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Outline 

•  Overview of Deep Neural Networks 

•  DNN Development Resources 

•  Survey of DNN Computation 

•  DNN Accelerators 

•  Network Optimizations 

•  Benchmarking Metrics for Evaluation 

•  DNN Training 
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Participant Takeaways 
•  Understand the key design considerations for 

DNNs  

•  Be able to evaluate different implementations of 
DNN with benchmarks and comparison metrics  

•  Understand the tradeoffs between various 
architectures and platforms 

•  Assess the utility of various optimization 
approaches 

•  Understand recent implementation trends and 
opportunities 
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Background of  
Deep Neural Networks 
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Artificial Intelligence 

AI and Machine Learning 

Machine Learning 

“Field of study that gives computers the ability 
to learn without being explicitly programmed” 

–  Arthur Samuel, 1959 
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Artificial Intelligence 

Brain-Inspired Machine Learning 

Machine Learning 

Brain-Inspired 

An algorithm that takes its basic 
functionality from our understanding 
of how the brain operates 
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How Does the Brain Work? 

•  The basic computational unit of the brain is a neuron 
à 86B neurons in the brain 

•  Neurons are connected with nearly 1014 – 1015 synapses 
•  Neurons receive input signal from dendrites and produce 

output signal along axon, which interact with the dendrites of 
other neurons via synaptic weights 

•  Synaptic weights – learnable & control influence strength 

Image Source: Stanford 



9 

Artificial Intelligence 

Spiking-based Machine Learning 

Machine Learning 

Brain-Inspired 

Spiking 
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Spiking Architecture 

•  Brain-inspired 
•  Integrate and fire 
•  Example: IBM TrueNorth 

[Merolla et al., Science 2014; Esser et al., PNAS 2016] 

http://www.research.ibm.com/articles/brain-chip.shtml 
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Artificial Intelligence 

Machine Learning with Neural Networks 

Machine Learning 

Brain-Inspired 

Spiking 
 

Neural 
Networks 
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Neural Networks: Weighted Sum 

Image Source: Stanford 
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Many Weighted Sums 

Image Source: Stanford 
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Artificial Intelligence 

Deep Learning 

Machine Learning 

Brain-Inspired 

Spiking 
 

Neural 
Networks 

Deep 
Learning 
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What is Deep Learning? 

Image 
“Volvo 

XC90” 

Image Source: [Lee et al., Comm. ACM 2011] 
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Why is Deep Learning Hot Now? 

350M images 
uploaded per 
day 

2.5 Petabytes 
of customer 
data hourly 

300 hours of 
video uploaded 
every minute 

Big Data 
Availability 

GPU 
Acceleration 

New ML 
Techniques 
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ImageNet Challenge 

Image Classification Task: 
 1.2M training images • 1000 object categories 

 

Object Detection Task: 
 456k training images • 200 object categories 
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ImageNet: Image Classification Task 
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Top 5 Classification Error (%) 
large error rate reduction 
due to Deep CNN 

[Russakovsky et al., IJCV 2015] 

Deep CNN-based designs Hand-crafted feature- 
based designs 
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GPU Usage for ImageNet Challenge 
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Deep Learning on Images 

•  Image Classification 
•  Object Localization 
•  Object Detection 

•  Image Segmentation 
•  Action Recognition 
•  Image Generation 
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Deep Learning for Speech 

•  Speech Recognition 
•  Natural Language Processing 
•  Speech Translation 
•  Audio Generation 
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Deep Learning on Games 

Google DeepMind AlphaGo 



23 

Medical Applications of Deep Learning 

•  Brain Cancer Detection 

Image Source: [Jermyn et al., JBO 2016] 
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Deep Learning for Self-driving Cars 
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Connectomics – Finding Synapses 

(1) EM 

(2) ML 
Membrane 
Detection (3) Watershed (4) Agglomeration 

(5) Merging (6) Synapses (7) Skeletons (8) Graph 

Machine Learning requires orders of  
Magnitude more computation than other parts 

Image Source: MIT 
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Mature Applications 

•  Image 
o  Classification: image to object class 
o  Recognition: same as classification (except for faces) 
o  Detection: assigning bounding boxes to objects 
o  Segmentation: assigning object class to every pixel 

•  Speech & Language 
o  Speech Recognition: audio to text 
o  Translation 
o  Natural Language Processing: text to meaning 
o  Audio Generation: text to audio 

•  Games 
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Emerging Applications 
•  Medical (Cancer Detection, Pre-Natal) 
•  Finance (Trading, Energy Forecasting, Risk) 
•  Infrastructure (Structure Safety and Traffic) 
•  Weather Forecasting and Event Detection 

This tutorial will focus on image classification 
http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/ 
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Opportunities 

Image Source: Tractica 

$500B Market over 10 Years! 
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Opportunities 

From EE Times – September 27, 2016 
 
”Today the job of training machine learning models is 
limited by compute, if we had faster processors we’d 
run bigger models…in practice we train on a reasonable 
subset of data that can finish in a matter of months. We 
could use improvements of several orders of magnitude 
– 100x or greater.” 

– Greg Diamos, Senior Researcher, SVAIL, Baidu 
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Overview of  
Deep Neural Networks 
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DNN Timeline 

•  1940s: Neural networks were proposed 
•  1960s: Deep neural networks were proposed 
•  1990s: Early hardware for shallow neural nets 

–  Example: Intel ETANN (1992) 

•  1998: LeNet for MNIST 
•  2011: Speech recognition using DNN (Microsoft)  
•  2012: Deep learning starts supplanting traditional ML 

–  AlexNet for image classification 

•  Early 2010s: Rise of DNN accelerator research 
–  Examples: Neuflow, DianNao, etc. 
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Publications at Architecture Conferences 

•  MICRO, ISCA, HPCA, ASPLOS 
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So Many Neural Networks! 

http://www.asimovinstitute.org/neural-network-zoo/ 
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DNN Terminology 101 

Image Source: Stanford 

Neurons 
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DNN Terminology 101 

Image Source: Stanford 

Synapses 
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DNN Terminology 101 

Image Source: Stanford 

Each synapse has a weight for neuron activation 
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DNN Terminology 101 

Image Source: Stanford 

Weight Sharing: multiple synapses use the same weight value 

X1 

X2 

X3 

Y1 

Y2 

Y3 

Y4 

W11 

W34 

"↓$ =&'()*&()+,(∑)=#↑$▒0↓)$ ∗1↓)  ) 



38 

DNN Terminology 101 

Image Source: Stanford 

L1 Output Neurons 
a.k.a. Activations L1 Input Neurons 

e.g. image pixels 

Layer 1 
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DNN Terminology 101 

Image Source: Stanford 

L2 Output  
Activations 

L2 Input  
Activations Layer 2 
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DNN Terminology 101 

Image Source: Stanford 

Fully-Connected: all i/p neurons connected to all o/p neurons 

Sparsely-Connected 
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DNN Terminology 101 

Image Source: Stanford 

Feed Forward Feedback 
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Popular Types of DNNs 

•  Fully-Connected NN 
–  feed forward, a.k.a. multilayer perceptron (MLP) 

•  Convolutional NN (CNN) 
–  feed forward, sparsely-connected w/ weight sharing 

•  Recurrent NN (RNN)  
–  feedback 

•  Long Short-Term Memory (LSTM) 
–  feedback + Storage 
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Inference vs. Training  

•  Training: Determine weights 
–  Supervised:  

•  Training set has inputs and outputs, i.e., labeled 
–  Reinforcement: 

•  Output assessed via rewards and punishments 
–  Unsupervised:  

•  Training set is unlabeled 
–  Semi-supervised:  

•  Training set is partially labeled  
 

•  Inference: Apply weights to determine output  
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Deep Convolutional Neural Networks 

Modern Deep CNN: 5 – 1000 Layers 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

1 – 3 Layers 



45 

Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

Convolution Activation 

×	
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Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

Fully 
Connected 

Activation 

×	



47 

Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

CONV 
Layer 

High-Level 
Features 

Optional layers in between  
CONV and/or FC layers 

NORM 
Layer 

POOL 
Layer 

Normalization Pooling 
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Deep Convolutional Neural Networks 

Classes 
High-Level 
Features FC 

Layer 
CONV 
Layer 

CONV 
Layer 

NORM 
Layer 

POOL 
Layer 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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Convolution (CONV) Layer 

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 
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R 

filter (weights) 

Convolution (CONV) Layer 

input fmap 

S 

Element-wise 
Multiplication 

H 

W 
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R 

filter (weights) 

S 

Convolution (CONV) Layer 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 
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H 
R 

filter (weights) 

S 

Convolution (CONV) Layer 

E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 
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H 

Convolution (CONV) Layer 

R 

S 

C 

input fmap 

output fmap 
C filter 

Many Input Channels (C) 

E 

W F 
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Convolution (CONV) Layer 

E 

output fmap many 
filters (M) 

Many 
Output Channels (M) 

M 

…
 

R 

S 
1 

R 

S 

C 

M 

H 

input fmap 
C 

C 

W F 
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Convolution (CONV) Layer 

…
 

M 

…
 

Many 
Input fmaps (N) Many 

Output fmaps (N) 
…

 

R 

S 

R 

S 

C 

C 

filters 

E 

F 
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C 

E 
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N N 

  

  

  

  

W F 
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CONV Layer Implementation 

Input fmaps  Filter weights Output fmaps  Biases 
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CONV Layer Implementation 

Naïve 7-layer for-loop implementation: 

for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																O[n][m][x][y]	=	B[m];	
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								for	(k=0;	k<C;	k++)	{	
																												O[n][m][x][y]	+=	I[n][k][Ux+i][Uy+j]	×	W[m][k][i][j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	Activation(O[n][m][x][y]);	
												}																	
								}	
				}	
}	

for each output fmap value 

convolve  
a window 
and apply 
activation 
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Traditional Activation Functions 

Image Source: Caffe Tutorial 

Sigmoid 
1 

-1 

0 

0 1 -1 

y=1/(1+e-x)	

Hyperbolic Tangent 
1 

-1 

0 

0 1 -1 

y=(ex-e-x)/(ex+e-x)	
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Modern Activation Functions 

Rectified Linear Unit 
(ReLU) 

