
1

Hardware for Training

MICRO Tutorial (2016)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Cost function for Model Training

Model output:
y = f(x)

Desired output:
z

Error:
e = (y-z)

Over all training inputs x:

Minimize S(y-z)2

xi

yi

Relu,
PReLu,

…
w

What do we vary to minimize the error?

3

Training Optimization Problem

• Model parameters q (include bias, weights, …)

• Model output y(q) = f(x, q)
• Desired output z

• Error e(q) = y(q)-z
• Cost function* E(q) = Se(q)2

• Minimization dE(q)/dq = 0 (but no closed form)

* Over all inputs in the training set

4

Steepest descent

qn+1 = qn – a∙dE(qn)/dq

where a is the step size along the gradient…

Classical first order iterative optimization scheme:
Gradient is steepest descent – follow it!

5

Calculating Steepest Descent

• Steepest descent
qn+1 = qn – a∙dE(q)/dq

• E(q) = Se(q)2

= S(y(q)-z)2

• dE(q)/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

Also called error back-propagation

error e back-propagation

6

Chain rule -> Back propagation

• The chain rule of calculus allows one to
calculate the derivative of a layered network, i.e.,
a composition of functions, iteratively working
backwards through the layers using the (feature
map) values of the layer, i.e., function, and the
derivative from the next layer.

• Back propagation is the process of doing this
calculation numerically for a given input.

7

Per Layer Calculations

y = f(x)

For layer k:
Inputs: xk

Weights: wk

Outputs: yk

So
yi

k = fk [S(wij
kxj

k)]

Where
xj

k = yj
k-1

or
yk = fk(yk-1,q)

xi

yi

fk = Relu,
PReLu, …

wk+1

wk

8

Layer Operation Composition

• Steepest descent qk+1 = qk – a∙dE/dq

• Derivative (1) dE/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

• Model output y = f(x)
yn = fn(yn-1) = fn(fn-1(yn-2))

• Layer k yk = fk(yk-1) = fk(fk-1(yk-2))

9

Chain rule

• Chain rule for functions

y = f(g(x)) y’ = f’(g(x)) * g’(x)

y = fn(yn-1) = fn(fn-1(yn-2)) y’ = fn’(fn-1(yn-2)) * fn-1’(yn-2)
= fn’(yn-1) * fn-1’(yn-2)

10

Back propagation

• y00 = (a*x0 + b*x1)
y01 = ….
y10 = y00*c + y01*d

• dy10/da = dy10/dy00 * dy00/da = c * x0

+

*

*

c

d

+

*

*

a

b

x0

x1 y10

y00

y01

11

Back Propagation for Addition

• y0 = a + b
• y1 = f(y0)

• dy0/da = 1
• dy0/db = 1
• dy1/dy0 = f’(y0)
• dy1/da = dy1/dy0 * dy0/da = dy1/dy0 * 1 = dy1/dy0

• dy1/db = dy1/dy0 * dy0/db = dy1/dy0 * 1 = dy1/dy0

+ F()
y1y0

a

b

dy1/dy0

dy1/dy0 * 1

dy1/dy0 * 1

12

Back Propagation for Multiplication

• y0 = a * b
• y1 = f(y0)

• dy0/da = b
• dy0/db = a
• dy1/dy0 = f’(y0)
• dy1/da = dy1/dy0 * dy0/da = dy1/dy0 * b

• dy1/db = dy1/dy0 * dy0/db = dy1/dy0 * a

* F()
y1y0

a

b

dy1/dy0

dy1/dy0 * b

dy1/dy0 * a

13

Back propagation for Network

+

*

*

c

d

+

*

*

a

b

x0

x1

1

1

1

1*y00

y00

1*c

c*x0

c

• y00 = (a*x0 + b*x1)
y01 = ….
y10 = y00*c + y01*d

• dy10/da = dy10/dy00 * dy00/da = c * x0

y10

14

Back Propagation Recipe
Start point
• Select a initial set of weights (q) and an input (x)

Forward pass
• For all layers

– Compute layer outputs use as input for next layer (and save for later)

Backward pass
• For all layers (with output of previous layer and gradient of next layer)

– Compute gradient, i.e., (partial) derivative, for layer
– Back-propagate gradient to previous layer
– Compute (partial) derivatives for (local) weights of layer

Calculate next set of weights
• qk+1 = qk – a∙dE/dq

15

F
e
a
t

M
a
p

O
u
t

F
e
a
t

M
a
p

I
n

Back Propagation

Convolution (n)

Weights

F
e
a
t

M
a
p

I
n

F
e
a
t

M
a
p

O
u
t

C
o
n
v

(

n
-
1)

C
o
n
v

(

n
+
1)

Forward Pass ->

Back propagation (n)
G
r
a
d

I
n

B
P

(

n
+
1)

C
o
n
v

(

n
-
1)

G
r
a
d

O
u
t

<- Backward Pass

Weight gradients

G
r
a
d

I
n

G
r
a
d

O
u
t

16

Precision on Training

• Beware truncating changes to zero
• Rounding can bias result -> use stochastic rounding

gj

aj

x
x

a

Learning rate may
be very small
(10-5 or less)

Dw very small

wij+Dwij SR Dw’ij

E(Dw’ij) = Dwij

[Gupta et al., ICML 2015]

17

Back Propagation Batches

Issue:
• N = 1 is often too noisy, weights

may oscillate around the
minimum

Solution:
• Use batches of N inputs…
• Max theoretical speed up: N

18

Parallel creation of gradient

• Steepest descent qk+1 = qk – a∙dE/dq

• Derivative dE/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

Split sum of pieces of dE/dq
across different nodes!

19

Batch Parameter Update

Parameter Server

Model!
Workers

Data!
Shards

p’ = p + ∆p

∆p p’

One method to achieve scale is parallelization

Large scale distributed deep networks
J Dean et al (2012)

[Dean et al., NIPS 2012]

20

Training Uses a Lot of Memory
GPU memory usage proportional
to network depth

GPU
memory

Network
topology

Feature
maps

[Rhu et al., vDNN, MICRO 2016]

21

How Much Memory Is It?

Up to Tens of Gigabytes

0

8000

16000

24000

32000

40000

10 layers 110 layers 210 layers 310 layers 410 layers

G
PU

 m
em

or
y

us
ag

e
(M

B)

Gradients
Feature maps
Weights

Deeper networks (VGG-like topology)

GPU
memory

[Rhu et al., vDNN, MICRO 2016]

22

Reuse Distance of Feature Maps

VGG-16

[Rhu et al., vDNN, MICRO 2016]

23

Problems with saturation

Sigmoid

ReLU

Issue

• A null gradient results in no
learning, which happens if:

• the sigmoid saturates, or
• the ReLU saturates

Solution

• Initialize weighs so the average
value is zero, i.e., work in the
interesting zone of the activation
functions

• Normalize data (zero mean)

24

Non-differential operations

Issue
• Discrete activation function / weights

– extreme case is binary net

• Derivative not well defined

Solution
• Use approximate derivative, or
• Discretize a-posteriori

25

Model Overfitting

Problem:
• Neural net learns too specifically from input set,

rather than generalizing from input, called overfitting
• Overfitting can be a result of too many parameters in

model
Solution:
• Dropout – turn off neurons at random; other neurons

will take care of their job.
– + Reliability
– - Redundancy (-> pruning)

26

Architecture Challenges for Training

• Floating point accuracy
• Where to store the gradients
• Synchronization for parallel processing

