
1

Network and Hardware
Co-Design

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Network Optimization

•  Reduce precision of operations and operands
–  Fixed and Floating point
–  Bit-width

•  Reduce number of operations and storage of
weights
–  Compression
–  Pruning
–  Network Architectures

3

Number Representation

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range Accuracy

10-38 – 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

Image Source: B. Dally

4

Cost of Operations
Operation: Energy

(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area
(µm2)

36
67

137
1360
4184
282

3495
1640
7700
N/A
N/A

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

5

N-bit Precision

X Acc +

Weight
(N-bits)

Activation
(N-bits)

N x N
multiply
(2N-bits)

Round
to N

Round to
1.5N of 2N

6

Methods to Reduce Bits
•  Quantization/Rounding
•  Dynamic Fixed Point

–  Rescale and Reduce bits

•  Fine-tuning: Retrain Weights
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0

Example: 16-bit à 8-bits
211 + 29 + 26 + 21 = 2626 (overflow)

210 + 27 + 25 + 22 + 20 = 1189

AlexNet
(Layer 1)

AlexNet
(Layer 6)

Dynamic range = 1 Dynamic range = 0.125

Image Source:
Moons et al,
WACV 2016

Batch normalization important to ‘center’ dynamic range

7

Impact on Accuracy

[Gysel et al., Ristretto, ICLR 2016]

w/o fine tuning

Top-1 accuracy
on of CaffeNet
on ImageNet

8

Google’s Tensor Processing Unit (TPU)

“ With its TPU Google has
seemingly focused on delivering
the data really quickly by cutting
down on precision. Specifically,
it doesn’t rely on floating point
precision like a GPU
….
Instead the chip uses integer
math…TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

9

Nvidia PASCAL

“New half-precision, 16-bit
floating point instructions
deliver over 21 TeraFLOPS for
unprecedented training
performance. With 47 TOPS
(tera-operations per second)
of performance, new 8-bit
integer instructions in Pascal
allow AI algorithms to deliver
real-time responsiveness for
deep learning inference.”

– Nvidia.com (April 2016)

10

Precision Varies from Layer to Layer

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016]

11

Bitwidth Scaling (Speed)
Bit-Serial Processing: Reduce Bit-width à Skip Cycles

Speed up of 2.24x vs. 16-bit fixed

[Judd et al., Stripes, CAL 2016]

12

Bitwidth Scaling (Power)

[Moons et al., VLSI 2016]

Reduce Bit-width à
Shorter Critical Path
à Reduce Voltage

Power reduction of
2.56x vs. 16-bit fixed
On AlexNet Layer 2

13

Binary Nets

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

BinaryConnect (BC) = [Courbariaux et al., ArXiv 2015]
Binary Neural Networks (BNN) = [Courbariaux et al., ArXiv 2016]

14

Reduce Number of Ops and Weights

•  Network Compression
– Low Rank Approximation
– Weight Sharing and Vector Quantization

•  Pruning
– Weights
– Activations

•  Network Architectures

15

Low Rank Approximation

•  Low Rank approximation
–  Tensor decomposition

based on singular value
decomposition (SVD)

–  Filter Clustering with
modified K-means

–  Fine Tuning

[Denton et al., NIPS 2014]

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1,
CONV2 layers

•  Reduce size by 5 - 13x for FC layer
•  < 1% drop in accuracy

16

Low Rank Approximation on Phone

•  Rank selection per Layer
•  Tucker Decomposition (extension of SVD)
•  Fine tuning

[Kim et al., ICLR 2016]

17

Weight Sharing + Vector Quantization
Trained Quantization: Weight Sharing via K-means clustering

(reduce number of unique weights)

[Han et al., Deep Compression, ICLR 2016]

Reduce Bits for Storage (compute still 16-bits)
Weight

Decoder/
Dequant

Weight
index (4b) Weight (16b) Weight

Memory MAC
Activation (16b)

