
1

Hardware Architectures for
Deep Neural Networks

MICRO Tutorial

October 16, 2016

Website: http://eyeriss.mit.edu/tutorial.html

2

Speakers 2

Yu-Hsin Chen
PhD Candidate

MIT

Vivienne Sze
Professor

MIT

Joel Emer

Professor
MIT

Senior Distinguished
Research Scientist

NVIDIA

3

Outline

•  Overview of Deep Neural Networks

•  DNN Development Resources

•  Survey of DNN Computation

•  DNN Accelerators

•  Network Optimizations

•  Benchmarking Metrics for Evaluation

•  DNN Training

4

Participant Takeaways
•  Understand the key design considerations for

DNNs

•  Be able to evaluate different implementations of
DNN with benchmarks and comparison metrics

•  Understand the tradeoffs between various
architectures and platforms

•  Assess the utility of various optimization
approaches

•  Understand recent implementation trends and
opportunities

5

Background of
Deep Neural Networks

6

Artificial Intelligence

AI and Machine Learning

Machine Learning

“Field of study that gives computers the ability
to learn without being explicitly programmed”

– Arthur Samuel, 1959

7

Artificial Intelligence

Brain-Inspired Machine Learning

Machine Learning

Brain-Inspired

An algorithm that takes its basic
functionality from our understanding
of how the brain operates

8

How Does the Brain Work?

•  The basic computational unit of the brain is a neuron
à 86B neurons in the brain

•  Neurons are connected with nearly 1014 – 1015 synapses
•  Neurons receive input signal from dendrites and produce

output signal along axon, which interact with the dendrites of
other neurons via synaptic weights

•  Synaptic weights – learnable & control influence strength

Image Source: Stanford

9

Artificial Intelligence

Spiking-based Machine Learning

Machine Learning

Brain-Inspired

Spiking

10

Spiking Architecture

•  Brain-inspired
•  Integrate and fire
•  Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016]

http://www.research.ibm.com/articles/brain-chip.shtml

11

Artificial Intelligence

Machine Learning with Neural Networks

Machine Learning

Brain-Inspired

Spiking

Neural
Networks

12

Neural Networks: Weighted Sum

Image Source: Stanford

13

Many Weighted Sums

Image Source: Stanford

14

Artificial Intelligence

Deep Learning

Machine Learning

Brain-Inspired

Spiking

Neural
Networks

Deep
Learning

15

What is Deep Learning?

Image
“Volvo

XC90”

Image Source: [Lee et al., Comm. ACM 2011]

16

Why is Deep Learning Hot Now?

350M images
uploaded per
day

2.5 Petabytes
of customer
data hourly

300 hours of
video uploaded
every minute

Big Data
Availability

GPU
Acceleration

New ML
Techniques

17

ImageNet Challenge

Image Classification Task:
 1.2M training images • 1000 object categories

Object Detection Task:
 456k training images • 200 object categories

18

ImageNet: Image Classification Task

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015 Human

Top 5 Classification Error (%)
large error rate reduction
due to Deep CNN

[Russakovsky et al., IJCV 2015]

Deep CNN-based designs Hand-crafted feature-
based designs

19

GPU Usage for ImageNet Challenge

20

Deep Learning on Images

•  Image Classification
•  Object Localization
•  Object Detection

•  Image Segmentation
•  Action Recognition
•  Image Generation

21

Deep Learning for Speech

•  Speech Recognition
•  Natural Language Processing
•  Speech Translation
•  Audio Generation

22

Deep Learning on Games

Google DeepMind AlphaGo

23

Medical Applications of Deep Learning

•  Brain Cancer Detection

Image Source: [Jermyn et al., JBO 2016]

24

Deep Learning for Self-driving Cars

25

Connectomics – Finding Synapses

(1) EM

(2) ML
Membrane
Detection (3) Watershed (4) Agglomeration

(5) Merging (6) Synapses (7) Skeletons (8) Graph

Machine Learning requires orders of
Magnitude more computation than other parts

Image Source: MIT

26

Mature Applications

•  Image
o  Classification: image to object class
o  Recognition: same as classification (except for faces)
o  Detection: assigning bounding boxes to objects
o  Segmentation: assigning object class to every pixel

•  Speech & Language
o  Speech Recognition: audio to text
o  Translation
o  Natural Language Processing: text to meaning
o  Audio Generation: text to audio

•  Games

27

Emerging Applications
•  Medical (Cancer Detection, Pre-Natal)
•  Finance (Trading, Energy Forecasting, Risk)
•  Infrastructure (Structure Safety and Traffic)
•  Weather Forecasting and Event Detection

This tutorial will focus on image classification
http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/

28

Opportunities

Image Source: Tractica

$500B Market over 10 Years!

29

Opportunities

From EE Times – September 27, 2016

”Today the job of training machine learning models is
limited by compute, if we had faster processors we’d
run bigger models…in practice we train on a reasonable
subset of data that can finish in a matter of months. We
could use improvements of several orders of magnitude
– 100x or greater.”

– Greg Diamos, Senior Researcher, SVAIL, Baidu

30

Overview of
Deep Neural Networks

31

DNN Timeline

•  1940s: Neural networks were proposed
•  1960s: Deep neural networks were proposed
•  1990s: Early hardware for shallow neural nets

–  Example: Intel ETANN (1992)

•  1998: LeNet for MNIST
•  2011: Speech recognition using DNN (Microsoft)
•  2012: Deep learning starts supplanting traditional ML

–  AlexNet for image classification

•  Early 2010s: Rise of DNN accelerator research
–  Examples: Neuflow, DianNao, etc.

32

Publications at Architecture Conferences

•  MICRO, ISCA, HPCA, ASPLOS

33

So Many Neural Networks!

http://www.asimovinstitute.org/neural-network-zoo/

34

DNN Terminology 101

Image Source: Stanford

Neurons

35

DNN Terminology 101

Image Source: Stanford

Synapses

36

DNN Terminology 101

Image Source: Stanford

Each synapse has a weight for neuron activation

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

"↓$ =&'()*&()+,(∑)=#↑$▒0↓)$ ∗1↓)  )

37

DNN Terminology 101

Image Source: Stanford

Weight Sharing: multiple synapses use the same weight value

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

"↓$ =&'()*&()+,(∑)=#↑$▒0↓)$ ∗1↓)  )

38

DNN Terminology 101

Image Source: Stanford

L1 Output Neurons
a.k.a. Activations L1 Input Neurons

e.g. image pixels

Layer 1

39

DNN Terminology 101

Image Source: Stanford

L2 Output
Activations

L2 Input
Activations Layer 2

40

DNN Terminology 101

Image Source: Stanford

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

41

DNN Terminology 101

Image Source: Stanford

Feed Forward Feedback

42

Popular Types of DNNs

•  Fully-Connected NN
–  feed forward, a.k.a. multilayer perceptron (MLP)

•  Convolutional NN (CNN)
–  feed forward, sparsely-connected w/ weight sharing

•  Recurrent NN (RNN)
–  feedback

•  Long Short-Term Memory (LSTM)
–  feedback + Storage

43

Inference vs. Training

•  Training: Determine weights
–  Supervised:

•  Training set has inputs and outputs, i.e., labeled
–  Reinforcement:

•  Output assessed via rewards and punishments
–  Unsupervised:

•  Training set is unlabeled
–  Semi-supervised:

•  Training set is partially labeled

•  Inference: Apply weights to determine output

44

Deep Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

1 – 3 Layers

45

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

Convolution Activation

×	

46

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

Fully
Connected

Activation

×	

47

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

CONV
Layer

High-Level
Features

Optional layers in between
CONV and/or FC layers

NORM
Layer

POOL
Layer

Normalization Pooling

48

Deep Convolutional Neural Networks

Classes
High-Level
Features FC

Layer
CONV
Layer

CONV
Layer

NORM
Layer

POOL
Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

49

Convolution (CONV) Layer

R

S

H

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)

W

50

R

filter (weights)

Convolution (CONV) Layer

input fmap

S

Element-wise
Multiplication

H

W

51

R

filter (weights)

S

Convolution (CONV) Layer

E

F
Partial Sum (psum)

Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output
activation

52

H
R

filter (weights)