1 

-1 

0 

0 1 -1 

y=max(0,x)	

Leaky ReLU 

1 

-1 

0 

0 1 -1 

y=max(αx,x)	

Exponential LU 

1 

-1 

0 

0 1 -1 
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1) 

Image Source: Caffe Tutorial 
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Fully-Connected (FC) Layer 
•  Height and width of output fmaps are 1 (E = F = 1) 
•  Filters as large as input fmaps (R = H, S = W) 
•  Implementation: Matrix Multiplication 

M 

CHW 

CHW 

N 

Filters Input fmaps 

× 

N 

Output fmaps 

M = 
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H 

W 

C 

N 

  

  
  

  
  

  
  

FC Layer – from CONV Layer POV 

…
 

M 

…
 

input fmaps 
output fmaps 

…
 

H 

H 

W 

C 

C 

filters 

H 

C 

1 
1 1 

1 

1 
N 

W 1 W 
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Pooling (POOL) Layer 

Image Source: Caffe Tutorial 

•  Reduce resolution of each channel independently 
•  Increase translation-invariance and noise-resilience  
•  Overlapping or non-overlapping à depending on stride 
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POOL Layer Implementation 

Naïve 6-layer for-loop max-pooling implementation: 
for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																max	=	-Inf;		
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								if	(I[n][m][Ux+i][Uy+j]	>	max)	{	
																												max	=	I[n][m][Ux+i][Uy+j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	max;	
												}																	
								}	
				}	
}	

for each pooled value 

find the max  
with in a window 
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Normalization (NORM) Layer 

•  Batch Normalization (BN) 
–  Normalize activations towards mean=0 and std. 

dev.=1 based on the statistics of the training dataset 

–  put in between CONV/FC and Activation function 

[Ioffe et al., ICML 2015] 

CONV 
Layer 

Convolution Activation 

×	
BN 

Believed to be key to getting high accuracy and  
faster training on very deep neural networks. 
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BN Layer Implementation 
•  The normalized value is further scaled and shifted, the 

parameters of which are learned from training 

data mean 

data std. dev. 

learned scale factor 

learned shift factor 
small const. to avoid 
numerical problems 
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Normalization (NORM) Layer 

•  Local Response Normalization (LRN) 
•  Tries to mimic the inhibition scheme in the brain 

Image Source: Caffe Tutorial 

Now deprecated! 
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Relevant Components for Tutorial 

•  Typical operations that we will discuss: 
–  Convolution (CONV) 
–  Fully-Connected (FC) 
–  Max Pooling 
–  ReLU 
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Survey of DNN 
Development Resources 

MICRO Tutorial (2016) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Popular DNNs 

•  LeNet (1998) 
•  AlexNet (2012) 
•  OverFeat (2013) 
•  VGGNet (2014) 
•  GoogleNet (2014) 
•  ResNet (2015) 
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[O. Russakovsky et al., IJCV 2015] 
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ImageNet: Large Scale Visual 
Recognition Challenge (ILSVRC) 
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LeNet-5  

[Y. Lecun et al, Proceedings of the IEEE, 1998] 

CONV Layers: 2 
Fully Connected Layers: 2 
Weights: 431k 
MACs: 2.3M 

Digit Classification! 
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AlexNet 
CONV Layers: 5 
Fully Connected Layers: 3 
Weights: 61M 
MACs: 724M 

[Krizhevsky et al., NIPS, 2012] 

ILSCVR12 Winner 

Uses Local Response Normalization (LRN) 



5 

Large Sizes with Varying Shapes 5 

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride 
1 11x11 96 3 4 
2 5x5 256 48 1 
3 3x3 384 256 1 
4 3x3 384 192 1 
5 3x3 256 192 1 

AlexNet	Convolu7onal	Layer	Configura7ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

105M	MACs	 224M	MACs	 150M	MACs	
[Krizhevsky et al., NIPS, 2012] 
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OverFeat (fast model) 
CONV Layers: 5 
Fully Connected Layers: 3 
Weights: 144M 
MACs: 5.4G 

[Sermanet et al., ArXiv 2013, ICLR 2014] 
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VGG-16 
CONV Layers: 16 
Fully Connected Layers: 3 
Weights: 138M 
MACs: 15.5G 

[Simonyan et al., ArXiv 2014, ICLR 2015] 
Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/ 

Also, 19 layer version 

More Layers à Deeper! 

Reduce # of weights 



8 

GoogLeNet (v1) 
CONV Layers: 21 
Fully Connected Layers: 1 
Weights: 7.0M 
MACs: 1.43G 

[Szegedy et al., ArXiv 2014, CVPR 2015] 

Also, v2, v3 and v4 
ILSVRC14 Winner 

Inception module 
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ResNet-50 
CONV Layers: 49 
Fully Connected Layers: 1 
Weights: 25.5M 
MACs: 3.9G 

[He et al., ArXiv 2015, CVPR 2016] 

Also, 34,152 and 1202 layer versions 
ILSVRC15 Winner 
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Revolution of Depth 

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf  
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Summary of Popular DNNs 
Metrics LeNet-5 AlexNet OverFeat 

(fast) 
VGG-16 GoogLeNet  

(v1) 
ResNet-50 

Top-5 error n/a 16.4 14.2 7.4 6.7 5.3 

Input Size 28x28 227x227 231x231 224x224 224x224 224x224 
# of CONV Layers 2 5 5 16 21 49 
Filter Sizes 5 3, 5,11 3, 7 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 1, 6 3 - 256 3 - 1024 3 - 512 3 - 1024 3 - 2048 
# of Filters 6, 16 96 - 384 96 - 1024 64 - 512 64 - 384 64 - 2048 
Stride 1 1, 4 1, 4 1 1, 2 1, 2 
# of Weights 26k 2.3M 16M 14.7M 6.0M 23.5M 
# of MACs 1.9M 666M 2.67G 15.3G 1.43G 3.86G 
# of FC layers 2 3 3 3 1 1 
# of Weights 406k 58.6M 130M 124M 1M 2M 
# of MACs 405k 58.6M 130M 124M 1M 2M 
Total Weights 431k 61M 146M 138M 7M 25.5M 
Total MACs 2.3M 724M 2.8G 15.5G 1.43G 3.9G 

CONV Layers increasingly important! 
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Summary of Popular DNNs 
•  AlexNet 

–  First CNN Winner of ILSVRC 

–  Uses LRN (deprecated after this) 

•  VGG-16 
–  Goes Deeper (16+ layers) 

–  Uses only 3x3 filters (stack for larger filters) 

•  GoogLeNet (v1) 
–  Reduces weights with Inception and only one FC layer 

–  Inception: 1x1 and DAG (parallel connections) 
–  Batch Normalization 

•  ResNet 
–  Goes Deeper (24+ layers) 
–  Shortcut connections 
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Frameworks 

Also, CNTK, MXNet, etc. 
More at: https://developer.nvidia.com/deep-learning-frameworks  

Berkeley / BVLC 
(C, C++, Python, MATLAB) 

Google 
(C++, Python) 

U. Montreal 
(Python) 

Facebook / NYU 
(C, C++, Lua) 
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Example: Layers in Caffe 

http://caffe.berkeleyvision.org/tutorial/layers.html 

!
layer {!
  name: "relu1"!

  type: "ReLU"!
  bottom: "conv1"!

  top: "conv1"!
}!

!
layer {!
  name: "conv1"!

  type: "Convolution"!
  bottom: "data"!

  top: "conv1"!
 ...!

  convolution_param {!
    num_output: 20!

    kernel_size: 5!
    stride: 1!

...!

!
layer {!
  name: "pool1"!

  type: "Pooling"!
  bottom: "conv1"!

  top: "pool1"!
  pooling_param {!

    pool: MAX!
    kernel_size: 2!

    stride: 2 ...!

Pooling Layer 

Convolution Layer 

Non-Linearity 
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Image Classification Datasets  

•  Image Classification/Recognition 
–  Given an entire image à Select 1 of N classes 
–  No localization (detection) 

 

Image Source: Stanford cs231n 

Datasets affect difficulty of task 
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MNIST 

LeNet in 1998 
(0.95% error) 
 
 
 
ICML 2013 
(0.21% error) 

http://yann.lecun.com/exdb/mnist/  

Digit Classification 
28x28 pixels (B&W) 
10 Classes 
60,000 Training 
10,000 Testing 
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CIFAR-10/CIFAR-100 

https://www.cs.toronto.edu/~kriz/cifar.html  

CIFAR-10 
RBM+finetuning in 2009  
(35.16% error) 
 
 
 
ArXiv 2015 
(3.47% error) 

Object Classification 
32x32 pixels (color) 
10 or 100 Classes 
50,000 Training 
10,000 Testing 

Subset of 80 Tiny Images Dataset (Torrabla) 

Image Source: http://karpathy.github.io/ 
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ImageNet 

http://www.image-net.org/challenges/LSVRC/  

Object Classification 
~256x256 pixels (color) 
1000 Classes 
1.3M Training 
100,000 Testing (50,000 Validation) 

Image Source: http://karpathy.github.io/ 
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ImageNet 

http://www.image-net.org/challenges/LSVRC/  

Image Source: http://karpathy.github.io/ 

Fine grained  
Classes 
(120 breeds) 

Top-5 Error 
Image Source: Krizhevsky et al., NIPS 2012 

Winner 2012  
(16.42% error) 
 
 
 
Winner 2016 
(2.99% error) 
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Image Classification Summary 

MNIST CIFAR-10 CIFAR-100 IMAGENET 
Year 1998 2009 2009 2012 
Resolution 28x28 32x32 32x32 256x256 
Classes 10 10 100 1000 
Training 60k 50k 50k 1.3M 
Testing 10k 10k 10k  100k 
Accuracy 0.21% 

error  
(ICML 2013) 

3.47% 
error 

(arXiv 2015) 

24.28% error  
(arXiv 2015) 

 

2.99%  
top-5 error 

(2016 winner) 

http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html 
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Next Tasks: Localization and Detection 

[Russakovsky et al., IJCV, 2015] 
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Others Popular Datasets 
•  Pascal VOC 

