# Network and Hardware Co-Design

#### **MICRO Tutorial (2016)**

Website: http://eyeriss.mit.edu/tutorial.html



Joel Emer, Vivienne Sze, Yu-Hsin Chen

#### **Network Optimization**

- <u>Reduce precision</u> of operations and operands
  - Fixed and Floating point
  - Bit-width
- <u>Reduce number</u> of operations and storage of weights
  - Compression
  - Pruning
  - Network Architectures



#### **Number Representation**





Image Source: B. Dally

### **Cost of Operations**



[Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC 2014]

11117

Ø,

#### **N-bit Precision**





#### **Methods to Reduce Bits**

**Example:** 16-bit  $\rightarrow$  8-bits **Quantization/Rounding**  $2^{11} + 2^9 + 2^6 + 2^1 = 2626$  (overflow) **Dynamic Fixed Point Rescale and Reduce bits** 010010101001000010 **Fine-tuning: Retrain Weights**  $2^{10} + 2^7 + 2^5 + 2^2 + 2^0 = 1189$ 500 min/max min/max PDF PDF AlexNet 2.5 400 AlexNet (Layer 1) (Layer 6) ⊥ <sup>300</sup> 400 200 [\_] \_\_\_\_\_ \_\_\_\_\_ Image Source: Moons et al, WACV 2016 100 0.5 \_0∟ \_0.5 -0.06 0.5 -0.04 -0.02 0 0.02 0.04 0.06 Parameter value [-] Parameter value [-] Dynamic range = 1 Dynamic range = 0.125

Batch normalization important to 'center' dynamic range

#### **Impact on Accuracy**



#### [Gysel et al., Ristretto, ICLR 2016]

### **Google's Tensor Processing Unit (TPU)**

"With its TPU Google has seemingly focused on delivering the data really quickly by <u>cutting</u> <u>down on precision</u>. Specifically, it doesn't rely <u>on floating point</u> <u>precision like a GPU</u>

. . . .

Instead the chip uses integer math...TPU used **<u>8-bit integer</u>**."

- Next Platform (May 19, 2016)





#### **Nvidia PASCAL**

"New half-precision, 16-bit floating point instructions deliver over 21 TeraFLOPS for unprecedented training performance. With 47 TOPS (tera-operations per second) of performance, new 8-bit integer instructions in Pascal allow AI algorithms to deliver real-time responsiveness for deep learning inference."

- Nvidia.com (April 2016)



#### **Precision Varies from Layer to Layer**



[Judd et al., ArXiv 2016]

[Moons et al., WACV 2016]

10

#### **Bitwidth Scaling (Speed)**

Bit-Serial Processing: Reduce Bit-width → Skip Cycles Speed up of 2.24x vs. 16-bit fixed



![](_page_10_Picture_3.jpeg)

[Judd et al., Stripes, CAL 2016]

### **Bitwidth Scaling (Power)**

![](_page_11_Figure_1.jpeg)

[Moons et al., VLSI 2016]

![](_page_11_Picture_3.jpeg)

## **Binary Nets**

![](_page_12_Figure_1.jpeg)

| Classification Accuracy(%) |       |        |       |                            |       |         |       |                |       |
|----------------------------|-------|--------|-------|----------------------------|-------|---------|-------|----------------|-------|
| Binary-Weight              |       |        |       | Binary-Input-Binary-Weight |       |         |       | Full-Precision |       |
| BWN                        |       | BC[11] |       | XNOR-Net                   |       | BNN[11] |       | AlexNet[1]     |       |
| Top-1                      | Top-5 | Top-1  | Top-5 | Top-1                      | Top-5 | Top-1   | Top-5 | Top-1          | Top-5 |
| 56.8                       | 79.4  | 35.4   | 61.0  | 44.2                       | 69.2  | 27.9    | 50.42 | 56.6           | 80.2  |

BinaryConnect (BC) = [Courbariaux et al., ArXiv 2015] Binary Neural Networks (BNN) = [Courbariaux et al., ArXiv 2016]

IIIii 💿

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

#### **Reduce Number of Ops and Weights**

- Network Compression
  - Low Rank Approximation
  - Weight Sharing and Vector Quantization
- Pruning
  - Weights
  - Activations
- Network Architectures

![](_page_13_Picture_8.jpeg)

### Low Rank Approximation

- Low Rank approximation
  - Tensor decomposition
    based on singular value
    decomposition (SVD)
  - Filter Clustering with modified K-means
  - Fine Tuning

![](_page_14_Picture_5.jpeg)