S

Convolution (CONV) Layer

E

Sliding Window Processing

input fmap
an output
activation

output fmap

W F

53

H

Convolution (CONV) Layer

R

S

C

input fmap

output fmap
C filter

Many Input Channels (C)

E

W F

54

Convolution (CONV) Layer

E

output fmap many
filters (M)

Many
Output Channels (M)

M

…

R

S
1

R

S

C

M

H

input fmap
C

C

W F

55

Convolution (CONV) Layer

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

C

C

filters

E

F

H

C

H

W

C

E
1 1

N N

W F

56

CONV Layer Implementation

Input fmaps Filter weights Output fmaps Biases

57

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																O[n][m][x][y]	=	B[m];	
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								for	(k=0;	k<C;	k++)	{	
																												O[n][m][x][y]	+=	I[n][k][Ux+i][Uy+j]	×	W[m][k][i][j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	Activation(O[n][m][x][y]);	
												}																	
								}	
				}	
}	

for each output fmap value

convolve
a window
and apply
activation

58

Traditional Activation Functions

Image Source: Caffe Tutorial

Sigmoid
1

-1

0

0 1 -1

y=1/(1+e-x)	

Hyperbolic Tangent
1

-1

0

0 1 -1

y=(ex-e-x)/(ex+e-x)	

59

Modern Activation Functions

Rectified Linear Unit
(ReLU)

1

-1

0

0 1 -1

y=max(0,x)	

Leaky ReLU

1

-1

0

0 1 -1

y=max(αx,x)	

Exponential LU

1

-1

0

0 1 -1
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1)

Image Source: Caffe Tutorial

60

Fully-Connected (FC) Layer
•  Height and width of output fmaps are 1 (E = F = 1)
•  Filters as large as input fmaps (R = H, S = W)
•  Implementation: Matrix Multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

61

H

W

C

N

FC Layer – from CONV Layer POV

…

M

…

input fmaps
output fmaps

…

H

H

W

C

C

filters

H

C

1
1 1

1

1
N

W 1 W

62

Pooling (POOL) Layer

Image Source: Caffe Tutorial

•  Reduce resolution of each channel independently
•  Increase translation-invariance and noise-resilience
•  Overlapping or non-overlapping à depending on stride

63

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:
for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																max	=	-Inf;		
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								if	(I[n][m][Ux+i][Uy+j]	>	max)	{	
																												max	=	I[n][m][Ux+i][Uy+j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	max;	
												}																	
								}	
				}	
}	

for each pooled value

find the max
with in a window

64

Normalization (NORM) Layer

•  Batch Normalization (BN)
–  Normalize activations towards mean=0 and std.

dev.=1 based on the statistics of the training dataset

–  put in between CONV/FC and Activation function

[Ioffe et al., ICML 2015]

CONV
Layer

Convolution Activation

×	
BN

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

65

BN Layer Implementation
•  The normalized value is further scaled and shifted, the

parameters of which are learned from training

data mean

data std. dev.

learned scale factor

learned shift factor
small const. to avoid
numerical problems

66

Normalization (NORM) Layer

•  Local Response Normalization (LRN)
•  Tries to mimic the inhibition scheme in the brain

Image Source: Caffe Tutorial

Now deprecated!

67

Relevant Components for Tutorial

•  Typical operations that we will discuss:
–  Convolution (CONV)
–  Fully-Connected (FC)
–  Max Pooling
–  ReLU

1

Survey of DNN
Development Resources

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Popular DNNs

•  LeNet (1998)
•  AlexNet (2012)
•  OverFeat (2013)
•  VGGNet (2014)
•  GoogleNet (2014)
•  ResNet (2015)

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2015 Human

A
cc

ur
ac

y
(T

op
 5

 e
rr

or
)

[O. Russakovsky et al., IJCV 2015]

AlexNet	

OverFeat	

GoogLeNet	

ResNet	

Cl
ar
ifa

i	

VGGNet	

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

3

LeNet-5

[Y. Lecun et al, Proceedings of the IEEE, 1998]

CONV Layers: 2
Fully Connected Layers: 2
Weights: 431k
MACs: 2.3M

Digit Classification!

4

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M

[Krizhevsky et al., NIPS, 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

5

Large Sizes with Varying Shapes 5

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1

AlexNet	Convolu7onal	Layer	Configura7ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

105M	MACs	 224M	MACs	 150M	MACs	
[Krizhevsky et al., NIPS, 2012]

6

OverFeat (fast model)
CONV Layers: 5
Fully Connected Layers: 3
Weights: 144M
MACs: 5.4G

[Sermanet et al., ArXiv 2013, ICLR 2014]

7

VGG-16
CONV Layers: 16
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5G

[Simonyan et al., ArXiv 2014, ICLR 2015]
Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

Also, 19 layer version

More Layers à Deeper!

Reduce # of weights

8

GoogLeNet (v1)
CONV Layers: 21
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

[Szegedy et al., ArXiv 2014, CVPR 2015]

Also, v2, v3 and v4
ILSVRC14 Winner

Inception module

9

ResNet-50
CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

[He et al., ArXiv 2015, CVPR 2016]

Also, 34,152 and 1202 layer versions
ILSVRC15 Winner

10

Revolution of Depth

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

11

Summary of Popular DNNs
Metrics LeNet-5 AlexNet OverFeat

(fast)
VGG-16 GoogLeNet

(v1)
ResNet-50

Top-5 error n/a 16.4 14.2 7.4 6.7 5.3

Input Size 28x28 227x227 231x231 224x224 224x224 224x224
of CONV Layers 2 5 5 16 21 49
Filter Sizes 5 3, 5,11 3, 7 3 1, 3 , 5, 7 1, 3, 7
of Channels 1, 6 3 - 256 3 - 1024 3 - 512 3 - 1024 3 - 2048
of Filters 6, 16 96 - 384 96 - 1024 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1, 4 1 1, 2 1, 2
of Weights 26k 2.3M 16M 14.7M 6.0M 23.5M
of MACs 1.9M 666M 2.67G 15.3G 1.43G 3.86G
of FC layers 2 3 3 3 1 1
of Weights 406k 58.6M 130M 124M 1M 2M
of MACs 405k 58.6M 130M 124M 1M 2M
Total Weights 431k 61M 146M 138M 7M 25.5M
Total MACs 2.3M 724M 2.8G 15.5G 1.43G 3.9G

CONV Layers increasingly important!

12

Summary of Popular DNNs
•  AlexNet

–  First CNN Winner of ILSVRC

–  Uses LRN (deprecated after this)

•  VGG-16
–  Goes Deeper (16+ layers)

–  Uses only 3x3 filters (stack for larger filters)

•  GoogLeNet (v1)
–  Reduces weights with Inception and only one FC layer

–  Inception: 1x1 and DAG (parallel connections)
–  Batch Normalization

•  ResNet
–  Goes Deeper (24+ layers)
–  Shortcut connections

13

Frameworks

Also, CNTK, MXNet, etc.
More at: https://developer.nvidia.com/deep-learning-frameworks

Berkeley / BVLC
(C, C++, Python, MATLAB)

Google
(C++, Python)

U. Montreal
(Python)

Facebook / NYU
(C, C++, Lua)

14

Example: Layers in Caffe

http://caffe.berkeleyvision.org/tutorial/layers.html

!
layer {!
 name: "relu1"!

 type: "ReLU"!
 bottom: "conv1"!

 top: "conv1"!
}!

!
layer {!
 name: "conv1"!

 type: "Convolution"!
 bottom: "data"!

 top: "conv1"!
 ...!

 convolution_param {!
 num_output: 20!

 kernel_size: 5!
 stride: 1!

...!

!
layer {!
 name: "pool1"!

 type: "Pooling"!
 bottom: "conv1"!

 top: "pool1"!
 pooling_param {!

 pool: MAX!
 kernel_size: 2!

 stride: 2 ...!

