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Network Optimization 

•  Reduce precision of operations and operands 
–  Fixed and Floating point 
–  Bit-width 

•  Reduce number of operations and storage of 
weights 
–  Compression 
–  Pruning 
–  Network Architectures 
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Number Representation 
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Image Source: B. Dally 
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Cost of Operations 
Operation: Energy 

(pJ) 
8b Add 0.03 
16b Add 0.05 
32b Add 0.1 
16b FP Add 0.4 
32b FP Add 0.9 
8b Mult 0.2 
32b Mult 3.1 
16b FP Mult 1.1 
32b FP Mult 3.7 
32b SRAM Read (8KB) 5 
32b DRAM Read 640 

Area 
(µm2) 

36 
67 

137 
1360 
4184 
282 

3495 
1640 
7700 
N/A 
N/A 

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]  

Relative Energy Cost 
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N-bit Precision 

X Acc + 

Weight  
(N-bits) 

Activation  
(N-bits) 

N x N 
multiply 
(2N-bits) 

Round 
to N 

Round to 
1.5N of 2N 
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Methods to Reduce Bits 
•  Quantization/Rounding 
•  Dynamic Fixed Point 

–  Rescale and Reduce bits 

•  Fine-tuning: Retrain Weights 
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 

Example: 16-bit à 8-bits 
211 + 29 + 26  + 21 = 2626 (overflow) 

210 + 27 + 25  + 22 + 20 = 1189 

AlexNet 
(Layer 1) 

AlexNet 
(Layer 6) 

Dynamic range = 1 Dynamic range = 0.125 

Image Source: 
Moons et al, 
WACV 2016 

Batch normalization important to ‘center’ dynamic range 
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Impact on Accuracy 

[Gysel et al., Ristretto, ICLR 2016] 

w/o fine tuning 

Top-1 accuracy 
on of CaffeNet 
on ImageNet 
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Google’s Tensor Processing Unit (TPU) 

“ With its TPU Google has 
seemingly focused on delivering 
the data really quickly by cutting 
down on precision. Specifically, 
it doesn’t rely on floating point 
precision like a GPU  
…. 
Instead the chip uses integer 
math…TPU used 8-bit integer.” 
 
- Next Platform (May 19, 2016) 
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Nvidia PASCAL 

“New half-precision, 16-bit 
floating point instructions 
deliver over 21 TeraFLOPS for 
unprecedented training 
performance. With 47 TOPS 
(tera-operations per second) 
of performance, new 8-bit 
integer instructions in Pascal 
allow AI algorithms to deliver 
real-time responsiveness for 
deep learning inference.”  
 
– Nvidia.com (April 2016) 
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Precision Varies from Layer to Layer 

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016] 
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Bitwidth Scaling (Speed) 
Bit-Serial Processing: Reduce Bit-width à Skip Cycles 

Speed up of 2.24x vs. 16-bit fixed 

[Judd et al., Stripes, CAL 2016] 
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Bitwidth Scaling (Power) 

[Moons et al., VLSI 2016] 

Reduce Bit-width à 
Shorter Critical Path 
à Reduce Voltage 

Power reduction of 
2.56x vs. 16-bit fixed 
On AlexNet Layer 2 
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Binary Nets 

[Rastegari et al., BWN & XNOR-Net, ECCV 2016] 

BinaryConnect (BC) = [Courbariaux et al., ArXiv 2015] 
Binary Neural Networks (BNN) = [Courbariaux et al., ArXiv 2016] 
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Reduce Number of Ops and Weights 

•  Network Compression 
– Low Rank Approximation 
– Weight Sharing and Vector Quantization 

•  Pruning 
– Weights 
– Activations  

•  Network Architectures 
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Low Rank Approximation 

•  Low Rank approximation  
–  Tensor decomposition 

based on singular value 
decomposition (SVD) 

–  Filter Clustering with 
modified K-means 

–  Fine Tuning 

[Denton et al., NIPS 2014] 

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1, 
CONV2 layers 

•  Reduce size by 5 - 13x for FC layer  
•  < 1% drop in accuracy 
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Low Rank Approximation on Phone 

•  Rank selection per Layer 
•  Tucker Decomposition (extension of SVD) 
•  Fine tuning 

[Kim et al., ICLR 2016] 
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Weight Sharing + Vector Quantization 
Trained Quantization: Weight Sharing via K-means clustering 

(reduce number of unique weights) 

[Han et al., Deep Compression, ICLR 2016] 