- Speed up by 1.6 2.7x on CPU/GPU for CONV1, CONV2 layers
- Reduce size by 5 13x for FC layer
- < 1% drop in accuracy</li>

14117

[Denton et al., NIPS 2014]

#### Low Rank Approximation on Phone

- Rank selection per Layer
- Tucker Decomposition (extension of SVD)
- Fine tuning

| Model Top-5 |         | Weights         | FLOPs           | <b>S</b> 6      |                 | Titan X         |
|-------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|
| AlexNet     | 80.03   | 61M             | 725M            | 117ms           | 245mJ           | 0.54ms          |
| AlexNet*    | 78.33   | 11 <b>M</b>     | 272M            | 43ms            | 72mJ            | 0.30ms          |
| (imp.)      | (-1.70) | $(\times 5.46)$ | $(\times 2.67)$ | $(\times 2.72)$ | $(\times 3.41)$ | (×1.81)         |
| VGG-S       | 84.60   | 103M            | 2640M           | 357ms           | 825mJ           | 1.86ms          |
| VGG-S*      | 84.05   | 14 <b>M</b>     | 549M            | 97ms            | 193mJ           | 0.92ms          |
| (imp.)      | (-0.55) | (×7.40)         | (×4.80)         | $(\times 3.68)$ | $(\times 4.26)$ | $(\times 2.01)$ |
| GoogLeNet   | 88.90   | 6.9M            | 1566M           | 273ms           | 473mJ           | 1.83ms          |
| GoogLeNet*  | 88.66   | 4.7M            | 760M            | 192ms           | 296mJ           | 1.48ms          |
| (imp.)      | (-0.24) | $(\times 1.28)$ | $(\times 2.06)$ | $(\times 1.42)$ | $(\times 1.60)$ | $(\times 1.23)$ |
| VGG-16      | 89.90   | 138M            | 15484M          | 1926ms          | 4757mJ          | 10.67ms         |
| VGG-16*     | 89.40   | 127M            | 3139M           | 576ms           | 1346mJ          | 4.58ms          |
| (imp.)      | (-0.50) | $(\times 1.09)$ | $(\times 4.93)$ | $(\times 3.34)$ | $(\times 3.53)$ | $(\times 2.33)$ |

[Kim et al., ICLR 2016]

## Weight Sharing + Vector Quantization

# Trained Quantization: Weight Sharing via K-means clustering (reduce number of unique weights)

![](_page_16_Figure_2.jpeg)

# **Exploit Data Statistics**

![](_page_17_Picture_1.jpeg)

#### **Sparsity in Fmaps**

Many zeros in output fmaps after ReLU

![](_page_18_Figure_2.jpeg)

### **I/O Compression in Eyeriss**

Link Clock Core Clock

#### **DCNN Accelerator**

![](_page_19_Figure_3.jpeg)

#### **Compression Reduces DRAM BW**

![](_page_20_Figure_1.jpeg)

Simple RLC within 5% - 10% of theoretical entropy limit

![](_page_20_Picture_3.jpeg)

[Chen et al., ISSCC 2016]

#### Data Gating / Zero Skipping in Eyeriss

![](_page_21_Figure_1.jpeg)

[Chen et al., ISSCC 2016]

11117

#### Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

![](_page_22_Figure_4.jpeg)

#### [Albericio et al., ISCA 2016]

#### **Pruning Activations**

#### **Remove small activation values**

![](_page_23_Figure_2.jpeg)

[Albericio et al., ISCA 2016]

Plii

[Reagen et al., ISCA 2016]

### **Pruning – Make Weights Sparse**

- Optimal Brain Damage
- 1. Choose a reasonable network architecture
- 2. Train network until reasonable solution obtained
- 3. Compute the second derivative for each weight
- 4. Compute saliencies (i.e. impact on training error) for each weight
- 5. Sort weights by saliency and delete low-saliency weights
- 6. Iterate to step 2

![](_page_24_Figure_8.jpeg)

[Lecun et al., NIPS 1989]

#### **Pruning – Make Weights Sparse**

Prune based on magnitude of weights

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_3.jpeg)

[Han et al., NIPS 2015]

#### **Pruning of VGG-16**

#### **Pruning has most impact on Fully Connected Layers**

![](_page_26_Figure_2.jpeg)

### Speed up of Weight Pruning on CPU/GPU

#### On Fully Connected Layers

Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

![](_page_27_Figure_3.jpeg)

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

1467

[Han et al., NIPS 2015]