Pooling Layer

Convolution Layer

Non-Linearity

15

Image Classification Datasets

•  Image Classification/Recognition
–  Given an entire image à Select 1 of N classes
–  No localization (detection)

Image Source: Stanford cs231n

Datasets affect difficulty of task

16

MNIST

LeNet in 1998
(0.95% error)

ICML 2013
(0.21% error)

http://yann.lecun.com/exdb/mnist/

Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

17

CIFAR-10/CIFAR-100

https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10
RBM+finetuning in 2009
(35.16% error)

ArXiv 2015
(3.47% error)

Object Classification
32x32 pixels (color)
10 or 100 Classes
50,000 Training
10,000 Testing

Subset of 80 Tiny Images Dataset (Torrabla)

Image Source: http://karpathy.github.io/

18

ImageNet

http://www.image-net.org/challenges/LSVRC/

Object Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/

19

ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Source: http://karpathy.github.io/

Fine grained
Classes
(120 breeds)

Top-5 Error
Image Source: Krizhevsky et al., NIPS 2012

Winner 2012
(16.42% error)

Winner 2016
(2.99% error)

20

Image Classification Summary

MNIST CIFAR-10 CIFAR-100 IMAGENET
Year 1998 2009 2009 2012
Resolution 28x28 32x32 32x32 256x256
Classes 10 10 100 1000
Training 60k 50k 50k 1.3M
Testing 10k 10k 10k 100k
Accuracy 0.21%

error
(ICML 2013)

3.47%
error

(arXiv 2015)

24.28% error
(arXiv 2015)

2.99%
top-5 error

(2016 winner)

http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html

21

Next Tasks: Localization and Detection

[Russakovsky et al., IJCV, 2015]

22

Others Popular Datasets
•  Pascal VOC

–  11k images
–  Object Detection
–  20 classes

•  MS COCO
–  300k images
–  Detection, Segmentation
–  Recognition in context

http://mscoco.org/ http://host.robots.ox.ac.uk/pascal/VOC/

23

Recently Introduced Datasets

•  Announced Sept 2016:
•  Google Open Images (~9M images)

–  https://github.com/openimages/dataset

•  Youtube-8M (8M videos)
–  https://research.google.com/youtube8m/

1

Survey of
DNN Hardware

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

CPUs Are Targeting Deep Learning

Image Source: Intel, Data Source: Next Platform

Knights Mill: next gen Xeon Phi “optimized for deep learning”

•  7 TFLOPS FP32

•  16GB MCDRAM– 400 GB/s

•  245W TDP

•  29 GFLOPS/W (FP32)

•  14nm process

Intel Knights Landing (2016)

Intel announced the addition of new vector instructions for deep learning
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016

3

GPUs Are Targeting Deep Learning

•  10/20 TFLOPS FP32/FP16

•  16GB HBM – 750 GB/s

•  300W TDP

•  67 GFLOPS/W (FP16)

•  16nm process

•  160GB/s NV Link

Source: Nvidia

Nvidia PASCAL GP100 (2016)

4

Systems for Deep Learning

•  170 TFLOPS

•  8× Tesla P100, Dual Xeon

•  NVLink Hybrid Cube Mesh

•  Optimized DL Software

•  7 TB SSD Cache

•  Dual 10GbE, Quad IB 100Gb

•  3RU – 3200W

Source: Nvidia

Nvidia DGX-1 (2016)

5

Cloud Systems for Deep Learning

•  Open Rack Compliant

•  Powered by 8 Tesla M40 GPUs

•  2x Faster Training for Faster Deployment

•  2x Larger Networks for Higher Accuracy

Source: Facebook

Facebook’s Deep Learning Machine

6

SOCs for Deep Learning Inference

ARM v8
CPU

COMPLEX
(2x Denver 2 + 4x

A57)
Coherent HMP

SECURITY
ENGINES

2D
ENGINE

4K60
VIDEO

ENCODER

4K60
VIDEO

DECODER

AUDIO
ENGINE

DISPLAY
ENGINES

IMAGE
PROC
(ISP)

128-bit
LPDDR4

BOOT and
PM PROC

GigE
Ethernet

MAC

I/O
Safety
Engine

•  GPU: 1.5 TeraFLOPS FP16

•  4GB LPDDR4 @ 25.6 GB/s

•  15 W TDP
(1W idle, <10W typical)

•  100 GFLOPS/W (FP16)

•  16nm process

Source: Nvidia

Nvidia Tegra - Parker

Xavier: next gen Tegra to be an “AI supercomputer”

7

Mobile SOCs for Deep Learning

•  GPU: 0.26 TFLOPS

•  LPDDR4 @ 28.7 GB/s

•  14nm process

Exynos 8 Octa 8890

Source: Wikipedia

Samsung Exynos (ARM Mali)

8

FPGAs for Deep Learning

•  10 TFLOPS FP32
•  HBM2 integrated
•  Up to 1 GHz
•  14nm process
•  80 GFLOPS/W

Intel/Altera Stratix 10

Xilinx Virtex UltraSCALE+
•  DSP: up to 21.2 TMACS
•  DSP: up to 890 MHz
•  Up to 500Mb On-Chip Memory
•  16nm process

9

Kernel
Computation

10

Fully-Connected (FC) Layer

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M =

•  Matrix–Vector Multiply:
•  Multiply all inputs in all channels by a weight and sum

11

Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

•  Batching (N) turns operation into a Matrix-Matrix multiply

12

Fully-Connected (FC) Layer

•  Implementation: Matrix Multiplication (GEMM)

•  CPU: OpenBLAS, Intel MKL, etc
•  GPU: cuBLAS, cuDNN, etc

•  Optimized by tiling to storage hierarchy

13

Convolution (CONV) Layer
•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

14

Convolution (CONV) Layer
•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

Data is repeated

15

Convolution (CONV) Layer

•  Multiple Channels and Filters

1 2
3 4Filter 1

Input Fmap

Output Fmap 1 * = 1 2
3 4

1 2
3 4Filter 2

Chnl 1 Chnl 2

1 2 3
4 5 6
7 8 9
Chnl 1 Chnl 2

1 2
3 4

1 2
3 4

1 2 3
4 5 6
7 8 9

1 2
3 4 Output Fmap 2

16

Convolution (CONV) Layer

= 1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2
1 2 3 4

3 4×

Toeplitz Matrix
(w/ redundant data)

•  Multiple Channels and Filters

Chnl 1 Chnl 2
Filter 1
Filter 2

Chnl 1

Chnl 2

Output Fmap 1

Output Fmap 2

17

Computational
Transforms

18

Computation Transformations

•  Goal: Bitwise same result, but reduce
number of operations

•  Focuses mostly on compute

19

Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

20

Strassen

P1 = a(f – h)
P2 = (a + b)h
P3 = (c + d)e
P4 = d(g – e)

P5 = (a + d)(e + h)
P6 = (b - d)(g + h)
P7 = (a – c)(e + f)

8 multiplications + 4 additions

7 multiplications + 18 additions

7 multiplications + 13 additions (for constant B matrix – weights)

[Cong et al., ICANN, 2014]

21

Strassen
•  Reduce the complexity of matrix multiplication

from Θ(N3) to Θ(N2.807) by reducing multiplications
•  Comes at the price of reduced numerical stability

and requires significantly more memory

N

Naïve

Strassen

Complexity

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/

22

Winograd 1D – F(2,3)

[Lavin et al., ArXiv 2015]

•  Targeting convolutions instead of matrix multiply
•  Notation: F(size of output, filter size)

6 multiplications + 4 additions

=[█#0@#1 ]

4 multiplications + 12 additions + 2 shifts
4 multiplications + 8 additions (for constant weights)

input filter

23

Winograd 2D - F(2x2, 3x3)

•  1D Winograd is nested to make 2D Winograd

d00 d01 d02 d03

d10 d11 d12 d13

d20 d21 d22 d23

d30 d31 d32 d33

Winograd: 16 multiplications à 2.25 times reduction

g00 g01 g02

g10 g11 g12

g20 g21 g22

y00 y01

y10 y11

Original: 36 multiplications

Filter Input Fmap Output Fmap

* =

24

Winograd Halos
•  Winograd works on a small region of output at a

time, and therefore uses inputs repeatedly

d00 d01 d02 d03 d04 d05

d10 d11 d12 d13 d14 d15

d20 d21 d22 d23 d24 d25

d30 d31 d32 d33 d34 d35

g00 g01 g02

g10 g11 g12

g20 g21 g22

y00 y01

y10 y11

Filter Input Fmap Output Fmap

y02 y03

y12 y12

Halo columns

25

Winograd Performance Varies

Source: Nvidia

26

Winograd Summary

•  Winograd is an optimized computation for
convolutions

•  It can significantly reduce multiplies
–  For example, for 3x3 filter by 2.5X

•  But, each filter size is a different computation.