–  11k images 
–  Object Detection 
–  20 classes 

•  MS COCO   
–  300k images 
–  Detection, Segmentation 
–  Recognition in context 

http://mscoco.org/  http://host.robots.ox.ac.uk/pascal/VOC/  
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Recently Introduced Datasets 

•  Announced Sept 2016: 
•  Google Open Images (~9M images) 

–  https://github.com/openimages/dataset 

•  Youtube-8M (8M videos) 
–  https://research.google.com/youtube8m/  
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Survey of  
DNN Hardware 

MICRO Tutorial (2016) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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CPUs Are Targeting Deep Learning 

Image Source: Intel, Data Source: Next Platform 

Knights Mill: next gen Xeon Phi “optimized for deep learning”  

•  7 TFLOPS FP32 

•  16GB MCDRAM– 400 GB/s 

•  245W TDP 

•  29 GFLOPS/W (FP32) 

•  14nm process 

Intel Knights Landing (2016) 

Intel announced the addition of new vector instructions for deep learning 
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016 
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GPUs Are Targeting Deep Learning 

•  10/20 TFLOPS FP32/FP16 

•  16GB HBM – 750 GB/s 

•  300W TDP 

•  67 GFLOPS/W (FP16) 

•  16nm process 

•  160GB/s NV Link  

Source: Nvidia 

Nvidia PASCAL GP100 (2016) 
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Systems for Deep Learning 

•  170 TFLOPS 

•  8× Tesla P100, Dual Xeon 

•  NVLink Hybrid Cube Mesh 

•  Optimized DL Software 

•  7 TB SSD Cache 

•  Dual 10GbE, Quad IB 100Gb 

•  3RU – 3200W 

Source: Nvidia 

Nvidia DGX-1 (2016) 
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Cloud Systems for Deep Learning 

•  Open Rack Compliant 

•  Powered by 8 Tesla M40 GPUs 

•  2x Faster Training for Faster Deployment 

•  2x Larger Networks for Higher Accuracy 
 

Source: Facebook 

Facebook’s Deep Learning Machine 
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SOCs for Deep Learning Inference 

ARM v8 
CPU 

COMPLEX 
(2x Denver 2 + 4x 

A57) 
Coherent HMP 

SECURITY 
ENGINES 

2D 
ENGINE 

4K60 
VIDEO 

ENCODER 

4K60 
VIDEO 

DECODER 

AUDIO 
ENGINE 

DISPLAY 
ENGINES 

IMAGE 
PROC 
(ISP) 

128-bit  
LPDDR4 

BOOT and 
PM PROC 

GigE 
Ethernet 

MAC 

I/O 
Safety 
Engine 

•  GPU: 1.5 TeraFLOPS FP16 

•  4GB LPDDR4 @ 25.6 GB/s 

•  15 W TDP  
(1W idle, <10W typical) 

•  100 GFLOPS/W (FP16) 

•  16nm process 

Source: Nvidia 

Nvidia Tegra - Parker 

Xavier: next gen Tegra to be an “AI supercomputer” 
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Mobile SOCs for Deep Learning 

•  GPU: 0.26 TFLOPS 

•  LPDDR4 @ 28.7 GB/s 

•  14nm process 

Exynos 8 Octa 8890 

Source: Wikipedia 

Samsung Exynos (ARM Mali) 
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FPGAs for Deep Learning 

•  10 TFLOPS FP32 
•  HBM2 integrated 
•  Up to 1 GHz 
•  14nm process 
•  80 GFLOPS/W 

Intel/Altera Stratix 10 

Xilinx Virtex UltraSCALE+ 
•  DSP: up to 21.2 TMACS 
•  DSP: up to 890 MHz 
•  Up to 500Mb On-Chip Memory 
•  16nm process 
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Kernel  
Computation 
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Fully-Connected (FC) Layer 

M 

CHW 

CHW 

1 

Filters Input fmaps 

× 

1 
Output fmaps 

M = 

•  Matrix–Vector Multiply:  
•  Multiply all inputs in all channels by a weight and sum 
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Fully-Connected (FC) Layer 

M 

CHW 

CHW 

N 

Filters Input fmaps 

× 

N 

Output fmaps 

M = 

•  Batching (N) turns operation into a Matrix-Matrix multiply 



12 

Fully-Connected (FC) Layer 

•  Implementation: Matrix Multiplication (GEMM) 
 

•  CPU: OpenBLAS, Intel MKL, etc 
•  GPU: cuBLAS, cuDNN, etc 

•  Optimized by tiling to storage hierarchy 
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Convolution (CONV) Layer 
•  Convert to matrix mult. using the Toeplitz Matrix 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 
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Convolution (CONV) Layer 
•  Convert to matrix mult. using the Toeplitz Matrix 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 

Data is repeated 
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Convolution (CONV) Layer 

•  Multiple Channels and Filters 

1 2
3 4Filter 1 

Input Fmap 

Output Fmap 1 * = 1 2
3 4

1 2
3 4Filter 2 

Chnl 1 Chnl 2 

1 2 3
4 5 6
7 8 9
Chnl 1 Chnl 2 

1 2
3 4

1 2
3 4

1 2 3
4 5 6
7 8 9

1 2
3 4 Output Fmap 2 
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Convolution (CONV) Layer 

= 1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2
1 2 3 4

3 4× 

Toeplitz Matrix 
(w/ redundant data) 

•  Multiple Channels and Filters 

Chnl 1 Chnl 2 
Filter 1 
Filter 2 

Chnl 1 

Chnl 2 

Output Fmap 1 

Output Fmap 2 
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Computational  
Transforms 



18 

Computation Transformations 

•  Goal: Bitwise same result, but reduce 
number of operations 

•  Focuses mostly on compute 
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Gauss’s Multiplication Algorithm 

4 multiplications + 3 additions 

3 multiplications + 5 additions 
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Strassen 

P1 = a(f – h) 
P2 = (a + b)h 
P3 = (c + d)e 
P4 = d(g – e) 

P5 = (a + d)(e + h) 
P6 = (b - d)(g + h) 
P7 = (a – c)(e + f) 

8 multiplications + 4 additions 

7 multiplications + 18 additions 

7 multiplications + 13 additions (for constant B matrix – weights) 

[Cong et al., ICANN, 2014] 
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Strassen 
•  Reduce the complexity of matrix multiplication 

from Θ(N3) to Θ(N2.807) by reducing multiplications 
•  Comes at the price of reduced numerical stability 

and requires significantly more memory 

N 

Naïve 

Strassen 

Complexity 

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/  
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Winograd 1D – F(2,3) 

[Lavin et al., ArXiv 2015] 

•  Targeting convolutions instead of matrix multiply 
•  Notation: F(size of output, filter size) 

6 multiplications + 4 additions 

=[█#0@#1 ] 

4 multiplications + 12 additions + 2 shifts 
4 multiplications + 8 additions (for constant weights) 

input filter 
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Winograd 2D - F(2x2, 3x3) 

•  1D Winograd is nested to make 2D Winograd 

d00 d01 d02 d03 

d10 d11 d12 d13 

d20 d21 d22 d23 

d30 d31 d32 d33 

Winograd:  16 multiplications à 2.25 times reduction 

g00 g01 g02 

g10 g11 g12 

g20 g21 g22 

y00 y01 

y10 y11 

Original:  36 multiplications 

Filter Input Fmap Output Fmap 

* = 
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Winograd Halos 
•  Winograd works on a small region of output at a 

time, and therefore uses inputs repeatedly 

d00 d01 d02 d03 d04 d05 

d10 d11 d12 d13 d14 d15 

d20 d21 d22 d23 d24 d25 

d30 d31 d32 d33 d34 d35 

g00 g01 g02 

g10 g11 g12 

g20 g21 g22 

y00 y01 

y10 y11 

Filter Input Fmap Output Fmap 

y02 y03 

y12 y12 

Halo columns 
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Winograd Performance Varies 

Source: Nvidia  
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Winograd Summary 

•  Winograd is an optimized computation for 
convolutions 
 

•  It can significantly reduce multiplies 
–  For example, for 3x3 filter by 2.5X 

 

•  But, each filter size is a different computation. 
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Winograd as a Transform 

Transform inputs 

Dot-product 

Transform output 

[Lavin et al., ArXiv 2015] 

filter 
input 

GgGT can be precomputed 
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R 

filter (weights) 

S 

FFT Flow  

E 

F 

input fmap output fmap 

H 

W 

an output  
activation 

* = 

FFT(W) 

F
F
T

FFT(I) X = FFT(0) 

F
F
T

I
F
F
T
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FFT Overview 

•  Convert filter and input to frequency domain 
to make convolution a simple multiply then 
convert back to time domain. 
 

•  Convert direct convolution O(No
2Nf

2) 
computation to O(No

2log2No) 

•  So note that computational benefit of FFT 
decreases with decreasing size of filter 

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014] 
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FFT Costs 

•  Input and Filter matrices are ‘0-completed’, 
–   i.e., expanded to size E+R-1 x F+S-1 

•  Frequency domain matrices are same 
dimensions as input, but complex.  

