
- 8× Tesla P100, Dual Xeon
- NVLink Hybrid Cube Mesh
- Optimized DL Software
- 7 TB SSD Cache
- Dual 10GbE, Quad IB 100Gb
- 3RU – 3200W

Source: Nvidia
Cloud Systems for Deep Learning

Facebook’s Deep Learning Machine

- Open Rack Compliant
- Powered by 8 Tesla M40 GPUs
- 2x Faster Training for Faster Deployment
- 2x Larger Networks for Higher Accuracy

Source: Facebook
SOCs for Deep Learning Inference

Nvidia Tegra - Parker

- GPU: 1.5 TeraFLOPS FP16
- 4GB LPDDR4 @ 25.6 GB/s
- 15 W TDP
 (1W idle, <10W typical)
- 100 GFLOPS/W (FP16)
- 16nm process

Xavier: next gen Tegra to be an “AI supercomputer”

Source: Nvidia
Mobile SOCs for Deep Learning

Samsung Exynos (ARM Mali)

Exynos 8 Octa 8890

- GPU: 0.26 TFLOPS
- LPDDR4 @ 28.7 GB/s
- 14nm process

FPGAs for Deep Learning

Intel/Altera Stratix 10
- 10 TFLOPS FP32
- HBM2 integrated
- Up to 1 GHz
- 14nm process
- 80 GFLOPS/W

Xilinx Virtex UltraSCALE+
- DSP: up to 21.2 TMACS
- DSP: up to 890 MHz
- Up to 500Mb On-Chip Memory
- 16nm process
Kernel Computation
Fully-Connected (FC) Layer

- Matrix–Vector Multiply:
 - Multiply all inputs in all channels by a weight and sum

![Diagram showing the multiplication of filters, input feature maps, and output feature maps.](image)

\[\text{Filters} \times \text{Input fmaps} = \text{Output fmaps} \]
Fully-Connected (FC) Layer

- Batching (N) turns operation into a Matrix-Matrix multiply
Fully-Connected (FC) Layer

- Implementation: **Matrix Multiplication (GEMM)**
 - **CPU**: OpenBLAS, Intel MKL, etc
 - **GPU**: cuBLAS, cuDNN, etc
- Optimized by tiling to storage hierarchy
Convolution (CONV) Layer

- Convert to matrix mult. using the Toeplitz Matrix

Convolution:

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\ast
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
=\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\]

Matrix Mult:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 5 & 6 \\
4 & 5 & 7 & 8 \\
5 & 6 & 8 & 9
\end{bmatrix}
\times
\begin{bmatrix}
1 & 2 & 4 & 5 \\
2 & 3 & 5 & 6 \\
4 & 5 & 7 & 8 \\
5 & 6 & 8 & 9
\end{bmatrix}
=\begin{bmatrix}
1 & 2 & 3 & 4
\end{bmatrix}
\]
Convolution (CONV) Layer

- Convert to matrix mult. using the Toeplitz Matrix

Convolution:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array} \times \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array} = \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\]

数据是重复的

Matrix Mult:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array} \times \begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array} = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}
\]
Convolution (CONV) Layer

• Multiple Channels and Filters

Filter 1

Filter 2

Chnl 1

Chnl 2

Input Fmap

*

=

Output Fmap 1

Output Fmap 2
Convolution (CONV) Layer

- Multiple Channels and Filters

![Diagram of Convolution Layer]

Toeplitz Matrix (w/ redundant data)

- Filter 1
- Filter 2
- Chnl 1
- Chnl 2

Output Fmap 1
Output Fmap 2
Computational Transforms
Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute
Gauss’s Multiplication Algorithm

\[(a + bi)(c + di) = (ac - bd) + (bc + ad)i.\]

4 multiplications + 3 additions

\[k_1 = c \cdot (a + b)\]
\[k_2 = a \cdot (d - c)\]
\[k_3 = b \cdot (c + d)\]
Real part = \[k_1 - k_3\]
Imaginary part = \[k_1 + k_2\].