27

Winograd as a Transform

Transform inputs

Dot-product

Transform output

[Lavin et al., ArXiv 2015]

filter
input

GgGT can be precomputed

28

R

filter (weights)

S

FFT Flow

E

F

input fmap output fmap

H

W

an output
activation

* =

FFT(W)

F
F
T

FFT(I) X = FFT(0)

F
F
T

I
F
F
T

29

FFT Overview

•  Convert filter and input to frequency domain
to make convolution a simple multiply then
convert back to time domain.

•  Convert direct convolution O(No
2Nf

2)
computation to O(No

2log2No)

•  So note that computational benefit of FFT
decreases with decreasing size of filter

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014]

30

FFT Costs

•  Input and Filter matrices are ‘0-completed’,
–  i.e., expanded to size E+R-1 x F+S-1

•  Frequency domain matrices are same
dimensions as input, but complex.

•  FFT often reduces computation, but requires
much more memory space and bandwidth

31

Optimization opportunities

•  FFT of real matrix is symmetric allowing one
to save ½ the computes

•  Filters can be pre-computed and stored, but
convolutional filter in frequency domain is
much larger than in time domain

•  Can reuse frequency domain version of input
for creating different output channels to
avoid FFT re-computations

32

cuDNN: Speed up with Transformations

Source: Nvidia

33

GPU/CPU Benchmarking

•  Industry performance website
•  https://github.com/jcjohnson/cnn-benchmarks

•  DeepBench
–  Profile layer by layer (Dense Matrix Multiplication, Convolutions,

Recurrent Layer, All-Reduce)

34

GPU/CPU Benchmarking

•  Minibatch = 16
•  Image size 224x224
•  cuDNN 5.0 or 5.1
•  Torch

Platform AlexNet VGG-16 GoogLeNet
(v1)

ResNet-50

Pascal Titan X (F+B) 14.56 128.62 39.14 103.58
Pascal Titan X (F) 5.04 41.59 11.94 35.03
GTX 1080 (F) 7.00 59.37 16.08 50.64
Maxwell Titan X 7.09 62.30 19.27 55.75
Dual Xeon E5-2630 v3 n/a 3101.76 n/a 2477.61

Speed (ms)

https://github.com/jcjohnson/cnn-benchmarks

35

GPU/CPU Benchmarking

•  Minibatch = 1
•  Image size 224x224

Platform AlexNet VGG-16
Maxwell Titan X 0.54 10.67

Exynos 7 Octa 7420 117 1926

Speed (ms)

[Kim et al., ICLR 2016]

36

DeepBench

•  Profile layer by layer
–  Dense Matrix Multiplication, Convolutions,

Recurrent Layer, All-Reduce (communication)

https://svail.github.io/DeepBench/

1

DNN Accelerator
Architectures

MICRO Tutorial (2016)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Highly-Parallel Compute Paradigms2

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

3

Memory Access is the Bottleneck

ALUfilter weight
fmap activation

partial sum updated partial sum

Memory Read Memory WriteMAC*

* multiply-and-accumulate

4

Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

DRAM DRAM

• Example: AlexNet [NIPS 2012] has 724M MACs
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

5

Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

Extra levels of local memory hierarchy

MemDRAM DRAMMem

6

Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

1

Opportunities: data reuse local accumulation1

MemDRAM DRAMMem

MAC*

7

Types of Data Reuse in DNN
Convolutional Reuse

CONV layers only
(sliding window)

Filter Input Fmap

Activations
Filter weights

Reuse:

8

Types of Data Reuse in DNN
Convolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers

Filter Input Fmap
Filters

2

1

Input Fmap

Activations
Filter weights

Reuse: ActivationsReuse:

9

Types of Data Reuse in DNN
Filter ReuseConvolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap
Filters

2

1

Input Fmap Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: ActivationsReuse: Filter weightsReuse:

10

Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

** AlexNet CONV layers

1) Can reduce DRAM reads of filter/fmap by up to 500×**

1

Opportunities: data reuse local accumulation1

MemDRAM DRAMMem

1

MAC*

11

Memory Access is the Bottleneck

1) Can reduce DRAM reads of filter/fmap by up to 500×
2) Partial sum accumulation does NOT have to access DRAM
1
2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

Opportunities: data reuse local accumulation1 2

MemDRAM DRAMMem

MAC*

12

Memory Access is the Bottleneck

Opportunities: data reuse local accumulation

• Example: DRAM access in AlexNet can be reduced
from 2896M to 61M (best case)

1) Can reduce DRAM reads of filter/fmap by up to 500×
2) Partial sum accumulation does NOT have to access DRAM

1 2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

MemDRAM DRAMMem

1
2

MAC*

13

Spatial Architecture for CNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy
• Global Buffer
• Direct inter-PE network
• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB

14

Low-Cost Local Data Access

DRAM Global
Buffer PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

15

Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit data reuse and local accumulation
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

16

Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit data reuse and local accumulation
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

specialized processing dataflow required!

17

Dataflow Taxonomy

• Weight Stationary (WS)

• Output Stationary (OS)

• No Local Reuse (NLR)

[Chen et al., ISCA 2016]

18

Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate psums
spatially across the PE array.

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Activations

PE
Weight

19

WS Example: nn-X (NeuFlow)

[Farabet et al., ICCV 2009]

A 3×3 2D Convolution Engine

20

WS Example: nn-X (NeuFlow)

[Gokhale et al., CVPRW 2014]

10×10 2D Convolution Engines

Top-Level Architecture

21

• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse
activations spatially across the PE array

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activations Weight

PE
Psum

22

OS Example: ShiDianNao
Input Fmap Dataflow in the PE Array

[Du et al., ISCA 2015]

23

OS Example: ShiDianNao

Top-Level Architecture PE Architecture

[Du et al., ISCA 2015]

24

• Use a large global buffer as shared storage
− Reduce DRAM access energy consumption

• Multicast activations, single-cast weights, and
accumulate psums spatially across the PE array

No Local Reuse (NLR)

Activation
PE

Psum

Global Buffer
Weight

25

NLR Example: UCLA

[Zhang et al., FPGA 2015]

26

NLR Example: DianNao

[Chen et al., ASPLOS 2014]

27

Taxonomy: More Examples

• Weight Stationary (WS)

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]

[ShiDianNao, ISCA 2015][Peemen, ICCD 2013]
[Gupta, ICML 2015] [Moons, VLSI 2016]

• Output Stationary (OS)

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

• No Local Reuse (NLR)

28

Energy Efficiency Comparison

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
.E

ne
rg

y/
O

p

Dataflows
NLRWS OSA OSB OSC

Normalized
Energy/MAC

CNN Dataflows

• Same total area • 256 PEs

• AlexNet CONV layers • Batch size = 16

Variants of OS

[Chen et al., ISCA 2016]

29

Energy Efficiency Comparison

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
.E

ne
rg

y/
O

p

Dataflows
NLRWS OSA OSB OSC Row

Stationary

Normalized
Energy/MAC

CNN Dataflows

Variants of OS

• Same total area • 256 PEs

• AlexNet CONV layers • Batch size = 16

[Chen et al., ISCA 2016]

30

Energy-Efficient Dataflow:
Row Stationary (RS)

• Maximize reuse and accumulation at RF

• Optimize for overall energy efficiency
instead for only a certain data type

[Chen et al., ISCA 2016]

31

Row Stationary: Energy-efficient Dataflow31

* =
Filter Output Fmap

Input Fmap

32

1D Row Convolution in PE32

* =
Filter Partial Sums
a b c a b c

a b c d e

PEReg File

b ac

d ce ab

Input Fmap

33

1D Row Convolution in PE33

* =
Filter
a b c a b c

a b c d e

e d

PE
b ac

Reg File

b ac

a

Partial Sums
Input Fmap

34

1D Row Convolution in PE34

* =
a b c

a b c d e Partial Sums
Input Fmap

PE
b ac

Reg File

c bd

b

e
a

Filter
a b c

35

1D Row Convolution in PE35

* =
a b c

a b c d e Partial Sums
Input Fmap

PE
b ac

Reg File

d ce

c
b a

Filter
a b c

36

1D Row Convolution in PE36

PE
b ac

Reg File

d ce

c
b a

• Maximize row convolutional reuse in RF
− Keep a filter row and fmap sliding window in RF