•  FFT often reduces computation, but requires 
much more memory space and bandwidth 
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Optimization opportunities 

•  FFT of real matrix is symmetric allowing one 
to save ½ the computes 

•  Filters can be pre-computed and stored, but 
convolutional filter in frequency domain is 
much larger than in time domain 

•  Can reuse frequency domain version of input 
for creating different output channels to 
avoid FFT re-computations 
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cuDNN: Speed up with Transformations 

Source: Nvidia  
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GPU/CPU Benchmarking 

•  Industry performance website 
•  https://github.com/jcjohnson/cnn-benchmarks  

 

•  DeepBench  
–  Profile layer by layer (Dense Matrix Multiplication, Convolutions, 

Recurrent Layer, All-Reduce) 
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GPU/CPU Benchmarking 

•  Minibatch = 16 
•  Image size 224x224 
•  cuDNN 5.0 or 5.1 
•  Torch 

Platform AlexNet VGG-16 GoogLeNet 
(v1) 

ResNet-50 

Pascal Titan X (F+B) 14.56 128.62 39.14 103.58 
Pascal Titan X (F) 5.04 41.59 11.94 35.03 
GTX 1080 (F) 7.00 59.37 16.08 50.64 
Maxwell Titan X 7.09 62.30 19.27 55.75 
Dual Xeon E5-2630 v3 n/a 3101.76 n/a 2477.61 

Speed (ms) 

https://github.com/jcjohnson/cnn-benchmarks  
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GPU/CPU Benchmarking 

•  Minibatch = 1 
•  Image size 224x224 

Platform AlexNet VGG-16 
Maxwell Titan X 0.54 10.67 

Exynos 7 Octa 7420 117 1926 

Speed (ms) 

[Kim et al., ICLR 2016] 
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DeepBench 

•  Profile layer by layer  
–  Dense Matrix Multiplication, Convolutions, 

Recurrent Layer, All-Reduce (communication) 

https://svail.github.io/DeepBench/  



1

DNN Accelerator 
Architectures

MICRO Tutorial (2016)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen
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Highly-Parallel Compute Paradigms2

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU
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Memory Access is the Bottleneck

ALUfilter weight
fmap activation

partial sum updated partial sum

Memory Read Memory WriteMAC*

* multiply-and-accumulate
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Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

DRAM DRAM

• Example: AlexNet [NIPS 2012] has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses
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Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

Extra levels of local memory hierarchy

MemDRAM DRAMMem
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Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

1

Opportunities:      data reuse local accumulation1

MemDRAM DRAMMem

MAC*
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Types of Data Reuse in DNN
Convolutional Reuse

CONV layers only
(sliding window)

Filter Input Fmap

Activations
Filter weights

Reuse:
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Types of Data Reuse in DNN
Convolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers

Filter Input Fmap
Filters

2

1

Input Fmap

Activations
Filter weights

Reuse: ActivationsReuse:
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Types of Data Reuse in DNN
Filter ReuseConvolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap
Filters

2

1

Input Fmap Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: ActivationsReuse: Filter weightsReuse:
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Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

** AlexNet CONV layers

1) Can reduce DRAM reads of filter/fmap by up to 500×**

1

Opportunities:      data reuse local accumulation1

MemDRAM DRAMMem

1

MAC*
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Memory Access is the Bottleneck

1) Can reduce DRAM reads of filter/fmap by up to 500×
2) Partial sum accumulation does NOT have to access DRAM
1
2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

Opportunities:      data reuse local accumulation1 2

MemDRAM DRAMMem

MAC*
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Memory Access is the Bottleneck

Opportunities:      data reuse local accumulation

• Example: DRAM access in AlexNet can be reduced
from 2896M to 61M (best case)

1) Can reduce DRAM reads of filter/fmap by up to 500×
2) Partial sum accumulation does NOT have to access DRAM

1 2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

MemDRAM DRAMMem

1
2

MAC*
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Spatial Architecture for CNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy
• Global Buffer
• Direct inter-PE network
• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB
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Low-Cost Local Data Access

DRAM Global
Buffer PE

PE PE

ALU fetch data to run 
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process



15

Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit data reuse and local accumulation
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs
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Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit data reuse and local accumulation
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

specialized processing dataflow required!
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Dataflow Taxonomy

• Weight Stationary (WS)

• Output Stationary (OS)

• No Local Reuse (NLR)

[Chen et al., ISCA 2016]
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate psums
spatially across the PE array.

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Activations

PE
Weight
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WS Example: nn-X (NeuFlow)

[Farabet et al., ICCV 2009]

A 3×3 2D Convolution Engine
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WS Example: nn-X (NeuFlow)

[Gokhale et al., CVPRW 2014]

10×10 2D Convolution Engines

Top-Level Architecture
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• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse
activations spatially across the PE array

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activations Weight

PE
Psum
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OS Example: ShiDianNao
Input Fmap Dataflow in the PE Array

[Du et al., ISCA 2015]
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OS Example: ShiDianNao

Top-Level Architecture PE Architecture

[Du et al., ISCA 2015]
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• Use a large global buffer as shared storage
− Reduce DRAM access energy consumption

• Multicast activations, single-cast weights, and
accumulate psums spatially across the PE array

No Local Reuse (NLR)

Activation
PE

Psum

Global Buffer
Weight
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NLR Example: UCLA

[Zhang et al., FPGA 2015]
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NLR Example: DianNao

[Chen et al., ASPLOS 2014]
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Taxonomy: More Examples

• Weight Stationary (WS)

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]

[ShiDianNao, ISCA 2015][Peemen, ICCD 2013]
[Gupta, ICML 2015] [Moons, VLSI 2016]

• Output Stationary (OS)

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

• No Local Reuse (NLR)
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Energy Efficiency Comparison

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
.E

ne
rg

y/
O

p

Dataflows
NLRWS OSA OSB OSC

Normalized 
Energy/MAC

CNN Dataflows

• Same total area • 256 PEs

• AlexNet CONV layers • Batch size = 16

Variants of OS

[Chen et al., ISCA 2016]
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Energy Efficiency Comparison

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
.E

ne
rg

y/
O

p

Dataflows
NLRWS OSA OSB OSC Row

Stationary

Normalized 
Energy/MAC

CNN Dataflows

Variants of OS

• Same total area • 256 PEs

• AlexNet CONV layers • Batch size = 16

[Chen et al., ISCA 2016]
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Energy-Efficient Dataflow:
Row Stationary (RS)

• Maximize reuse and accumulation at RF

• Optimize for overall energy efficiency
instead for only a certain data type

[Chen et al., ISCA 2016]
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Row Stationary: Energy-efficient Dataflow31

* =
Filter Output Fmap

Input Fmap
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1D Row Convolution in PE32

* =
Filter Partial Sums
a b c a b c

a b c d e

PEReg File

b ac

d ce ab

Input Fmap
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1D Row Convolution in PE33

* =
Filter
a b c a b c

a b c d e

e d

PE
b ac

Reg File

b ac

a

Partial Sums
Input Fmap
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1D Row Convolution in PE34

* =
a b c

a b c d e Partial Sums
Input Fmap

PE
b ac

Reg File

c bd

b

e
a

Filter
a b c
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1D Row Convolution in PE35

* =
a b c

a b c d e Partial Sums
Input Fmap

PE
b ac

Reg File

d ce

c
b a

Filter
a b c
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1D Row Convolution in PE36

PE
b ac

Reg File

d ce

c
b a

• Maximize row convolutional reuse in RF
− Keep a filter row and fmap sliding window in RF

• Maximize row psum accumulation in RF
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2D Convolution in PE Array37

Row 1 Row 1

=*

*
PE 1
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2D Convolution in PE Array38

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1

=*

*

*

*

PE 1

PE 2

PE 3
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2D Convolution in PE Array39

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1

=*

Row 1 Row 2

Row 2 Row 3

Row 3 Row 4

=*

* *

* *

* *

Row 2

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6
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2D Convolution in PE Array40

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *
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Convolutional Reuse Maximized41

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 4

Row 2

Row 3

Row 4

Row 5

Row 3

* * *

* * *

* * *

Filter rows are reused across PEs horizontally

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9
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Convolutional Reuse Maximized42

Row 1

Row 2

Row 3

Row 1

Row 1

Row 2

Row 3

Row 2

Row 1

Row 2

Row 3

Row 3

* * *

* * *

* * *

Fmap rows are reused across PEs diagonally

Row 1

Row 2

Row 3

Row 2

Row 3

Row 4

Row 3

Row 4

Row 5

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9
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Maximize 2D Accumulation in PE Array43

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1 Row 2

Row 2 Row 3

Row 3 Row 4

Row 1 Row 3

Row 2 Row 4

Row 3 Row 5

* * *

* * *

* * *

Partial sums accumulate across PEs vertically

Row 1 Row 2 Row 3

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9
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Dimensions Beyond 2D Convolution
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters
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Filter Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1=
Psum 2Filter 1
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Filter Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1=
Psum 2Filter 1

share the same filter row
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Filter Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1=
Psum 2Filter 1

Processing in PE: concatenate fmap rows

Channel 1 *Row 1
Fmap 1 & 2

=
Psum 1 & 2Filter 1

Row 1 Row 1 Row 1 Row 1

share the same filter row
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Fmap Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1=
Psum 2Filter 2
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Fmap Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1=
Psum 2Filter 2

share the same fmap row
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Fmap Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1=
Psum 2Filter 2

share the same fmap row

Processing in PE: interleave filter rows

*
Fmap 1

=
Psum 1 & 2Filter 1 & 2

Row 1Channel 1
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Channel Accumulation in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1=
Psum 1Filter 1
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Channel Accumulation in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1=
Psum 1Filter 1

accumulate psums

Row 1 Row 1+ = Row 1
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Channel Accumulation in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 & 2
Fmap 1

=
PsumFilter 1

* Row 1

Processing in PE: interleave channels

accumulate psums
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DNN Processing – The Full Picture54

Multiple fmaps:

Multiple filters:

Multiple channels:

PE
Row 1 Row 1

PE
Row 2 Row 2

PE
Row 3 Row 3

PE
Row 1 Row 2

PE
Row 2 Row 3

PE
Row 3 Row 4

PE
Row 1 Row 3

PE
Row 2 Row 4

PE
Row 3 Row 5

* * *

* * *

* * *

Image 1
=

PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap
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Optimal Mapping in Row Stationary

…
M

……

R

R

R

R

C

C

E

E

H

H

C

E

E
1

N N

1

M

H

H

C

1

CNN Configurations

Global Buffer

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Hardware Resources

Optimization
Compiler

Row Stationary Mapping

Multiple fmaps:

Multiple filters:

Multiple channels:

PE
Row 1 Row 1

PE
Row 2 Row 2

PE
Row 3 Row 3

PE
Row 1 Row 2

PE
Row 2 Row 3

PE
Row 3 Row 4

PE
Row 1 Row 3

PE
Row 2 Row 4

PE
Row 3 Row 5

* * *

* * *

* * *

Image 1
=

PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap

[Chen et al., ISCA 2016]
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Dataflow
Simulation Results
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Evaluate	Reuse	in	Different	Dataflows
• Weight	Stationary

– Minimize	movement	of	filter	weights
• Output	Stationary

– Minimize	movement	of	partial	sums
• No	Local	Reuse

– No	PE	local	storage.	Maximize	global	buffer	size.
• Row	Stationary

57

Evaluation Setup
• same total area
• 256 PEs
• AlexNet
• batch size = 16

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU
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Variants of Output Stationary

# Output Channels
# Output Activations

E

E

M

OSB

Multiple

Multiple

Notes

E

E

M

OSA

Single

Multiple

Targeting
CONV layers

E

E

M

OSC

Multiple

Single

Targeting
FC layers

Parallel 
Output Region
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Dataflow Comparison: CONV Layers

Normalized
Energy/MAC

RS optimizes for the best overall energy efficiency

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS
CNN Dataflows

psums

weights

activations

[Chen et al., ISCA 2016]
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Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU

RF

NoC

buffer

DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS
CNN Dataflows

[Chen et al., ISCA 2016]
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Dataflow Comparison: FC Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS
CNN Dataflows

RS uses at least 1.3× lower energy than other dataflows

psums

weights

activations

[Chen et al., ISCA 2016]



62

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

[Chen et al., ISCA 2016]
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Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

RF dominates
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Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

RF dominates DRAM dominates
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Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

CONV layers dominate energy consumption!