#### **Energy-Aware Pruning**

- # of Weights alone is not a good metric for energy
  - Example (AlexNet):
    - # of Weights (FC Layer) > # of Weights (CONV layer)
    - Energy (FC Layer) < Energy (CONV layer)
- Us energy evaluation method to estimate DNN energy
  - Account for data movement
- Prune based on energy rather than weights
  - Reduce <u>overall energy (ALL layers)</u> by 3.7x for AlexNet
    - 1.8x more efficient than previous magnitude-based approach
  - 1.6x energy reduction for GoogleNet

![](_page_28_Picture_11.jpeg)

#### **Compression of Weights & Activations**

- Compress weights and fmaps between DRAM and accelerator
- Variable Length / Huffman Coding

Example:

Value:  $16'b0 \rightarrow$  Compressed Code:  $\{1'b0\}$ 

Value: 16'bx  $\rightarrow$  Compressed Code: {1'b1, 16'bx}

Tested on AlexNet → 2× overall BW Reduction

| Layer        | Filter / Image<br>bits (0%) | Filter / Image<br>BW Reduc. | IO / HuffIO<br>(MB/frame) | Voltage<br>(V) | MMACs/<br>Frame | Power<br>(mW) | Real<br>(TOPS/W) |
|--------------|-----------------------------|-----------------------------|---------------------------|----------------|-----------------|---------------|------------------|
| General CNN  | 16 (0%) / 16 (0%)           | 1.0x                        |                           | 1.1            | _               | 288           | 0.3              |
| AlexNet 11   | 7 (21%) / 4 (29%)           | 1.17x / 1.3x                | 1 / 0.77                  | 0.85           | 105             | 85            | 0.96             |
| AlexNet 12   | 7 (19%) / 7 (89%)           | 1.15x / 5.8x                | 3.2 / 1.1                 | 0.9            | 224             | 55            | 1.4              |
| AlexNet 13   | 8 (11%) / 9 (82%)           | 1.05x / 4.1x                | 6.5 / 2.8                 | 0.92           | 150             | 77            | 0.7              |
| AlexNet 14   | 9 (04%) / 8 (72%)           | 1.00x / 2.9x                | 5.4 / 3.2                 | 0.92           | 112             | 95            | 0.56             |
| AlexNet 15   | 9 (04%) / 8 (72%)           | 1.00x / 2.9x                | 3.7 / 2.1                 | 0.92           | 75              | 95            | 0.56             |
| Total / avg. | _                           | —                           | 19.8 / <b>10</b>          | _              | _               | 76            | 0.94             |
| LeNet-5 11   | 3 (35%) / 1 (87%)           | 1.40x / 5.2x                | 0.003 / 0.001             | 0.7            | 0.3             | 25            | 1.07             |
| LeNet-5 12   | 4 (26%) / 6 (55%)           | 1.25x / 1.9x                | 0.050 / 0.042             | 0.8            | 1.6             | 35            | 1.75             |
| Total / avg. | _                           | _                           | 0.053 / 0.043             | -              | -               | 33            | 1.6              |

![](_page_29_Picture_8.jpeg)

#### [Moons et al., VLSI 2016; Han et al., ICLR 2016]

#### **Sparse Matrix-Vector DSP**

Use CSC rather than CSR for SpMxV

![](_page_30_Figure_2.jpeg)

Reduce memory bandwidth by 2x (when not M >> N)

[Dorrance et al., FPGA 2014]

14112

### **EIE: A Sparse Linear Algebra Engine**

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format
  - Non-zero weights, Run-length of zeros
  - Start location of each column since variable length
- Read relative column when input is non-zero

Illii

![](_page_31_Figure_6.jpeg)

#### **Network Architecture**

Reduce size and computation with 1x1 Filter

![](_page_32_Figure_2.jpeg)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

![](_page_32_Picture_5.jpeg)

#### **Network Architecture**

Reduce size and computation with 1x1 Filter

![](_page_33_Figure_2.jpeg)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

![](_page_33_Picture_5.jpeg)

#### **Network Architecture**

#### Reduce size and computation with 1x1 Filter

![](_page_34_Figure_2.jpeg)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

![](_page_34_Picture_5.jpeg)

#### SqueezeNet

![](_page_35_Figure_1.jpeg)

llii 📀

#### [F.N. landola et al., ArXiv, 2016]

# **Energy Consumption of Existing DNNs**

- Maximally reducing # of weights does not necessarily result in optimized energy consumption
- Deeper CNNs with fewer weights (e.g. GoogleNet, SqueezeNet), do not necessarily consume less energy than shallower CNNs with more weights (e.g. AlexNet)
- Reducing # of weights can provide equal or more reduction than reducing the bitwidth of weights (e.g. BWN)

![](_page_36_Figure_4.jpeg)

\* Energy-aware Pruning (This Work)