• Maximize row psum accumulation in RF

37

2D Convolution in PE Array37

Row 1 Row 1

=*

*
PE 1

38

2D Convolution in PE Array38

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1

=*

*

*

*

PE 1

PE 2

PE 3

39

2D Convolution in PE Array39

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1

=*

Row 1 Row 2

Row 2 Row 3

Row 3 Row 4

=*

* *

* *

* *

Row 2

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

40

2D Convolution in PE Array40

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *

41

Convolutional Reuse Maximized41

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 4

Row 2

Row 3

Row 4

Row 5

Row 3

* * *

* * *

* * *

Filter rows are reused across PEs horizontally

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

42

Convolutional Reuse Maximized42

Row 1

Row 2

Row 3

Row 1

Row 1

Row 2

Row 3

Row 2

Row 1

Row 2

Row 3

Row 3

* * *

* * *

* * *

Fmap rows are reused across PEs diagonally

Row 1

Row 2

Row 3

Row 2

Row 3

Row 4

Row 3

Row 4

Row 5

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

43

Maximize 2D Accumulation in PE Array43

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1 Row 2

Row 2 Row 3

Row 3 Row 4

Row 1 Row 3

Row 2 Row 4

Row 3 Row 5

* * *

* * *

* * *

Partial sums accumulate across PEs vertically

Row 1 Row 2 Row 3

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

44

Dimensions Beyond 2D Convolution
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

45

Filter Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1=
Psum 2Filter 1

46

Filter Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1=
Psum 2Filter 1

share the same filter row

47

Filter Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1=
Psum 2Filter 1

Processing in PE: concatenate fmap rows

Channel 1 *Row 1
Fmap 1 & 2

=
Psum 1 & 2Filter 1

Row 1 Row 1 Row 1 Row 1

share the same filter row

48

Fmap Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1=
Psum 2Filter 2

49

Fmap Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1=
Psum 2Filter 2

share the same fmap row

50

Fmap Reuse in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1=
Psum 2Filter 2

share the same fmap row

Processing in PE: interleave filter rows

*
Fmap 1

=
Psum 1 & 2Filter 1 & 2

Row 1Channel 1

51

Channel Accumulation in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1=
Psum 1Filter 1

52

Channel Accumulation in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1=
Psum 1Filter 1

accumulate psums

Row 1 Row 1+ = Row 1

53

Channel Accumulation in PE
3 Multiple Channels1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1Channel 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1=
Psum 1Filter 1

Channel 1 & 2
Fmap 1

=
PsumFilter 1

* Row 1

Processing in PE: interleave channels

accumulate psums

54

DNN Processing – The Full Picture54

Multiple fmaps:

Multiple filters:

Multiple channels:

PE
Row 1 Row 1

PE
Row 2 Row 2

PE
Row 3 Row 3

PE
Row 1 Row 2

PE
Row 2 Row 3

PE
Row 3 Row 4

PE
Row 1 Row 3

PE
Row 2 Row 4

PE
Row 3 Row 5

* * *

* * *

* * *

Image 1
=

PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap

55

Optimal Mapping in Row Stationary

…
M

……

R

R

R

R

C

C

E

E

H

H

C

E

E
1

N N

1

M

H

H

C

1

CNN Configurations

Global Buffer

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Hardware Resources

Optimization
Compiler

Row Stationary Mapping

Multiple fmaps:

Multiple filters:

Multiple channels:

PE
Row 1 Row 1

PE
Row 2 Row 2

PE
Row 3 Row 3

PE
Row 1 Row 2

PE
Row 2 Row 3

PE
Row 3 Row 4

PE
Row 1 Row 3

PE
Row 2 Row 4

PE
Row 3 Row 5

* * *

* * *

* * *

Image 1
=

PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap

[Chen et al., ISCA 2016]

56

Dataflow
Simulation Results

57

Evaluate	Reuse	in	Different	Dataflows
• Weight	Stationary

– Minimize	movement	of	filter	weights
• Output	Stationary

– Minimize	movement	of	partial	sums
• No	Local	Reuse

– No	PE	local	storage.	Maximize	global	buffer	size.
• Row	Stationary

57

Evaluation Setup
• same total area
• 256 PEs
• AlexNet
• batch size = 16

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

58

Variants of Output Stationary

Output Channels
Output Activations

E

E

M

OSB

Multiple

Multiple

Notes

E

E

M

OSA

Single

Multiple

Targeting
CONV layers

E

E

M

OSC

Multiple

Single

Targeting
FC layers

Parallel
Output Region

59

Dataflow Comparison: CONV Layers

Normalized
Energy/MAC

RS optimizes for the best overall energy efficiency

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS
CNN Dataflows

psums

weights

activations

[Chen et al., ISCA 2016]

60

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU

RF

NoC

buffer

DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS
CNN Dataflows

[Chen et al., ISCA 2016]

61

Dataflow Comparison: FC Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS
CNN Dataflows

RS uses at least 1.3× lower energy than other dataflows

psums

weights

activations

[Chen et al., ISCA 2016]

62

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

[Chen et al., ISCA 2016]

63

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

RF dominates

64

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

RF dominates DRAM dominates

65

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10

1.5e10

1.0e10

0.5e10

0
L1 L8L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

CONV layers dominate energy consumption!

Total Energy
80% 20%

66

Hardware Architecture
for RS Dataflow

67

Eyeriss Deep CNN Accelerator67

Off-Chip DRAM

…

…

…

…
… …

Decomp

Comp ReLU

Input Fmap

Output Fmap

Filter Filt

Fmap

Psum

Psum

Global
Buffer
SRAM

108KB

64 bits

DCNN Accelerator

14×12 PE Array

Link Clock Core Clock

[Chen et al., ISSCC 2016]

68

Data Delivery with On-Chip Network

Off-Chip DRAM

Decomp

Comp ReL
U

Input Image

Output Image

Filter
Buffer
SRAM

108K
B

64 bits

DCNN AcceleratorLink Clock Core Clock

…

…

…

…
… …

Filt

Fmap

Psum

Psum

14×12 PE Array

Filter
Delivery

Fmap
Delivery

Data Delivery Patterns

How to accommodate different shapes with fixed PE array?

69

Logical to Physical Mappings
Replication Folding

..

..
..

3

13
AlexNet
Layer 3-5

12

14

Physical PE Array

3

3

3

3

13

13

13

13

..
..

..
5

27
AlexNet
Layer 2

Physical PE Array

12

14

5
14

135

70

Logical to Physical Mappings
Replication Folding

..

..
..

3

13
AlexNet
Layer 3-5

12

14

Physical PE Array

3

3

3

3

13

13

13

13

..
..

..
5

27
AlexNet
Layer 2

Physical PE Array

12

14

5
14

135

Unused PEs
are

Clock Gated

71

Multicast Network Design

Buffer

Global
Y-Bus

Global X-Bus

Global X-Bus

Local Link

[Data, Col], <Row> [Data], <Col>

[Data]

[Input]
<Tag>

Multicast Controller
ID (configurable)
Output

if (Tag == ID)
Output = Input

72

Data Delivery with On-Chip Network

Off-Chip DRAM

Decomp

Comp ReL
U

Input Image

Output Image

Filter
Buffer
SRAM

108K
B

64 bits

DCNN AcceleratorLink Clock Core Clock

…

…

…

…
… …

Filt

Img

Psum

Psum

14×12 PE Array

Filter
Delivery

Image
Delivery

Data Delivery Patterns

Compared to Broadcast, Multicast saves >80% of NoC energy

73

Chip Spec & Measurement Results
Technology TSMC 65nm LP 1P9M

On-Chip Buffer 108 KB
of PEs 168

Scratch Pad / PE 0.5 KB
Core Frequency 100 – 250 MHz

Peak Performance 33.6 – 84.0 GOPS
Word Bit-width 16-bit Fixed-Point

Natively Supported
DNN Shapes

Filter Width: 1 – 32
Filter Height: 1 – 12
Num. Filters: 1 – 1024
Num. Channels: 1 – 1024
Horz. Stride: 1–12
Vert. Stride: 1, 2, 4

4000 µm

4000 µm

Global
Buffer

Spatial Array
(168 PEs)

[Chen et al., ISSCC 2016]

