Advanced Technology Opportunities

MICRO Tutorial (2016)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen
Advanced Storage Technology

• Embedded DRAM (eDRAM)
 – Increase on-chip storage capacity

• 3D Stacked DRAM
 – e.g. Hybrid Memory Cube Memory (HMC), High Bandwidth Memory (HBM)
 – Increase memory bandwidth
eDRAM (DaDianNao)

- Advantages of eDRAM
 - 2.85x higher density than SRAM
 - 321x more energy-efficient than DRAM (DDR3)

- Store weights in eDRAM (36MB)
 - Target fully connected layers since dominated by weights

[Chen et al., DaDianNao, MICRO 2014]
Stacked DRAM (NeuroCube)

- **NeuroCube on Hyper Memory Cube Logic Die**
 - 6.25x higher BW than DDR3
 - HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)
 - Computation closer to memory (reduce energy)

[Kim et al., NeuroCube, ISCA 2016]
Analog Computation

- Conductance = Weight
- Voltage = Input
- Current = Voltage \times Conductance
- Sum currents for addition

\[
\text{Output} = \sum \text{Weight} \times \text{Input}
\]

Input = V1, V2, ...
Filter Weights = G1, G2, ... (conductance)

$$I = I_1 + I_2 = V_1 \times G_1 + V_2 \times G_2$$

Figure Source: ISAAC, ISCA 2016
Memristor Computation

Use memristors as programmable weights (resistance)

• Advantages
 – High Density (< 10nm x 10nm size*)
 • ~30x smaller than SRAM**
 • 1.5x smaller than DRAM**
 – Non-Volatile
 – Operates at low voltage
 – Computation within memory (in situ)
 • Reduce data movement

*[Govoreanu et al., IEDM 2011], **ITRS 2013
Memristor

(a) Conceptual view of a ReRAM cell

(b) I-V curve of bipolar switching

(c) Schematic view of a crossbar architecture

\[b_j = \sigma(\sum_{i} a_i \cdot w_{i,j}) \]

(a) An ANN with one input and one output layer

(b) Using a ReRAM crossbar array for neural computation

[Chi et al., ISCA 2016]
Resistive Memory Devices

Resistive memory devices are a type of non-volatile memory that utilizes the resistive switching effect. These devices can be categorized into three main types: 1D Filamentary, 2D Interfacial, and 3D Bulk Transition. Each category has different mechanisms and characteristics.

1D Filamentary
- Thermo-Chemical Fuse/antifuse
- Oxygen vacancy migration
- Electro-chemical
- Schottky barrier

2D Interfacial
- Cation Source (Ag+, Cu+ or...)
- Exchange layer
- Poly-crystalline

3D Bulk Transition
- Tunnel Magneto resistance
- Electronic MIT (Mott)

Types of Resistive Memory Devices

- **RRAM**
- **PCRAM**
- **MRAM**
- ?

Figure Source: Han Wang, USC
Challenges with Memristors

• Limited Precision

• A/D and D/A Conversion

• Array Size and Routing
 – Wire dominates energy for array size of 1k × 1k
 – IR drop along wire can degrade read accuracy

• Write/programming energy
 – Multiple pulses can be costly

• Variations & Yield
 – Device-to-device, cycle-to-cycle
 – Non-linear conductance across range

[Eryilmaz et al., ISQED 2016]
ISAAC

- eDRAM using memristors
- 16-bit dot-product operation
 - 8 x 2-bits per memristors
 - 1-bit per cycle computation

I = I1 + I2 = V1.G1 + V2.G2

[Shafiee et al., ISCA 2016]
ISACC

Eight 128x128 arrays per IMA
12 IMAs per Tile

[Shafiee et al., ISCA 2016]
PRIME

• Bit precision for each 256x256 ReRAM array
 – 3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight)
 – Dynamic fixed point (6-bit output)

• Reconfigurable to be main memory or accelerator
 – 4-bit MLC computation; 1-bit SLC for storage

[Chi et al., ISCA 2016]
Fabricated Memristor Crossbar

- Transistor-free metal-oxide 12x12 crossbar
 - A single-layer perceptron (linear classification)
 - 3x3 binary image
 - 10 inputs x 3 outputs x 2 differential weights = 60 memristors

[Prezioso et al., Nature 2015]