Total Energy
80% 20%
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Hardware Architecture
for RS Dataflow
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Eyeriss Deep CNN Accelerator67

Off-Chip DRAM

…

…

…

…
… …

Decomp

Comp ReLU

Input Fmap

Output Fmap

Filter Filt

Fmap

Psum

Psum

Global
Buffer
SRAM

108KB

64 bits

DCNN Accelerator

14×12 PE Array

Link Clock Core Clock 

[Chen et al., ISSCC 2016]
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Data Delivery with On-Chip Network

Off-Chip DRAM

Decomp

Comp ReL
U

Input Image

Output Image

Filter
Buffer
SRAM

108K
B

64 bits

DCNN AcceleratorLink Clock Core Clock 

…

…

…

…
… …

Filt

Fmap

Psum

Psum

14×12 PE Array

Filter 
Delivery

Fmap
Delivery

Data Delivery Patterns

How to accommodate different shapes with fixed PE array?
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Logical to Physical Mappings
Replication Folding

..

.. .. ....
..

3

13
AlexNet
Layer 3-5

12

14

Physical PE Array

3

3

3

3

13

13

13

13

..
.. .. ....

..
5

27
AlexNet
Layer 2

Physical PE Array

12

14

5
14

135
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Logical to Physical Mappings
Replication Folding

..

.. .. ....
..

3

13
AlexNet
Layer 3-5

12

14

Physical PE Array

3

3

3

3

13

13

13

13

..
.. .. ....

..
5

27
AlexNet
Layer 2

Physical PE Array

12

14

5
14

135

Unused PEs
are

Clock Gated
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Multicast Network Design

Buffer

Global
Y-Bus

Global X-Bus

Global X-Bus

Local Link

[Data, Col], <Row> [Data], <Col>

[Data]

[Input]
<Tag>

Multicast Controller
ID (configurable)
Output

if (Tag == ID)
Output = Input
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Data Delivery with On-Chip Network

Off-Chip DRAM

Decomp

Comp ReL
U

Input Image

Output Image

Filter
Buffer
SRAM

108K
B

64 bits

DCNN AcceleratorLink Clock Core Clock 

…

…

…

…
… …

Filt

Img

Psum

Psum

14×12 PE Array

Filter 
Delivery

Image
Delivery

Data Delivery Patterns

Compared to Broadcast, Multicast saves >80% of NoC energy
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Chip Spec & Measurement Results
Technology TSMC 65nm LP 1P9M

On-Chip Buffer 108 KB
# of PEs 168

Scratch Pad / PE 0.5 KB
Core Frequency 100 – 250 MHz

Peak Performance 33.6 – 84.0 GOPS
Word Bit-width 16-bit Fixed-Point

Natively Supported
DNN Shapes

Filter Width: 1 – 32
Filter Height: 1 – 12
Num. Filters: 1 – 1024
Num. Channels: 1 – 1024
Horz. Stride: 1–12
Vert. Stride: 1, 2, 4

4000 µm

4000 µm

Global
Buffer

Spatial Array
(168 PEs)

[Chen et al., ISSCC 2016]
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Benchmark – AlexNet Performance
Image Batch Size of 4 (i.e. 4 frames of 227x227) 

Core Frequency = 200MHz / Link Frequency = 60 MHz 

Layer Power
(mW)

Latency
(ms)

# of MAC
(MOPs) 

Active # 
of PEs (%)

Buffer Data 
Access (MB)

DRAM Data
Access (MB)

1 332 20.9 422 154 (92%) 18.5 5.0
2 288 41.9 896 135 (80%) 77.6 4.0
3 266 23.6 598 156 (93%) 50.2 3.0
4 235 18.4 449 156 (93%) 37.4 2.1
5 236 10.5 299 156 (93%) 24.9 1.3

Total 278 115.3 2663 148 (88%) 208.5 15.4

To	support	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB (buffer)	and	15.4MB (DRAM)	
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Benchmark – AlexNet Performance
Image Batch Size of 4 (i.e. 4 frames of 227x227) 

Core Frequency = 200MHz / Link Frequency = 60 MHz 

Layer Power
(mW)

Latency
(ms)

# of MAC
(MOPs) 

Active # 
of PEs (%)

Buffer Data 
Access (MB)

DRAM Data
Access (MB)

1 332 20.9 422 154 (92%) 18.5 5.0
2 288 41.9 896 135 (80%) 77.6 4.0
3 266 23.6 598 156 (93%) 50.2 3.0
4 235 18.4 449 156 (93%) 37.4 2.1
5 236 10.5 299 156 (93%) 24.9 1.3

Total 278 115.3 2663 148 (88%) 208.5 15.4

51682 operand*	access/input	image	pixel	
à506 access/pixel	from	buffer	+	37 access/pixel	from	DRAM

*operand = weight, activation, psum
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Comparison with GPU
This Work NVIDIA TK1 (Jetson Kit)

Technology 65nm 28nm
Clock Rate 200MHz 852MHz

# Multipliers 168 192

On-Chip Storage Buffer: 108KB
Spad: 75.3KB

Shared Mem: 64KB
Reg File: 256KB

Word Bit-Width 16b Fixed 32b Float
Throughput1 34.7 fps 68 fps

Measured Power 278 mW Idle/Active2: 3.7W/10.2W
DRAM Bandwidth 127 MB/s 1120 MB/s 3

1. AlexNet CONV Layers
2. Board Power
3. Modeled from [Tan, SC 2011]
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From Architecture to System

https://vimeo.com/154012013
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Summary of DNN Dataflows
• Weight Stationary

– Minimize movement of filter weights
– Popular with processing-in-memory architectures

• Output Stationary
– Minimize movement of partial sums
– Different variants optimized for CONV or FC layers

• No Local Reuse
– No PE local storage à maximize global buffer size

• Row Stationary
– Adapt to the NN shape and hardware constraints
– Optimized for overall system energy efficiency
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MICRO 2016 Papers in the Taxonomy

• Stripes: bit-serial computation in a NLR-like 
engine (based on DaDianNao)

• NEUTRAMS: a toolset for accelerators running the 
WS dataflow (synaptic weight memory array)

• Fused-layer: exploit inter-layer data reuse in a 
NLR engine (based on [Zhang, FPGA 2015])
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Fused Layer
• Dataflow across multiple layers

[Alwani et al., MICRO 2016]
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Advanced Technology 
Opportunities 

MICRO Tutorial (2016) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Advanced Storage Technology 

•  Embedded DRAM (eDRAM) 
–  Increase on-chip storage capacity 

•  3D Stacked DRAM  
–  e.g. Hybrid Memory Cube Memory (HMC), High 

Bandwidth Memory (HBM) 
–  Increase memory bandwidth  
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eDRAM (DaDianNao) 

•  Advantages of eDRAM 
–  2.85x higher density than SRAM 
–  321x more energy-efficient than DRAM (DDR3) 

•  Store weights in eDRAM (36MB) 
–  Target fully connected layers since dominated by weights 
 

[Chen et al., DaDianNao, MICRO 2014] 

16 Parallel 
Tiles 
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Stacked DRAM (NeuroCube) 
•  NeuroCube on Hyper Memory Cube Logic Die  

–  6.25x higher BW than DDR3 
•  HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s) 

–  Computation closer to memory (reduce energy) 
 

[Kim et al., NeuroCube, ISCA 2016] 



5 

Analog Computation 

V1 
G1 

I1 = V1×G1 
V2 

G2 

I2 = V2×G2 

I = I1 + I2  
= V1×G1 + V2×G2 

Figure Source:  ISAAC, ISCA 2016 

•  Conductance = Weight 
•  Voltage = Input 
•  Current = Voltage × Conductance  
•  Sum currents for addition 

Input = V1, V2, … 

Filter Weights = G1, G2, … (conductance) 

Weight Stationary Dataflow 

Output = Weight × Input∑
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Memristor Computation 

•  Advantages 
–  High Density (< 10nm x 10nm size*) 

•  ~30x smaller than SRAM** 
•  1.5x smaller than DRAM** 

–  Non-Volatile 
–  Operates at low voltage 
–  Computation within memory (in situ) 

•  Reduce data movement 

Use memristors as programmable 
weights (resistance) 

*[Govoreanu et al., IEDM 2011], **ITRS 2013 
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Memristor 

[Chi et al., ISCA 2016] 
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Resistive Memory Devices 

Figure Source: Han Wang, USC 
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Challenges with Memristors 

•  Limited Precision  
•  A/D and D/A Conversion 
•  Array Size and Routing 

–  Wire dominates energy for array size of 1k × 1k 
–  IR drop along wire can degrade read accuracy 

•  Write/programming energy 
–  Multiple pulses can be costly 

•  Variations & Yield 
–  Device-to-device, cycle-to-cycle 
–  Non-linear conductance across range  

[Eryilmaz et al., ISQED 2016] 
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ISAAC 

[Shafiee et al., ISCA 2016] 

V1 
G1 I1 = V1.G1 

V2 
G2 

I2 = V2.G2 

I = I1 + I2 =V1.G1 + V2.G2 

S&H S&H S&H S&H S&H S&H S&H S&H 

ADC 

Shift & ADD 

•  eDRAM using memristors  
•  16-bit dot-product operation 

–  8 x 2-bits per memristors 
–  1-bit per cycle computation 
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ISAAC 

