DNN Accelerator Architectures

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Ш**і**Т 📀

* multiply-and-accumulate

Worst Case: all memory R/W are **DRAM** accesses

• Example: AlexNet [NIPS 2012] has 724M MACs

→ 2896M DRAM accesses required

Opportunities: 1 data reuse

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Activations Filter weights

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Fmap Reuse

CONV and FC layers

Reuse: Activations Filter weights

Reuse: Activations

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Fmap Reuse

CONV and FC layers

Filter Reuse

CONV and FC layers (batch size > 1)

Input Fmaps

Reuse: Activations Filter weights

Reuse: Activations

Reuse: Filter weights

Opportunities: 1 data reuse

Can reduce DRAM reads of filter/fmap by up to 500×**

** AlexNet CONV layers

Opportunities: 1 data reuse 2 local accumulation

- 100
- Can reduce DRAM reads of filter/fmap by up to 500×
- Partial sum accumulation does NOT have to access DRAM

Opportunities: 1 data reuse 2 local accumulation

- 102
- Can reduce DRAM reads of filter/fmap by up to 500×
- Partial sum accumulation does NOT have to access DRAM
- Example: DRAM access in AlexNet can be reduced from 2896M to 61M (best case)

Spatial Architecture for CNN

Low-Cost Local Data Access

* measured from a commercial 65nm process 14

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

14117

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

specialized **processing dataflow** required!

Шіт

Dataflow Taxonomy

- Weight Stationary (WS)
- Output Stationary (OS)
- No Local Reuse (NLR)

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate psums spatially across the PE array.

WS Example: nn-X (NeuFlow)

A 3×3 2D Convolution Engine

[Farabet et al., ICCV 2009]

WS Example: nn-X (NeuFlow)

Top-Level Architecture

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

OS Example: ShiDianNao

Input Fmap Dataflow in the PE Array

[Du et al., ISCA 2015]

OS Example: ShiDianNao

No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Multicast activations, single-cast weights, and accumulate psums spatially across the PE array

NLR Example: UCLA

NLR Example: DianNao

Taxonomy: More Examples

• Weight Stationary (WS)

[Chakradhar, *ISCA* 2010] [nn-X (NeuFlow), *CVPRW* 2014] [Park, *ISSCC* 2015] [ISAAC, *ISCA* 2016] [PRIME, *ISCA* 2016]

• Output Stationary (OS)

[Peemen, *ICCD* 2013] [ShiDianNao, *ISCA* 2015] [Gupta, *ICML* 2015] [Moons, *VLSI* 2016]

• No Local Reuse (NLR)

[**DianNao**, *ASPLOS* 2014] [**DaDianNao**, *MICRO* 2014] [**Zhang**, *FPGA* 2015]

Energy Efficiency Comparison

- Same total area
 256 PEs
- AlexNet CONV layers Batch size = 16

Energy Efficiency Comparison

- 256 PEs Same total area •
- AlexNet CONV layers • Batch size = 16 •

Energy-Efficient Dataflow: Row Stationary (RS)

- Maximize reuse and accumulation at RF
- Optimize for **overall** energy efficiency instead for *only* a certain data type

Row Stationary: Energy-efficient Dataflow

- Maximize row convolutional reuse in RF
 Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF

Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

Fmap rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

Dimensions Beyond 2D Convolution

Filter Reuse in PE

Filter Reuse in PE

Filter Reuse in PE

1 Multiple Fmaps 2 Multiple Filters 3 Multiple Channels Filter 1 Fmap 1 Psum 1 Row 1 Row 1 Channel 1 * Row 1 C[≁]. н — R C[₹]. Filter 1 Fmap 2 Psum 2 ← R Row 1 Row 1 **Channel 1** Row 1 * share the same filter row Н

Processing in PE: concatenate fmap rows

Fmap Reuse in PE

Fmap Reuse in PE

Multiple Fmaps **2** Multiple Filters

Fmap Reuse in PE

Processing in PE: interleave filter rows

Channel Accumulation in PE

Channel Accumulation in PE

Channel Accumulation in PE

Processing in PE: interleave channels

DNN Processing – The Full Picture

Optimal Mapping in Row Stationary

[Chen et al., ISCA 2016]

lliī 💿

Dataflow Simulation Results

Evaluate Reuse in Different Dataflows

Weight Stationary

Minimize movement of filter weights

Output Stationary

Minimize movement of partial sums

No Local Reuse

- No PE local storage. Maximize global buffer size.