3 multiplications + 5 additions
Strassen

\[
\begin{align*}
P1 &= a(f - h) \\
P2 &= (a + b)h \\
P3 &= (c + d)e \\
P4 &= d(g - e) \\
P5 &= (a + d)(e + h) \\
P6 &= (b - d)(g + h) \\
P7 &= (a - c)(e + f)
\end{align*}
\]

\[
\begin{array}{ccc}
& a & b \\
A & e & f \\
& c & d \\
B & & \\
& ae + bg & af + bh \\
& ce + dg & cf + dh
\end{array}
\]

\[AB = \begin{bmatrix}
P5 + P4 - P2 + P6 \\
P3 + P4 \\
P1 + P2 \\
P1 + P5 - P3 - P7
\end{bmatrix}\]

8 multiplications + 4 additions

7 multiplications + 18 additions

7 multiplications + 13 additions (for constant B matrix – weights)

[Cong et al., ICANN, 2014]
Strassen

- Reduce the complexity of matrix multiplication from $\Theta(N^3)$ to $\Theta(N^{2.807})$ by reducing multiplications

- Comes at the price of reduced numerical stability and requires significantly more memory

Complexity

Winograd 1D – F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

\[
F(2, 3) = \begin{bmatrix}
 d_0 & d_1 & d_2 \\
 d_1 & d_2 & d_3 \\
\end{bmatrix}
\]

6 multiplications + 4 additions

\[
m_1 = (d_0 - d_2)g_0 \\
m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2} \\
m_4 = (d_1 - d_3)g_2 \\
m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}
\]

4 multiplications + 12 additions + 2 shifts
4 multiplications + 8 additions (for constant weights)

[Lavin et al., ArXiv 2015]
Winograd 2D - F(2x2, 3x3)

- 1D Winograd is nested to make 2D Winograd

Filter

\[
\begin{array}{ccc}
 g_{00} & g_{01} & g_{02} \\
 g_{10} & g_{11} & g_{12} \\
 g_{20} & g_{21} & g_{22}
\end{array}
\]

Input Fmap

\[
\begin{array}{cccc}
 d_{00} & d_{01} & d_{02} & d_{03} \\
 d_{10} & d_{11} & d_{12} & d_{13} \\
 d_{20} & d_{21} & d_{22} & d_{23} \\
 d_{30} & d_{31} & d_{32} & d_{33}
\end{array}
\]

Output Fmap

\[
\begin{array}{cc}
 y_{00} & y_{01} \\
 y_{10} & y_{11}
\end{array}
\]

Original: 36 multiplications

Winograd: 16 multiplications \rightarrow 2.25 times reduction
Winograd Halos

- Winograd works on a small region of output at a time, and therefore uses inputs repeatedly.
Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Winograd speedup over GEMM-based convolution (VGG-E layers, N=1)

Meta-parameters (data layouts, texture memory) afford higher performance

Using texture memory for convolutions: **13% inference speedup**

(GoogLeNet, batch size 1)

Source: Nvidia
Winograd Summary

• Winograd is an optimized computation for convolutions

• It can significantly reduce multiplies
 – For example, for 3x3 filter by 2.5X

• But, each filter size is a different computation.
Winograd as a Transform

\[B^T = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]

\[G = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \]

\[A^T = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix} \]

filter \(g = [g_0 \ g_1 \ g_2]^T \)

input \(d = [d_0 \ d_1 \ d_2 \ d_3]^T \)

 Dot-product

\[Y = A^T \left[\begin{bmatrix} GgG^T \end{bmatrix} \odot [B^T \ dB] \right] A \]

Transform inputs

Transform output

GgG^T can be precomputed

[Lavin et al., ArXiv 2015]
FFT Flow

filter (weights)

input fmap

output fmap

an output activation

FFT(W)

FFT(I)

FFT(0)
FFT Overview

• Convert filter and input to frequency domain to make convolution a simple multiply then convert back to time domain.

• Convert direct convolution $O(N_o^2N_f^2)$ computation to $O(N_o^2\log_2N_o)$

• So note that computational benefit of FFT decreases with decreasing size of filter

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014]
FFT Costs

• Input and Filter matrices are ‘0-completed’,
 – i.e., expanded to size $E+R-1 \times F+S-1$

• Frequency domain matrices are same dimensions as input, but complex.