74

Benchmark – AlexNet Performance
Image Batch Size of 4 (i.e. 4 frames of 227x227)

Core Frequency = 200MHz / Link Frequency = 60 MHz

Layer Power
(mW)

Latency
(ms)

of MAC
(MOPs)

Active #
of PEs (%)

Buffer Data
Access (MB)

DRAM Data
Access (MB)

1 332 20.9 422 154 (92%) 18.5 5.0
2 288 41.9 896 135 (80%) 77.6 4.0
3 266 23.6 598 156 (93%) 50.2 3.0
4 235 18.4 449 156 (93%) 37.4 2.1
5 236 10.5 299 156 (93%) 24.9 1.3

Total 278 115.3 2663 148 (88%) 208.5 15.4

To	support	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB (buffer)	and	15.4MB (DRAM)	

75

Benchmark – AlexNet Performance
Image Batch Size of 4 (i.e. 4 frames of 227x227)

Core Frequency = 200MHz / Link Frequency = 60 MHz

Layer Power
(mW)

Latency
(ms)

of MAC
(MOPs)

Active #
of PEs (%)

Buffer Data
Access (MB)

DRAM Data
Access (MB)

1 332 20.9 422 154 (92%) 18.5 5.0
2 288 41.9 896 135 (80%) 77.6 4.0
3 266 23.6 598 156 (93%) 50.2 3.0
4 235 18.4 449 156 (93%) 37.4 2.1
5 236 10.5 299 156 (93%) 24.9 1.3

Total 278 115.3 2663 148 (88%) 208.5 15.4

51682 operand*	access/input	image	pixel	
à506 access/pixel	from	buffer	+	37 access/pixel	from	DRAM

*operand = weight, activation, psum

76

Comparison with GPU
This Work NVIDIA TK1 (Jetson Kit)

Technology 65nm 28nm
Clock Rate 200MHz 852MHz

Multipliers 168 192

On-Chip Storage Buffer: 108KB
Spad: 75.3KB

Shared Mem: 64KB
Reg File: 256KB

Word Bit-Width 16b Fixed 32b Float
Throughput1 34.7 fps 68 fps

Measured Power 278 mW Idle/Active2: 3.7W/10.2W
DRAM Bandwidth 127 MB/s 1120 MB/s 3

1. AlexNet CONV Layers
2. Board Power
3. Modeled from [Tan, SC 2011]

77

From Architecture to System

https://vimeo.com/154012013

78

Summary of DNN Dataflows
• Weight Stationary

– Minimize movement of filter weights
– Popular with processing-in-memory architectures

• Output Stationary
– Minimize movement of partial sums
– Different variants optimized for CONV or FC layers

• No Local Reuse
– No PE local storage à maximize global buffer size

• Row Stationary
– Adapt to the NN shape and hardware constraints
– Optimized for overall system energy efficiency

79

MICRO 2016 Papers in the Taxonomy

• Stripes: bit-serial computation in a NLR-like
engine (based on DaDianNao)

• NEUTRAMS: a toolset for accelerators running the
WS dataflow (synaptic weight memory array)

• Fused-layer: exploit inter-layer data reuse in a
NLR engine (based on [Zhang, FPGA 2015])

80

Fused Layer
• Dataflow across multiple layers

[Alwani et al., MICRO 2016]

1

Advanced Technology
Opportunities

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Advanced Storage Technology

•  Embedded DRAM (eDRAM)
–  Increase on-chip storage capacity

•  3D Stacked DRAM
–  e.g. Hybrid Memory Cube Memory (HMC), High

Bandwidth Memory (HBM)
–  Increase memory bandwidth

3

eDRAM (DaDianNao)

•  Advantages of eDRAM
–  2.85x higher density than SRAM
–  321x more energy-efficient than DRAM (DDR3)

•  Store weights in eDRAM (36MB)
–  Target fully connected layers since dominated by weights

[Chen et al., DaDianNao, MICRO 2014]

16 Parallel
Tiles

4

Stacked DRAM (NeuroCube)
•  NeuroCube on Hyper Memory Cube Logic Die

–  6.25x higher BW than DDR3
•  HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)

–  Computation closer to memory (reduce energy)

[Kim et al., NeuroCube, ISCA 2016]

5

Analog Computation

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Figure Source: ISAAC, ISCA 2016

•  Conductance = Weight
•  Voltage = Input
•  Current = Voltage × Conductance
•  Sum currents for addition

Input = V1, V2, …

Filter Weights = G1, G2, … (conductance)

Weight Stationary Dataflow

Output = Weight × Input∑

6

Memristor Computation

•  Advantages
–  High Density (< 10nm x 10nm size*)

•  ~30x smaller than SRAM**
•  1.5x smaller than DRAM**

–  Non-Volatile
–  Operates at low voltage
–  Computation within memory (in situ)

•  Reduce data movement

Use memristors as programmable
weights (resistance)

*[Govoreanu et al., IEDM 2011], **ITRS 2013

7

Memristor

[Chi et al., ISCA 2016]

8

Resistive Memory Devices

Figure Source: Han Wang, USC

9

Challenges with Memristors

•  Limited Precision
•  A/D and D/A Conversion
•  Array Size and Routing

–  Wire dominates energy for array size of 1k × 1k
–  IR drop along wire can degrade read accuracy

•  Write/programming energy
–  Multiple pulses can be costly

•  Variations & Yield
–  Device-to-device, cycle-to-cycle
–  Non-linear conductance across range

[Eryilmaz et al., ISQED 2016]

10

ISAAC

[Shafiee et al., ISCA 2016]

V1
G1 I1 = V1.G1

V2
G2

I2 = V2.G2

I = I1 + I2 =V1.G1 + V2.G2

S&H S&H S&H S&H S&H S&H S&H S&H

ADC

Shift & ADD

•  eDRAM using memristors
•  16-bit dot-product operation

–  8 x 2-bits per memristors
–  1-bit per cycle computation

11

ISAAC

[Shafiee et al., ISCA 2016]

Eight 128x128
arrays per IMA

12 IMAs per Tile

12

PRIME

[Chi et al., ISCA 2016]

•  Bit precision for each 256x256 ReRAM array
–  3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight)
–  Dynamic fixed point (6-bit output)

•  Reconfigurable to be main memory or accelerator
–  4-bit MLC computation; 1-bit SLC for storage

13

Fabricated Memristor Crossbar
•  Transistor-free metal-oxide

12x12 crossbar
–  A single-layer perceptron

(linear classification)
–  3x3 binary image
–  10 inputs x 3 outputs x 2

differential weights = 60
memristors

[Prezioso et al., Nature 2015]

1

Network and Hardware
Co-Design

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Network Optimization

•  Reduce precision of operations and operands
–  Fixed and Floating point
–  Bit-width

•  Reduce number of operations and storage of
weights
–  Compression
–  Pruning
–  Network Architectures

3

Number Representation

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range Accuracy

10-38 – 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

Image Source: B. Dally

4

Cost of Operations
Operation: Energy

(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area
(µm2)

36
67

137
1360
4184
282

3495
1640
7700
N/A
N/A

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

5

N-bit Precision

X Acc +

Weight
(N-bits)

Activation
(N-bits)

N x N
multiply
(2N-bits)

Round
to N

Round to
1.5N of 2N

6

Methods to Reduce Bits
•  Quantization/Rounding
•  Dynamic Fixed Point

–  Rescale and Reduce bits

•  Fine-tuning: Retrain Weights
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0

Example: 16-bit à 8-bits
211 + 29 + 26 + 21 = 2626 (overflow)

210 + 27 + 25 + 22 + 20 = 1189

AlexNet
(Layer 1)

AlexNet
(Layer 6)

Dynamic range = 1 Dynamic range = 0.125

Image Source:
Moons et al,
WACV 2016

Batch normalization important to ‘center’ dynamic range

7

Impact on Accuracy

[Gysel et al., Ristretto, ICLR 2016]

w/o fine tuning

Top-1 accuracy
on of CaffeNet
on ImageNet

8

Google’s Tensor Processing Unit (TPU)

“ With its TPU Google has
seemingly focused on delivering
the data really quickly by cutting
down on precision. Specifically,
it doesn’t rely on floating point
precision like a GPU
….
Instead the chip uses integer
math…TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

9

Nvidia PASCAL

“New half-precision, 16-bit
floating point instructions
deliver over 21 TeraFLOPS for
unprecedented training
performance. With 47 TOPS
(tera-operations per second)
of performance, new 8-bit
integer instructions in Pascal
allow AI algorithms to deliver
real-time responsiveness for
deep learning inference.”