Reduce Bits for Storage (compute still 16-bits) 
Weight 

Decoder/
Dequant 

Weight  
index (4b) Weight (16b) Weight  

Memory MAC 
Activation (16b) 
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Exploit Data Statistics 
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Sparsity in Fmaps 

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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… 

… 

… 

… 
…

 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  
  

Link Clock  Core Clock  

I/O Compression in Eyeriss 

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

[Chen et al., ISSCC 2016] 

DCNN Accelerator 
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Compression Reduces DRAM BW 
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1.2× 
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Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

[Chen et al., ISSCC 2016] 

Simple RLC within 5% - 10% of theoretical entropy limit 
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Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   
  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 

[Chen et al., ISSCC 2016] 
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Cnvlutin 
•  Process Convolution Layers 
•  Built on top of DaDianNao (4.49% area overhead) 
•  Speed up of 1.37x (1.52x with activation pruning) 

[Albericio et al., ISCA 2016] 
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Pruning Activations 

[Reagen et al., ISCA 2016] 

Remove small activation values 

[Albericio et al., ISCA 2016] 

Speed up 11% (ImageNet) Reduce power 2x (MNIST) 

Minerva 
Cnvlutin 
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Pruning – Make Weights Sparse 

•  Optimal Brain Damage 
1.  Choose a reasonable network 

architecture 
2.  Train network until reasonable 

solution obtained 
3.  Compute the second derivative 

for each weight 
4.  Compute saliencies (i.e. impact 

on training error) for each weight 
5.  Sort weights by saliency and 

delete low-saliency weights 
6.  Iterate to step 2 

[Lecun et al., NIPS 1989] 

retraining 
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Pruning – Make Weights Sparse 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

[Han et al., NIPS 2015] 

Prune based on magnitude of weights 

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV
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Pruning of VGG-16 
Pruning has most impact on Fully Connected Layers 

Pruned Weights 
CONV Layers: 42-78% 
Fully Connected Layers: 77-96% 
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Speed up of Weight Pruning on CPU/GPU 

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV 
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV 
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV 
 
Batch size = 1 

On Fully Connected Layers 
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU 

[Han et al., NIPS 2015] 
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Energy-Aware Pruning 

•  # of Weights alone is not a good metric for energy  
–  Example (AlexNet): 

•  # of Weights (FC Layer) > # of Weights (CONV layer)  
•  Energy (FC Layer) < Energy (CONV layer) 

•  Us energy evaluation method to estimate DNN energy 
–  Account for data movement 

•  Prune based on energy rather than weights 
–  Reduce overall energy (ALL layers) by 3.7x for AlexNet  

•  1.8x more efficient than previous magnitude-based approach 

–  1.6x energy reduction for GoogleNet 
 

[Yang et al., ArXiv 2016] 
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Compression of Weights & Activations 
•  Compress weights and fmaps between DRAM  

and accelerator 
•  Variable Length / Huffman Coding 

•  Tested on AlexNet à 2× overall BW Reduction 

[Moons et al., VLSI 2016; Han et al., ICLR 2016] 

Value: 16’b0  à Compressed Code: {1’b0} 

Value: 16’bx  à Compressed Code: {1’b1, 16’bx} 

Example: 
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Sparse Matrix-Vector DSP 

•  Use CSC rather than CSR for SpMxV 

[Dorrance et al., FPGA 2014] 

Compressed Sparse Column (CSC)  Compressed Sparse Row (CSR)  

Reduce memory bandwidth by 2x (when not M >> N) 

M 

N 
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•  Process Fully Connected Layers (after Deep Compression) 
•  Store weights column-wise in Run Length format 

–  Non-zero weights,  Run-length of zeros 
–  Start location of each column since variable length 

•  Read relative column when input is non-zero 

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016] 

Input 

 
 
Weights 
 
 

Output 

EIE: A Sparse Linear Algebra Engine 

Dequantize Weight 

Keep track of location 
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Network Architecture 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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Network Architecture 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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Network Architecture 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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SqueezeNet 

[F.N. Iandola et al., ArXiv, 2016]] 

Fire Module 

Reduce weights by reducing number of input 
channels by “squeezing” with 1x1 
50x fewer weights than AlexNet 
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Energy Consumption of Existing DNNs 

•  Maximally reducing # of weights 
does not necessarily result in 
optimized energy consumption 

•  Deeper CNNs with fewer 
weights (e.g. GoogleNet, 
SqueezeNet), do not necessarily 
consume less energy than 
shallower CNNs with more 
weights (e.g. AlexNet) 

•  Reducing # of weights can 
provide equal or more reduction 
than reducing the bitwidth of 
weights (e.g. BWN) 

[Yang et al., ArXiv 2016] 