[Shafiee et al., ISCA 2016] 

Eight 128x128 
arrays per IMA 

 
12 IMAs per Tile 
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PRIME 

[Chi et al., ISCA 2016] 

•  Bit precision for each 256x256 ReRAM array 
–  3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight) 
–  Dynamic fixed point (6-bit output) 

•  Reconfigurable to be main memory or accelerator 
–  4-bit MLC computation; 1-bit SLC for storage 
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Fabricated Memristor Crossbar 
•  Transistor-free metal-oxide 

12x12 crossbar 
–  A single-layer perceptron 

(linear classification)  
–  3x3 binary image 
–  10 inputs x 3 outputs x 2 

differential weights = 60 
memristors 

[Prezioso et al., Nature 2015] 
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Network and Hardware 
Co-Design 

MICRO Tutorial (2016) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Network Optimization 

•  Reduce precision of operations and operands 
–  Fixed and Floating point 
–  Bit-width 

•  Reduce number of operations and storage of 
weights 
–  Compression 
–  Pruning 
–  Network Architectures 
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Number Representation 

FP32 
 
 
FP16 
 
 
Int32 
 
 
Int16 
 
 
Int8 

S E M 
1 8 23 

S E M 
1 5 10 

M 
31 

S 

S M 

1 

1 15 

S M 
1 7 

Range Accuracy 

10-38 – 1038  .000006% 

6x10-5 - 6x104  .05% 

0 – 2x109 ½ 

0 – 6x104 ½ 

0 – 127 ½ 

Image Source: B. Dally 



4 

Cost of Operations 
Operation: Energy 

(pJ) 
8b Add 0.03 
16b Add 0.05 
32b Add 0.1 
16b FP Add 0.4 
32b FP Add 0.9 
8b Mult 0.2 
32b Mult 3.1 
16b FP Mult 1.1 
32b FP Mult 3.7 
32b SRAM Read (8KB) 5 
32b DRAM Read 640 

Area 
(µm2) 

36 
67 

137 
1360 
4184 
282 

3495 
1640 
7700 
N/A 
N/A 

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]  

Relative Energy Cost 

1 10 102 103 104 

Relative Area Cost 

1 10 102 103 
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N-bit Precision 

X Acc + 

Weight  
(N-bits) 

Activation  
(N-bits) 

N x N 
multiply 
(2N-bits) 

Round 
to N 

Round to 
1.5N of 2N 
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Methods to Reduce Bits 
•  Quantization/Rounding 
•  Dynamic Fixed Point 

–  Rescale and Reduce bits 

•  Fine-tuning: Retrain Weights 
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 

Example: 16-bit à 8-bits 
211 + 29 + 26  + 21 = 2626 (overflow) 

210 + 27 + 25  + 22 + 20 = 1189 

AlexNet 
(Layer 1) 

AlexNet 
(Layer 6) 

Dynamic range = 1 Dynamic range = 0.125 

Image Source: 
Moons et al, 
WACV 2016 

Batch normalization important to ‘center’ dynamic range 



7 

Impact on Accuracy 

[Gysel et al., Ristretto, ICLR 2016] 

w/o fine tuning 

Top-1 accuracy 
on of CaffeNet 
on ImageNet 
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Google’s Tensor Processing Unit (TPU) 

“ With its TPU Google has 
seemingly focused on delivering 
the data really quickly by cutting 
down on precision. Specifically, 
it doesn’t rely on floating point 
precision like a GPU  
…. 
Instead the chip uses integer 
math…TPU used 8-bit integer.” 
 
- Next Platform (May 19, 2016) 
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Nvidia PASCAL 

“New half-precision, 16-bit 
floating point instructions 
deliver over 21 TeraFLOPS for 
unprecedented training 
performance. With 47 TOPS 
(tera-operations per second) 
of performance, new 8-bit 
integer instructions in Pascal 
allow AI algorithms to deliver 
real-time responsiveness for 
deep learning inference.”  
 
– Nvidia.com (April 2016) 



10 

Precision Varies from Layer to Layer 

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016] 
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Bitwidth Scaling (Speed) 
Bit-Serial Processing: Reduce Bit-width à Skip Cycles 

Speed up of 2.24x vs. 16-bit fixed 

[Judd et al., Stripes, CAL 2016] 
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Bitwidth Scaling (Power) 

[Moons et al., VLSI 2016] 

Reduce Bit-width à 
Shorter Critical Path 
à Reduce Voltage 

Power reduction of 
2.56x vs. 16-bit fixed 
On AlexNet Layer 2 
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Binary Nets 

[Rastegari et al., BWN & XNOR-Net, ECCV 2016] 

BinaryConnect (BC) = [Courbariaux et al., ArXiv 2015] 
Binary Neural Networks (BNN) = [Courbariaux et al., ArXiv 2016] 
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Reduce Number of Ops and Weights 

•  Network Compression 
– Low Rank Approximation 
– Weight Sharing and Vector Quantization 

•  Pruning 
– Weights 
– Activations  

•  Network Architectures 
 



15 

Low Rank Approximation 

•  Low Rank approximation  
–  Tensor decomposition 

based on singular value 
decomposition (SVD) 

–  Filter Clustering with 
modified K-means 

–  Fine Tuning 

[Denton et al., NIPS 2014] 

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1, 
CONV2 layers 

•  Reduce size by 5 - 13x for FC layer  
•  < 1% drop in accuracy 
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Low Rank Approximation on Phone 

•  Rank selection per Layer 
•  Tucker Decomposition (extension of SVD) 
•  Fine tuning 

[Kim et al., ICLR 2016] 



17 

Weight Sharing + Vector Quantization 
Trained Quantization: Weight Sharing via K-means clustering 

(reduce number of unique weights) 

[Han et al., Deep Compression, ICLR 2016] 

Reduce Bits for Storage (compute still 16-bits) 
Weight 

Decoder/
Dequant 

Weight  
index (4b) Weight (16b) Weight  

Memory MAC 
Activation (16b) 
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Exploit Data Statistics 
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Sparsity in Fmaps 

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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… 

… 

… 

… 
…

 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  
  

Link Clock  Core Clock  

I/O Compression in Eyeriss 

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

[Chen et al., ISSCC 2016] 

DCNN Accelerator 
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Compression Reduces DRAM BW 

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5 
AlexNet Conv Layer 

DRAM  
Access  

(MB)  

0 

2 

4 

6 
1.2× 

1.4× 
1.7× 

1.8× 
1.9× 

Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

[Chen et al., ISSCC 2016] 

Simple RLC within 5% - 10% of theoretical entropy limit 
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Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   
  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 

[Chen et al., ISSCC 2016] 



23 

Cnvlutin 
•  Process Convolution Layers 
•  Built on top of DaDianNao (4.49% area overhead) 
•  Speed up of 1.37x (1.52x with activation pruning) 

[Albericio et al., ISCA 2016] 
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Pruning Activations 

[Reagen et al., ISCA 2016] 

Remove small activation values 

[Albericio et al., ISCA 2016] 

Speed up 11% (ImageNet) Reduce power 2x (MNIST) 

Minerva 
Cnvlutin 



25 

Pruning – Make Weights Sparse 

•  Optimal Brain Damage 
1.  Choose a reasonable network 

architecture 
2.  Train network until reasonable 

solution obtained 
3.  Compute the second derivative 

for each weight 
4.  Compute saliencies (i.e. impact 

on training error) for each weight 
5.  Sort weights by saliency and 

delete low-saliency weights 
6.  Iterate to step 2 

[Lecun et al., NIPS 1989] 

retraining 
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Pruning – Make Weights Sparse 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

[Han et al., NIPS 2015] 

Prune based on magnitude of weights 

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV
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Pruning of VGG-16 
Pruning has most impact on Fully Connected Layers 

Pruned Weights 
CONV Layers: 42-78% 
Fully Connected Layers: 77-96% 
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Speed up of Weight Pruning on CPU/GPU 

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV 
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV 
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV 
 
Batch size = 1 

On Fully Connected Layers 
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU 

[Han et al., NIPS 2015] 
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Energy-Aware Pruning 

•  # of Weights alone is not a good metric for energy  
–  Example (AlexNet): 

•  # of Weights (FC Layer) > # of Weights (CONV layer)  
•  Energy (FC Layer) < Energy (CONV layer) 

•  Us energy evaluation method to estimate DNN energy 
–  Account for data movement 

•  Prune based on energy rather than weights 
–  Reduce overall energy (ALL layers) by 3.7x for AlexNet  

•  1.8x more efficient than previous magnitude-based approach 

–  1.6x energy reduction for GoogleNet 
 

[Yang et al., ArXiv 2016] 
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Compression of Weights & Activations 
•  Compress weights and fmaps between DRAM  

and accelerator 
•  Variable Length / Huffman Coding 

•  Tested on AlexNet à 2× overall BW Reduction 

[Moons et al., VLSI 2016; Han et al., ICLR 2016] 

Value: 16’b0  à Compressed Code: {1’b0} 

Value: 16’bx  à Compressed Code: {1’b1, 16’bx} 

Example: 
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Sparse Matrix-Vector DSP 

•  Use CSC rather than CSR for SpMxV 

[Dorrance et al., FPGA 2014] 

Compressed Sparse Column (CSC)  Compressed Sparse Row (CSR)  

Reduce memory bandwidth by 2x (when not M >> N) 

M 

N 
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•  Process Fully Connected Layers (after Deep Compression) 
•  Store weights column-wise in Run Length format 

–  Non-zero weights,  Run-length of zeros 
–  Start location of each column since variable length 

•  Read relative column when input is non-zero 

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016] 

Input 

 
 
Weights 
 
 

Output 

EIE: A Sparse Linear Algebra Engine 

Dequantize Weight 

Keep track of location 
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Network Architecture 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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Network Architecture 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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Network Architecture 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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SqueezeNet 

[F.N. Iandola et al., ArXiv, 2016]] 

Fire Module 

Reduce weights by reducing number of input 
channels by “squeezing” with 1x1 
50x fewer weights than AlexNet 
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Energy Consumption of Existing DNNs 