Row Stationary

Evaluation Setup

- same total area
- 256 PEs
- AlexNet
- batch size = 16

Variants of Output Stationary

Dataflow Comparison: CONV Layers

RS optimizes for the best **overall** energy efficiency

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Dataflow Comparison: FC Layers

RS uses at least **1.3× lower** energy than other dataflows

Hardware Architecture for RS Dataflow

Eyeriss Deep CNN Accelerator

Data Delivery with On-Chip Network

_ink Clock Clock

DCNN Accelerator

How to accommodate different shapes with fixed PE array?

Logical to Physical Mappings

Physical PE Array

Logical to Physical Mappings

Multicast Network Design

Data Delivery with On-Chip Network

_ink Clock Clock

DCNN Accelerator

Compared to Broadcast, **Multicast** saves >80% of NoC energy

Chip Spec & Measurement Results

Technology	TSMC 65nm LP 1P9M
On-Chip Buffer	108 KB
# of PEs	168
Scratch Pad / PE	0.5 KB
Core Frequency	100 – 250 MHz
Peak Performance	33.6 – 84.0 GOPS
Word Bit-width	16-bit Fixed-Point
	Filter Width: 1 – 32
	Filter Height: 1 – 12
Natively Supported	Num. Filters: 1 – 1024
DNN Shapes	Num. Channels: 1 – 1024
	Horz. Stride: 1–12
	Vert. Stride: 1, 2, 4

Benchmark – AlexNet Performance

Image Batch Size of **4** (i.e. 4 frames of 227x227) Core Frequency = 200MHz / Link Frequency = 60 MHz

Layer	Power (mW)	Latency (ms)	# of MAC (MOPs)	Active # of PEs (%)	Buffer Data Access (MB)	DRAM Data Access (MB)
1	332	20.9	422	154 (92%)	18.5	5.0
2	288	41.9	896	135 (80%)	77.6	4.0
3	266	23.6	598	156 (93%)	50.2	3.0
4	235	18.4	449	156 (93%)	37.4	2.1
5	236	10.5	299	156 (93%)	24.9	1.3
Total	278	115.3	2663	148 (88%)	208.5	15.4

To support 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

Benchmark – AlexNet Performance

Image Batch Size of **4** (i.e. 4 frames of 227x227) Core Frequency = 200MHz / Link Frequency = 60 MHz

Layer	Power (mW)	Latency (ms)	# of MAC (MOPs)	Active # of PEs (%)	Buffer Data Access (MB)	DRAM Data Access (MB)
1	332	20.9	422	154 (92%)	18.5	5.0
2	288	41.9	896	135 (80%)	77.6	4.0
3	266	23.6	598	156 (93%)	50.2	3.0
4	235	18.4	449	156 (93%)	37.4	2.1
5	236	10.5	299	156 (93%)	24.9	1.3
Total	278	115.3	2663	148 (88%)	208.5	15.4

51682 operand* access/input image pixel

→ 506 access/pixel from buffer + 37 access/pixel from DRAM

*operand = weight, activation, psum

Comparison with GPU

	This Work	NVIDIA TK1 (Jetson Kit)
Technology	65nm	28nm
Clock Rate	200MHz	852MHz
# Multipliers	168	192
On-Chin Storage	Buffer: 108KB	Shared Mem: 64KB
on omp otorage	Spad: 75.3KB	Reg File: 256KB
Word Bit-Width	16b Fixed	32b Float
Throughput ¹	34.7 fps	68 fps
Measured Power	278 mW	Idle/Active ² : 3.7W/10.2W
DRAM Bandwidth	127 MB/s	1120 MB/s ³

- 1. AlexNet CONV Layers
- 2. Board Power
- 3. Modeled from [Tan, SC 2011]

From Architecture to System

https://vimeo.com/154012013

Summary of DNN Dataflows

Weight Stationary

- Minimize movement of filter weights
- Popular with processing-in-memory architectures

Output Stationary

- Minimize movement of partial sums
- Different variants optimized for CONV or FC layers

No Local Reuse

- No PE local storage \rightarrow maximize global buffer size

Row Stationary

- Adapt to the NN shape and hardware constraints
- Optimized for overall system energy efficiency

MICRO 2016 Papers in the Taxonomy

- **Stripes:** bit-serial computation in a **NLR**-like engine (based on DaDianNao)
- **NEUTRAMS**: a toolset for accelerators running the **WS** dataflow (synaptic weight memory array)
- Fused-layer: exploit inter-layer data reuse in a NLR engine (based on [Zhang, FPGA 2015])

Fused Layer

Dataflow across multiple layers

[Alwani et al., MICRO 2016]