– Nvidia.com (April 2016)

10

Precision Varies from Layer to Layer

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016]

11

Bitwidth Scaling (Speed)
Bit-Serial Processing: Reduce Bit-width à Skip Cycles

Speed up of 2.24x vs. 16-bit fixed

[Judd et al., Stripes, CAL 2016]

12

Bitwidth Scaling (Power)

[Moons et al., VLSI 2016]

Reduce Bit-width à
Shorter Critical Path
à Reduce Voltage

Power reduction of
2.56x vs. 16-bit fixed
On AlexNet Layer 2

13

Binary Nets

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

BinaryConnect (BC) = [Courbariaux et al., ArXiv 2015]
Binary Neural Networks (BNN) = [Courbariaux et al., ArXiv 2016]

14

Reduce Number of Ops and Weights

•  Network Compression
– Low Rank Approximation
– Weight Sharing and Vector Quantization

•  Pruning
– Weights
– Activations

•  Network Architectures

15

Low Rank Approximation

•  Low Rank approximation
–  Tensor decomposition

based on singular value
decomposition (SVD)

–  Filter Clustering with
modified K-means

–  Fine Tuning

[Denton et al., NIPS 2014]

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1,
CONV2 layers

•  Reduce size by 5 - 13x for FC layer
•  < 1% drop in accuracy

16

Low Rank Approximation on Phone

•  Rank selection per Layer
•  Tucker Decomposition (extension of SVD)
•  Fine tuning

[Kim et al., ICLR 2016]

17

Weight Sharing + Vector Quantization
Trained Quantization: Weight Sharing via K-means clustering

(reduce number of unique weights)

[Han et al., Deep Compression, ICLR 2016]

Reduce Bits for Storage (compute still 16-bits)
Weight

Decoder/
Dequant

Weight
index (4b) Weight (16b) Weight

Memory MAC
Activation (16b)

18

Exploit Data Statistics

19

Sparsity in Fmaps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

20

…

…

…

…
…

…

ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Buffer
SRAM

108KB

14×12 PE Array

Link Clock Core Clock

I/O Compression in Eyeriss

Run-Length Compression (RLC)

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b 5b 16b 5b 16b
2 12 4 53 2 22 0

Run Level Run Level Run Level Term

Off-Chip DRAM
64 bits

Decomp

Comp

[Chen et al., ISSCC 2016]

DCNN Accelerator

21

Compression Reduces DRAM BW

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access

(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

[Chen et al., ISSCC 2016]

Simple RLC within 5% - 10% of theoretical entropy limit

22

Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip MAC and mem reads
when image data is zero.

Reduce PE power by 45%

Reset

[Chen et al., ISSCC 2016]

23

Cnvlutin
•  Process Convolution Layers
•  Built on top of DaDianNao (4.49% area overhead)
•  Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

24

Pruning Activations

[Reagen et al., ISCA 2016]

Remove small activation values

[Albericio et al., ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

25

Pruning – Make Weights Sparse

•  Optimal Brain Damage
1.  Choose a reasonable network

architecture
2.  Train network until reasonable

solution obtained
3.  Compute the second derivative

for each weight
4.  Compute saliencies (i.e. impact

on training error) for each weight
5.  Sort weights by saliency and

delete low-saliency weights
6.  Iterate to step 2

[Lecun et al., NIPS 1989]

retraining

26

Pruning – Make Weights Sparse

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

[Han et al., NIPS 2015]

Prune based on magnitude of weights

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

27

Pruning of VGG-16
Pruning has most impact on Fully Connected Layers

Pruned Weights
CONV Layers: 42-78%
Fully Connected Layers: 77-96%

28

Speed up of Weight Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

On Fully Connected Layers
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

[Han et al., NIPS 2015]

29

Energy-Aware Pruning

•  # of Weights alone is not a good metric for energy
–  Example (AlexNet):

•  # of Weights (FC Layer) > # of Weights (CONV layer)
•  Energy (FC Layer) < Energy (CONV layer)

•  Us energy evaluation method to estimate DNN energy
–  Account for data movement

•  Prune based on energy rather than weights
–  Reduce overall energy (ALL layers) by 3.7x for AlexNet

•  1.8x more efficient than previous magnitude-based approach

–  1.6x energy reduction for GoogleNet

[Yang et al., ArXiv 2016]

30

Compression of Weights & Activations
•  Compress weights and fmaps between DRAM

and accelerator
•  Variable Length / Huffman Coding

•  Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:

31

Sparse Matrix-Vector DSP

•  Use CSC rather than CSR for SpMxV

[Dorrance et al., FPGA 2014]

Compressed Sparse Column (CSC) Compressed Sparse Row (CSR)

Reduce memory bandwidth by 2x (when not M >> N)

M

N

32

•  Process Fully Connected Layers (after Deep Compression)
•  Store weights column-wise in Run Length format

–  Non-zero weights, Run-length of zeros
–  Start location of each column since variable length

•  Read relative column when input is non-zero

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016]

Input

Weights

Output

EIE: A Sparse Linear Algebra Engine

Dequantize Weight

Keep track of location

33

Network Architecture

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

34

Network Architecture

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

35

Network Architecture

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

36

SqueezeNet

[F.N. Iandola et al., ArXiv, 2016]]

Fire Module

Reduce weights by reducing number of input
channels by “squeezing” with 1x1
50x fewer weights than AlexNet

37

Energy Consumption of Existing DNNs

•  Maximally reducing # of weights
does not necessarily result in
optimized energy consumption

•  Deeper CNNs with fewer
weights (e.g. GoogleNet,
SqueezeNet), do not necessarily
consume less energy than
shallower CNNs with more
weights (e.g. AlexNet)

•  Reducing # of weights can
provide equal or more reduction
than reducing the bitwidth of
weights (e.g. BWN)

[Yang et al., ArXiv 2016]

1

Benchmarking Metrics
for DNN Hardware

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Metrics Overview
•  How can we compare designs?
•  Target Metrics

–  Accuracy
–  Power
–  Throughput
–  Cost

•  Additional Factors
–  External memory bandwidth
–  Required on-chip storage
–  Utilization of cores

3

Download Benchmarking Data

•  Input (http://image-net.org/)
–  Sample subset from ImageNet Validation Dataset

•  Widely accepted state-of-the-art DNNs
(Model Zoo: http://caffe.berkeleyvision.org/)
–  AlexNet
–  VGG-16
–  GoogleNet-v1
–  ResNet-50

4

Metrics for DNN Algorithm

•  Accuracy
•  Network Architecture

–  # Layers, filter size, # of filters, # of channels

•  # of Weights (storage capacity)
–  Number of non-zero (NZ) weights

•  # of MACs (operations)
–  Number of non-zero (NZ) MACS

5

Metrics of DNN Algorithms
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
Input 227x227 224x224 224x224 224x224
of CONV Layers 5 16 21 49
Filter Sizes 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1, 4 1 1, 2 1, 2
of Weights 2.3M 14.7M 6.0M 23.5M
of MACs 666M 15.3G 1.43G 3.86G
of FC layers 3 3 1 1
of Weights 58.6M 124M 1M 2M
of MACs 58.6M 124M 1M 2M
Total Weights 61M 138M 7M 25.5M
Total MACs 724M 15.5G 1.43G 3.9G

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

6

Metrics of DNN Algorithms
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
of CONV Layers 5 16 21 49
of Weights 2.3M 14.7M 6.0M 23.5M
of MACs 666M 15.3G 1.43G 3.86G
of NZ MACs** 394M 7.3G 806M 1.5G
of FC layers 3 3 1 1
of Weights 58.6M 124M 1M 2M
of MACs 58.6M 124M 1M 2M
of NZ MACs** 14.4M 17.7M 639k 1.8M
Total Weights 61M 138M 7M 25.5M
Total MACs 724M 15.5G 1.43G 3.9G
of NZ MACs** 409M 7.3G 806M 1.5G