•  Maximally reducing # of weights 
does not necessarily result in 
optimized energy consumption 

•  Deeper CNNs with fewer 
weights (e.g. GoogleNet, 
SqueezeNet), do not necessarily 
consume less energy than 
shallower CNNs with more 
weights (e.g. AlexNet) 

•  Reducing # of weights can 
provide equal or more reduction 
than reducing the bitwidth of 
weights (e.g. BWN) 

[Yang et al., ArXiv 2016] 
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Benchmarking Metrics  
for DNN Hardware 

MICRO Tutorial (2016) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 



2 

Metrics Overview 
•  How can we compare designs? 
•  Target Metrics 

–  Accuracy 
–  Power 
–  Throughput 
–  Cost  

•  Additional Factors 
–  External memory bandwidth  
–  Required on-chip storage 
–  Utilization of cores 
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Download Benchmarking Data 

•  Input (http://image-net.org/)  
–  Sample subset from ImageNet Validation Dataset 

 

•  Widely accepted state-of-the-art DNNs  
(Model Zoo: http://caffe.berkeleyvision.org/) 
–  AlexNet 
–  VGG-16 
–  GoogleNet-v1 
–  ResNet-50 
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Metrics for DNN Algorithm 

•  Accuracy 
•  Network Architecture  

–  # Layers, filter size, # of filters, # of channels 

•  # of Weights (storage capacity) 
–  Number of non-zero (NZ) weights  

•  # of MACs (operations) 
–  Number of non-zero (NZ) MACS 
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Metrics of DNN Algorithms 
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50 
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02 
Input 227x227 224x224 224x224 224x224 
# of CONV Layers 5 16 21 49 
Filter Sizes 3, 5,11 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 3 - 256 3 - 512 3 - 1024 3 - 2048 
# of Filters 96 - 384 64 - 512 64 - 384 64 - 2048 
Stride 1, 4 1 1, 2 1, 2 
# of Weights 2.3M 14.7M 6.0M 23.5M 
# of MACs 666M 15.3G 1.43G 3.86G 
# of FC layers 3 3 1 1 
# of Weights 58.6M 124M 1M 2M 
# of MACs 58.6M 124M 1M 2M 
Total Weights 61M 138M 7M 25.5M 
Total MACs 724M 15.5G 1.43G 3.9G 

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks  
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Metrics of DNN Algorithms 
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50 
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02 
# of CONV Layers 5 16 21 49 
# of Weights 2.3M 14.7M 6.0M 23.5M 
# of MACs 666M 15.3G 1.43G 3.86G 
# of NZ MACs** 394M 7.3G 806M 1.5G 
# of FC layers 3 3 1 1 
# of Weights 58.6M 124M 1M 2M 
# of MACs 58.6M 124M 1M 2M 
# of NZ MACs** 14.4M 17.7M 639k 1.8M 
Total Weights 61M 138M 7M 25.5M 
Total MACs 724M 15.5G 1.43G 3.9G 
# of NZ MACs** 409M 7.3G 806M 1.5G 

**# of NZ MACs computed based on 50,000 validation images 
*Single crop results: https://github.com/jcjohnson/cnn-benchmarks  
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Metrics of DNN Algorithms 
Metrics AlexNet AlexNet (sparse) 
Accuracy (top-5 error) 19.8 19.8 
# of Conv Layers 5 5 
# of Weights 2.3M 2.3M 
# of MACs 666M 666M 
# of NZ weights 2.3M 863k 
# of NZ MACs 394M 207M 
# of FC layers 3 3 
# of Weights 58.6M 58.6M 
# of MACs 58.6M 58.6M 
# of NZ weights 58.6M 5.9M 
# of NZ MACs 14.4M 2.1M 
Total Weights 61M 61M 
Total MACs 724M 724M 
# of NZ weights 61M 6.8M 
# of NZ MACs 409M 209M 

# of NZ MACs computed based on 50,000 validation images 
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Metrics for DNN Hardware 

•  Measure energy and DRAM access relative to 
number of non-zero MACs and bit-width of MACs 
–  Account for impact of sparsity in weights and activations  
–  Normalize DRAM access based on operand size 

•  Energy Efficiency of Design 
–  pJ/(non-zero weight & activation) 

•  External Memory Bandwidth 
–  DRAM operand access/(non-zero weight & activation) 

•  Area Efficiency 
–  Total chip mm2/multi (also include process technology) 
–  Accounts for on-chip memory 
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ASIC Benchmark (e.g. Eyeriss) 

ASIC Specs 
Process Technology 65nm LP TSMC (1.0V) 
Total core area (mm2) /total # of multiplier 0.073 
Total on-Chip memory (kB) / total # of multiplier 1.14 
Measured or Simulated Measured 
If Simulated, Syn or PnR? Which corner? n/a 
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ASIC Benchmark (e.g. Eyeriss) 

Metric Units L1 L2 L3 L4 L5 Overall* 
Batch Size # 4 
Bit/Operand # 16 
Energy/ 
non-zero MACs 
(weight & act) 

pJ/MAC 16.5 18.2 29.5 41.6 32.3 21.7 

DRAM access/
non-zero MACs 

Operands/
MAC 0.006 0.003 0.007 0.010 0.008 0.005 

Runtime  ms 20.9 41.9 23.6 18.4 10.5 115.3 
Power mW 332 288 266 235 236 278 

Layer by layer breakdown for AlexNet CONV layers 

* Weighted average of CONV layers 
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Website to Summarize Results 

•  http://eyeriss.mit.edu/benchmarking.html  
•  Send results or feedback to: eyeriss@mit.edu  

Metric Units Input 
Name of CNN Text AlexNet 
# of Images Tested # 100 
Bits per operand # 16 
Batch Size # 4 
# of Non Zero MACs # 409M 
Runtime  ms 115.3 
Power mW 278 
Energy/non-zero  
MACs 

pJ/MAC 21.7 

DRAM access/non-
zero MACs 

operands
/MAC 

0.005 

ASIC Specs Input 
Process 
Technology 

65nm LP TSMC 
(1.0V) 

Chip area (mm2) /
multiplier 

0.095 

On-Chip memory 
(kB) / multiplier 

1.14 

Measured or 
Simulated 

Measured 

If Simulated, Syn 
or PnR? Which 
corner? 

n/a 
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Implementation-Specific Metrics 

Metric Units AlexNet 
Device  Text Xilinx Virtex-7 XC7V690T 
Utilization DSP # 2,240 

BRAM # 1,024 
LUT # 186,251 
FF # 205,704 

Performance Density GOPs/slice 8.12E-04 

Different devices may have implementation-specific metrics 

Example: FPGAs 
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Hardware for Training

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen
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Cost function for Model Training

Model output: 
y = f(x)

Desired output:
z

Error:
e  = (y-z)

Over all training inputs x:

Minimize S(y-z)2

xi

yi

Relu, 
PReLu, 

… 
w

What do we vary to minimize the error?
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Training Optimization Problem

• Model parameters q (include bias, weights, …)

• Model output y(q) = f(x, q)

• Desired output z

• Error e(q) = y(q)-z

• Cost function* E(q) = Se(q)2

• Minimization dE(q)/dq = 0 ( but no closed form)

* Over all inputs in the training set
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Steepest descent

qn+1 = qn – a∙dE(qn)/dq

where a is the step size along the gradient… 

Classical first order iterative optimization scheme:
Gradient is steepest descent – follow it!
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Calculating Steepest Descent

• Steepest descent

qn+1 = qn – a∙dE(q)/dq

• E(q) = Se(q)2

= S(y(q)-z)2

• dE(q)/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

Also called error back-propagation

error e back-propagation
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Chain rule -> Back propagation

• The chain rule of calculus allows one to 

calculate the derivative of a layered network, i.e., 

a composition of functions, iteratively working 

backwards through the layers using the (feature 

map) values of the layer, i.e., function,  and the 

derivative from the next layer.

• Back propagation is the process of doing this 

calculation numerically for a given input.
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Per Layer Calculations

y = f(x)

For layer k:
Inputs: xk

Weights: wk

Outputs: yk

So
yi

k = fk [S(wij
kxj

k)]

Where
xj

k = yj
k-1

or
yk = fk(yk-1,q)

xi

yi

fk = Relu, 
PReLu, … 

wk+1

wk
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Layer Operation Composition

• Steepest descent qk+1 = qk – a∙dE/dq

• Derivative (1) dE/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

• Model output y = f(x)

yn = fn(yn-1) = fn(fn-1(yn-2))

• Layer k yk = fk(yk-1) = fk(fk-1(yk-2))
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Chain rule

• Chain rule for functions

y = f(g(x)) y’ = f’(g(x)) * g’(x)

y = fn(yn-1) = fn(fn-1(yn-2)) y’ = fn’(fn-1(yn-2)) * fn-1’(yn-2)

= fn’(yn-1) * fn-1’(yn-2)
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Back propagation

• y00 = (a*x0 + b*x1) 
y01 = ….
y10 = y00*c + y01*d

• dy10/da = dy10/dy00 * dy00/da = c * x0

+

*

*

c

d

+

*

*

a

b

x0

x1 y10

y00

y01
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Back Propagation for Addition

• y0 = a + b
• y1 = f(y0)

• dy0/da = 1
• dy0/db = 1
• dy1/dy0 = f’(y0)
• dy1/da = dy1/dy0 * dy0/da = dy1/dy0 * 1 = dy1/dy0

• dy1/db = dy1/dy0 * dy0/db = dy1/dy0 * 1 = dy1/dy0

+ F()
y1y0

a

b

dy1/dy0

dy1/dy0 * 1

dy1/dy0 * 1
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Back Propagation for Multiplication

• y0 = a * b

• y1 = f(y0)

• dy0/da = b

• dy0/db = a

• dy1/dy0 = f’(y0)

• dy1/da = dy1/dy0 * dy0/da = dy1/dy0 * b

• dy1/db = dy1/dy0 * dy0/db = dy1/dy0 * a

* F()
y1y0

a

b

dy1/dy0

dy1/dy0 * b

dy1/dy0 * a
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Back propagation for Network