• FFT often reduces computation, but requires much more memory space and bandwidth
Optimization opportunities

• FFT of real matrix is symmetric allowing one to save $\frac{1}{2}$ the computes
• Filters can be pre-computed and stored, but convolutional filter in frequency domain is much larger than in time domain
• Can reuse frequency domain version of input for creating different output channels to avoid FFT re-computations
cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:
CPU: 1x E5-2680v3 12 Core 2.5GHz, 128GB System Memory, Ubuntu 14.04
M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

Source: Nvidia
GPU/CPU Benchmarking

• Industry performance website
• https://github.com/jcjohson/cnn-benchmarks

• DeepBench
 – Profile layer by layer (Dense Matrix Multiplication, Convolutions, Recurrent Layer, All-Reduce)
GPU/CPU Benchmarking

- Minibatch = 16
- Image size 224x224
- cuDNN 5.0 or 5.1
- Torch

<table>
<thead>
<tr>
<th>Platform</th>
<th>AlexNet</th>
<th>VGG-16</th>
<th>GoogLeNet (v1)</th>
<th>ResNet-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascal Titan X (F+B)</td>
<td>14.56</td>
<td>128.62</td>
<td>39.14</td>
<td>103.58</td>
</tr>
<tr>
<td>Pascal Titan X (F)</td>
<td>5.04</td>
<td>41.59</td>
<td>11.94</td>
<td>35.03</td>
</tr>
<tr>
<td>GTX 1080 (F)</td>
<td>7.00</td>
<td>59.37</td>
<td>16.08</td>
<td>50.64</td>
</tr>
<tr>
<td>Maxwell Titan X</td>
<td>7.09</td>
<td>62.30</td>
<td>19.27</td>
<td>55.75</td>
</tr>
<tr>
<td>Dual Xeon E5-2630 v3</td>
<td>n/a</td>
<td>3101.76</td>
<td>n/a</td>
<td>2477.61</td>
</tr>
</tbody>
</table>

https://github.com/jcjohnson/cnn-benchmarks
DeepBench

- Profile layer by layer
 - Dense Matrix Multiplication, Convolutions, Recurrent Layer, All-Reduce (communication)

3.2. Convolution Results

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Filter Size</th>
<th># of Filters</th>
<th>Padding</th>
<th>Stride</th>
<th>Application</th>
<th>Total Time (ms)</th>
<th>Fwd TeraFLOPS</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = 700, H = 161, C = 1, N = 32</td>
<td>R = 5, S = 20</td>
<td>32</td>
<td>0, 0</td>
<td>2, 2</td>
<td>Speech Recognition</td>
<td>2.98</td>
<td>6.63</td>
<td>TitanX Pascal</td>
</tr>
<tr>
<td>W = 54, H = 54, C = 64, N = 8</td>
<td>R = 3, S = 3</td>
<td>64</td>
<td>1, 1</td>
<td>1, 1</td>
<td>Face Recognition</td>
<td>0.63</td>
<td>10.55</td>
<td>TitanX Pascal</td>
</tr>
<tr>
<td>W = 224, H = 224, C = 3, N = 16</td>
<td>R = 3, S = 3</td>
<td>64</td>
<td>1, 1</td>
<td>1, 1</td>
<td>Computer Vision</td>
<td>3.99</td>
<td>3.6</td>
<td>TitanX Pascal</td>
</tr>
<tr>
<td>W = 7, H = 7, C = 512, N = 16</td>
<td>R = 3, S = 3</td>
<td>512</td>
<td>1, 1</td>
<td>1, 1</td>
<td>Computer Vision</td>
<td>2.93</td>
<td>5.88</td>
<td>TitanX Pascal</td>
</tr>
<tr>
<td>W = 28, H = 28, C = 192, N = 16</td>
<td>R = 5, S = 5</td>
<td>32</td>
<td>2, 2</td>
<td>1, 1</td>
<td>Computer Vision</td>
<td>1.57</td>
<td>6.59</td>
<td>TitanX Pascal</td>
</tr>
</tbody>
</table>