18

Exploit Data Statistics

19

Sparsity in Fmaps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

20

…

…

…

…
…

…

ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Buffer
SRAM

108KB

14×12 PE Array

Link Clock Core Clock

I/O Compression in Eyeriss

Run-Length Compression (RLC)

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b 5b 16b 5b 16b
2 12 4 53 2 22 0

Run Level Run Level Run Level Term

Off-Chip DRAM
64 bits

Decomp

Comp

[Chen et al., ISSCC 2016]

DCNN Accelerator

21

Compression Reduces DRAM BW

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access

(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

[Chen et al., ISSCC 2016]

Simple RLC within 5% - 10% of theoretical entropy limit

22

Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip MAC and mem reads
when image data is zero.

Reduce PE power by 45%

Reset

[Chen et al., ISSCC 2016]

23

Cnvlutin
•  Process Convolution Layers
•  Built on top of DaDianNao (4.49% area overhead)
•  Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

24

Pruning Activations

[Reagen et al., ISCA 2016]

Remove small activation values

[Albericio et al., ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

25

Pruning – Make Weights Sparse

•  Optimal Brain Damage
1.  Choose a reasonable network

architecture
2.  Train network until reasonable

solution obtained
3.  Compute the second derivative

for each weight
4.  Compute saliencies (i.e. impact

on training error) for each weight
5.  Sort weights by saliency and

delete low-saliency weights
6.  Iterate to step 2

[Lecun et al., NIPS 1989]

retraining

26

Pruning – Make Weights Sparse

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

[Han et al., NIPS 2015]

Prune based on magnitude of weights

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

27

Pruning of VGG-16
Pruning has most impact on Fully Connected Layers

Pruned Weights
CONV Layers: 42-78%
Fully Connected Layers: 77-96%

28

Speed up of Weight Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

On Fully Connected Layers
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

[Han et al., NIPS 2015]

29

Energy-Aware Pruning

•  # of Weights alone is not a good metric for energy
–  Example (AlexNet):

•  # of Weights (FC Layer) > # of Weights (CONV layer)
•  Energy (FC Layer) < Energy (CONV layer)

•  Us energy evaluation method to estimate DNN energy
–  Account for data movement

•  Prune based on energy rather than weights
–  Reduce overall energy (ALL layers) by 3.7x for AlexNet

•  1.8x more efficient than previous magnitude-based approach

–  1.6x energy reduction for GoogleNet

[Yang et al., ArXiv 2016]

30

Compression of Weights & Activations
•  Compress weights and fmaps between DRAM

and accelerator
•  Variable Length / Huffman Coding

•  Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:

31

Sparse Matrix-Vector DSP

•  Use CSC rather than CSR for SpMxV

[Dorrance et al., FPGA 2014]

Compressed Sparse Column (CSC) Compressed Sparse Row (CSR)

Reduce memory bandwidth by 2x (when not M >> N)

M

N

32

•  Process Fully Connected Layers (after Deep Compression)
•  Store weights column-wise in Run Length format

–  Non-zero weights, Run-length of zeros
–  Start location of each column since variable length

•  Read relative column when input is non-zero

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016]

Input

Weights

Output

EIE: A Sparse Linear Algebra Engine

Dequantize Weight

Keep track of location

33

Network Architecture

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

34

Network Architecture

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

35

Network Architecture

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

36

SqueezeNet

[F.N. Iandola et al., ArXiv, 2016]]

Fire Module

Reduce weights by reducing number of input
channels by “squeezing” with 1x1
50x fewer weights than AlexNet

37

Energy Consumption of Existing DNNs

•  Maximally reducing # of weights
does not necessarily result in
optimized energy consumption

•  Deeper CNNs with fewer
weights (e.g. GoogleNet,
SqueezeNet), do not necessarily
consume less energy than
shallower CNNs with more
weights (e.g. AlexNet)

•  Reducing # of weights can
provide equal or more reduction
than reducing the bitwidth of
weights (e.g. BWN)

[Yang et al., ArXiv 2016]