+

*

*

c

d

+

*

*

a

b

x0

x1

1

1

1

1*y00

y00

1*c

c*x0

c

• y00 = (a*x0 + b*x1) 
y01 = ….
y10 = y00*c + y01*d

• dy10/da = dy10/dy00 * dy00/da = c * x0

y10
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Back Propagation Recipe

Start point

• Select a initial set of weights (q) and an input (x)

Forward pass

• For all layers

– Compute layer outputs use as input for next layer (and save for later)

Backward pass

• For all layers (with output of previous layer and gradient of next layer)

– Compute gradient, i.e., (partial) derivative,  for layer

– Back-propagate gradient to previous layer

– Compute (partial) derivatives for (local) weights of layer

Calculate next set of weights

• qk+1 = qk – a∙dE/dq
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Precision on Training

• Beware truncating changes to zero

• Rounding can bias result -> use stochastic rounding

gj

aj

x
x

a

Learning rate may 
be very small 
(10-5 or less)

Dw very small

wij+Dwij SR Dw’ij

E(Dw’ij) = Dwij

[Gupta et al., ICML 2015]
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Back Propagation Batches

Issue:

• N = 1 is often too noisy, weights 

may oscillate around the 

minimum 

Solution:

• Use batches of N inputs…

• Max theoretical speed up: N
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Parallel creation of gradient

• Steepest descent qk+1 = qk – a∙dE/dq

• Derivative dE/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

Split sum of pieces of dE/dq
across different nodes!
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Batch Parameter Update

Parameter Server

Model!
Workers

Data!
Shards

p’ = p + ∆p

∆p p’

One method to achieve scale is parallelization

Large scale distributed deep networks 
J Dean et al (2012)

[Dean et al., NIPS 2012]
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Training Uses a Lot of Memory

GPU memory usage proportional 
to network depth

GPU 

memory

Network

topology

Feature 

maps

[Rhu et al., vDNN, MICRO 2016]
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How Much Memory Is It?

Up to Tens of Gigabytes

0

8000

16000

24000

32000

40000

10 layers 110 layers 210 layers 310 layers 410 layers

G
P
U

 m
e
m

o
r
y
 u

s
a
g
e
 (

M
B
)

Gradients
Feature maps
Weights

Deeper networks (VGG-like topology)

GPU 

memory

[Rhu et al., vDNN, MICRO 2016]
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Reuse Distance of Feature Maps

VGG-16

[Rhu et al., vDNN, MICRO 2016]
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Problems with saturation

Sigmoid

ReLU

Issue

• A null gradient results in no 
learning, which happens if:

• the sigmoid saturates, or
• the ReLU saturates

Solution

• Initialize weighs so the average 
value is zero, i.e., work in the 
interesting zone of the activation 
functions

• Normalize data (zero mean)
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Non-differential operations

Issue

• Discrete activation function / weights
– extreme case is binary net

• Derivative not well defined

Solution

• Use approximate derivative, or

• Discretize a-posteriori
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Model Overfitting

Problem:

• Neural net learns too specifically from input set, 
rather than generalizing from input, called overfitting

• Overfitting can be a result of too many parameters in 
model

Solution:

• Dropout – turn off neurons at random; other neurons 
will take care of their job.
– + Reliability
– - Redundancy (-> pruning)
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Architecture Challenges for Training 

• Floating point accuracy

• Where to store the gradients

• Synchronization for parallel processing



1 

References 

MICRO Tutorial (2016) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 



2 

References (Alphabetical by Author) 
•  Albericio, Jorge, et al. "Cnvlutin: ineffectual-neuron-free deep neural network computing." Computer 

Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE, 2016. 
•  Alwani, Manoj, et al., "Fused Layer CNN Accelerators," MICRO, 2016 
•  Chakradhar, Srimat, et al., "A dynamically configurable coprocessor for convolutional neural networks," 

ISCA, 2010 
•  Chen, Tianshi, et al., "DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-

learning," ASPLOS, 2014 
•  Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional 

neural networks." 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016. 
•  Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow 

for Convolutional Neural Networks,” ISCA, (2016). 
•  Chen, Yunji, et al. "Dadiannao: A machine-learning supercomputer."Proceedings of the 47th Annual IEEE/

ACM International Symposium on Microarchitecture. IEEE Computer Society, 2014. 
•  Chi, Ping, et al. "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in 

ReRAM-based Main Memory." Proceedings of ISCA. Vol. 43. 2016. 
•  Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural networks." International 

Conference on Artificial Neural Networks. Springer International Publishing, 2014. 
•  Courbariaux, Matthieu, and Yoshua Bengio. "Binarynet: Training deep neural networks with weights and 

activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016). 
•  Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural 

networks with binary weights during propagations." Advances in Neural Information Processing Systems. 
2015. 



3 

References (Alphabetical by Author) 
•  Dean, Jeffrey, et al., "Large Scale Distributed Deep Networks," NIPS, 2012 
•  Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient 

evaluation." Advances in Neural Information Processing Systems. 2014. 
•  Dorrance, Richard, Fengbo Ren, and Dejan Marković. "A scalable sparse matrix-vector multiplication 

kernel for energy-efficient sparse-blas on FPGAs." Proceedings of the 2014 ACM/SIGDA international 
symposium on Field-programmable gate arrays. ACM, 2014. 

•  Du, Zidong, et al., "ShiDianNao: shifting vision processing closer to the sensor," ISCA, 2015 
•  Eryilmaz, Sukru Burc, et al. "Neuromorphic architectures with electronic synapses." 2016 17th 

International Symposium on Quality Electronic Design (ISQED). IEEE, 2016. 
•  Esser, Steven K., et al., "Convolutional networks for fast, energy-efficient neuromorphic computing," 

PNAS 2016 
•  Farabet, Clement, et al., "An FPGA-Based Stream Processor for Embedded Real-Time Vision with 

Convolutional Networks," ICCV 2009 
•  Gokhale, Vinatak, et al., "A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks," CVPR Workshop, 

2014 
•  Govoreanu, B., et al. "10× 10nm 2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability 

and low-energy operation." Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE, 2011. 
•  Gupta, Suyog, et al., "Deep Learning with Limited Numerical Precision," ICML, 2015 
•  Gysel, Philipp, Mohammad Motamedi, and Soheil Ghiasi. "Hardware-oriented Approximation of 

Convolutional Neural Networks." arXiv preprint arXiv:1604.03168 (2016). 
•  Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network." arXiv preprint 

arXiv:1602.01528 (2016). 



4 

References (Alphabetical by Author) 
•  Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in 

Neural Information Processing Systems. 2015. 
•  Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with 

pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015). 
•  He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015). 

•  Horowitz, Mark. "1.1 Computing's energy problem (and what we can do about it)." 2014 IEEE International 
Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014. 

•  Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model 
size." arXiv preprint arXiv:1602.07360 (2016). 

•  Ioffe, Sergey, and Szegedy, Christian, "Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift," ICML 2015 

•  Jermyn, Michael, et al., "Neural networks improve brain cancer detection with Raman spectroscopy in the 
presence of operating room light artifacts," Journal of Biomedical Optics, 2016 

•  Judd, Patrick, et al. "Reduced-precision strategies for bounded memory in deep neural nets." arXiv 
preprint arXiv:1511.05236 (2015). 

•  Judd, Patrick, Jorge Albericio, and Andreas Moshovos. "Stripes: Bit-serial deep neural network 
computing." IEEE Computer Architecture Letters (2016). 

•  Kim, Duckhwan, et al. "Neurocube: a programmable digital neuromorphic architecture with high-density 
3D memory." Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. 
IEEE, 2016. 

•  Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power mobile 
applications." ICLR 2016 



5 

References (Alphabetical by Author) 
•  Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional 

neural networks." Advances in neural information processing systems. 2012. 
•  Lavin, Andrew, and Gray, Scott, "Fast Algorithms for Convolutional Neural Networks," arXiv preprint  

arXiv:1509.09308 (2015) 
•  LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 

86.11 (1998): 2278-2324. 
•  LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989. 
•  Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013). 
•  Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through FFTs." 

arXiv preprint arXiv:1312.5851 (2013). 
•  Merola, Paul A., et al. "Artificial brains. A million spiking-neuron integrated circuit with a scalable 

communication network and interface," Science, 2014 
•  Moons, Bert, and Marian Verhelst. "A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-

scale ConvNets." VLSI Circuits (VLSI-Circuits), 2016 IEEE Symposium on. IEEE, 2016. 
•  Moons, Bert, et al. "Energy-efficient ConvNets through approximate computing." 2016 IEEE Winter 

Conference on Applications of Computer Vision (WACV). IEEE, 2016. 
•  Park, Seongwook, et al., "A 1.93TOPS/W Scalable Deep Learning/Inference Processor with Tetra-Parallel 

MIMD Architecture for Big-Data Applications," ISSCC, 2015 
•  Peemen, Maurice, et al., "Memory-centric accelerator design for convolutional neural networks," ICCD, 

2013 
•  Prezioso, Mirko, et al. "Training and operation of an integrated neuromorphic network based on metal-

oxide memristors." Nature 521.7550 (2015): 61-64. 



6 

References (Alphabetical by Author) 
•  Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural 

Networks." arXiv preprint arXiv:1603.05279(2016). 
•  Reagen, Brandon, et al. "Minerva: Enabling low-power, highly-accurate deep neural network accelerators." 

Proceedings of the 43rd International Symposium on Computer Architecture. IEEE Press, 2016. 
•  Rhu, Minsoo, et al., "vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural 

Network Design," MICRO, 2016 
•  Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of 

Computer Vision 115.3 (2015): 211-252. 
•  Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional 

networks." arXiv preprint arXiv:1312.6229 (2013). 
•  Shafiee, Ali, et al. "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in 

Crossbars." Proc. ISCA. 2016. 
•  Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image 

recognition." arXiv preprint arXiv:1409.1556 (2014). 
•  Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2015. 
•  Vasilache, Nicolas, et al. "Fast convolutional nets with fbfft: A GPU performance evaluation." arXiv 

preprint arXiv:1412.7580 (2014). 
•  Yang, Tien-Ju, et al. "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware 

Pruning," arXiv, 2016 
•  Zhang, Chen, et al., "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural 

Networks," FPGA, 2015 
 