**# of NZ MACs computed based on 50,000 validation images
*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

7

Metrics of DNN Algorithms
Metrics AlexNet AlexNet (sparse)
Accuracy (top-5 error) 19.8 19.8
of Conv Layers 5 5
of Weights 2.3M 2.3M
of MACs 666M 666M
of NZ weights 2.3M 863k
of NZ MACs 394M 207M
of FC layers 3 3
of Weights 58.6M 58.6M
of MACs 58.6M 58.6M
of NZ weights 58.6M 5.9M
of NZ MACs 14.4M 2.1M
Total Weights 61M 61M
Total MACs 724M 724M
of NZ weights 61M 6.8M
of NZ MACs 409M 209M

of NZ MACs computed based on 50,000 validation images

8

Metrics for DNN Hardware

•  Measure energy and DRAM access relative to
number of non-zero MACs and bit-width of MACs
–  Account for impact of sparsity in weights and activations
–  Normalize DRAM access based on operand size

•  Energy Efficiency of Design
–  pJ/(non-zero weight & activation)

•  External Memory Bandwidth
–  DRAM operand access/(non-zero weight & activation)

•  Area Efficiency
–  Total chip mm2/multi (also include process technology)
–  Accounts for on-chip memory

9

ASIC Benchmark (e.g. Eyeriss)

ASIC Specs
Process Technology 65nm LP TSMC (1.0V)
Total core area (mm2) /total # of multiplier 0.073
Total on-Chip memory (kB) / total # of multiplier 1.14
Measured or Simulated Measured
If Simulated, Syn or PnR? Which corner? n/a

10

ASIC Benchmark (e.g. Eyeriss)

Metric Units L1 L2 L3 L4 L5 Overall*
Batch Size # 4
Bit/Operand # 16
Energy/
non-zero MACs
(weight & act)

pJ/MAC 16.5 18.2 29.5 41.6 32.3 21.7

DRAM access/
non-zero MACs

Operands/
MAC 0.006 0.003 0.007 0.010 0.008 0.005

Runtime ms 20.9 41.9 23.6 18.4 10.5 115.3
Power mW 332 288 266 235 236 278

Layer by layer breakdown for AlexNet CONV layers

* Weighted average of CONV layers

11

Website to Summarize Results

•  http://eyeriss.mit.edu/benchmarking.html
•  Send results or feedback to: eyeriss@mit.edu

Metric Units Input
Name of CNN Text AlexNet
of Images Tested # 100
Bits per operand # 16
Batch Size # 4
of Non Zero MACs # 409M
Runtime ms 115.3
Power mW 278
Energy/non-zero
MACs

pJ/MAC 21.7

DRAM access/non-
zero MACs

operands
/MAC

0.005

ASIC Specs Input
Process
Technology

65nm LP TSMC
(1.0V)

Chip area (mm2) /
multiplier

0.095

On-Chip memory
(kB) / multiplier

1.14

Measured or
Simulated

Measured

If Simulated, Syn
or PnR? Which
corner?

n/a

12

Implementation-Specific Metrics

Metric Units AlexNet
Device Text Xilinx Virtex-7 XC7V690T
Utilization DSP # 2,240

BRAM # 1,024
LUT # 186,251
FF # 205,704

Performance Density GOPs/slice 8.12E-04

Different devices may have implementation-specific metrics

Example: FPGAs

1

Hardware for Training

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Cost function for Model Training

Model output:
y = f(x)

Desired output:
z

Error:
e = (y-z)

Over all training inputs x:

Minimize S(y-z)2

xi

yi

Relu,
PReLu,

…
w

What do we vary to minimize the error?

3

Training Optimization Problem

• Model parameters q (include bias, weights, …)

• Model output y(q) = f(x, q)

• Desired output z

• Error e(q) = y(q)-z

• Cost function* E(q) = Se(q)2

• Minimization dE(q)/dq = 0 (but no closed form)

* Over all inputs in the training set

4

Steepest descent

qn+1 = qn – a∙dE(qn)/dq

where a is the step size along the gradient…

Classical first order iterative optimization scheme:
Gradient is steepest descent – follow it!

5

Calculating Steepest Descent

• Steepest descent

qn+1 = qn – a∙dE(q)/dq

• E(q) = Se(q)2

= S(y(q)-z)2

• dE(q)/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

Also called error back-propagation

error e back-propagation

6

Chain rule -> Back propagation

• The chain rule of calculus allows one to

calculate the derivative of a layered network, i.e.,

a composition of functions, iteratively working

backwards through the layers using the (feature

map) values of the layer, i.e., function, and the

derivative from the next layer.

• Back propagation is the process of doing this

calculation numerically for a given input.

7

Per Layer Calculations

y = f(x)

For layer k:
Inputs: xk

Weights: wk

Outputs: yk

So
yi

k = fk [S(wij
kxj

k)]

Where
xj

k = yj
k-1

or
yk = fk(yk-1,q)

xi

yi

fk = Relu,
PReLu, …

wk+1

wk

8

Layer Operation Composition

• Steepest descent qk+1 = qk – a∙dE/dq

• Derivative (1) dE/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

• Model output y = f(x)

yn = fn(yn-1) = fn(fn-1(yn-2))

• Layer k yk = fk(yk-1) = fk(fk-1(yk-2))

9

Chain rule

• Chain rule for functions

y = f(g(x)) y’ = f’(g(x)) * g’(x)

y = fn(yn-1) = fn(fn-1(yn-2)) y’ = fn’(fn-1(yn-2)) * fn-1’(yn-2)

= fn’(yn-1) * fn-1’(yn-2)

10

Back propagation

• y00 = (a*x0 + b*x1)
y01 = ….
y10 = y00*c + y01*d

• dy10/da = dy10/dy00 * dy00/da = c * x0

+

*

*

c

d

+

*

*

a

b

x0

x1 y10

y00

y01

11

Back Propagation for Addition

• y0 = a + b
• y1 = f(y0)

• dy0/da = 1
• dy0/db = 1
• dy1/dy0 = f’(y0)
• dy1/da = dy1/dy0 * dy0/da = dy1/dy0 * 1 = dy1/dy0

• dy1/db = dy1/dy0 * dy0/db = dy1/dy0 * 1 = dy1/dy0

+ F()
y1y0

a

b

dy1/dy0

dy1/dy0 * 1

dy1/dy0 * 1

12

Back Propagation for Multiplication

• y0 = a * b

• y1 = f(y0)

• dy0/da = b

• dy0/db = a

• dy1/dy0 = f’(y0)

• dy1/da = dy1/dy0 * dy0/da = dy1/dy0 * b

• dy1/db = dy1/dy0 * dy0/db = dy1/dy0 * a

* F()
y1y0

a

b

dy1/dy0

dy1/dy0 * b

dy1/dy0 * a

13

Back propagation for Network

+

*

*

c

d

+

*

*

a

b

x0

x1

1

1

1

1*y00

y00

1*c

c*x0

c

• y00 = (a*x0 + b*x1)
y01 = ….
y10 = y00*c + y01*d

• dy10/da = dy10/dy00 * dy00/da = c * x0

y10

14

Back Propagation Recipe

Start point

• Select a initial set of weights (q) and an input (x)

Forward pass

• For all layers

– Compute layer outputs use as input for next layer (and save for later)

Backward pass

• For all layers (with output of previous layer and gradient of next layer)

– Compute gradient, i.e., (partial) derivative, for layer

– Back-propagate gradient to previous layer

– Compute (partial) derivatives for (local) weights of layer

Calculate next set of weights

• qk+1 = qk – a∙dE/dq

15

F
e
a
t

M
a
p

O
u
t

F
e
a
t

M
a
p

I
n

Back Propagation

Convolution (n)

Weights

F
e
a
t

M
a
p

I
n

F
e
a
t

M
a
p

O
u
t

C
o
n
v

(

n
-
1)

C
o
n
v

(

n
+
1)

Forward Pass ->

Back propagation (n)

G
r
a
d

I
n

B
P

(

n
+
1)

C
o
n
v

(

n
-
1)

G
r
a
d

O
u
t

<- Backward Pass

Weight gradients

G
r
a
d

I
n

G
r
a
d

O
u
t

16

Precision on Training

• Beware truncating changes to zero

• Rounding can bias result -> use stochastic rounding

gj

aj

x
x

a

Learning rate may
be very small
(10-5 or less)

Dw very small

wij+Dwij SR Dw’ij

E(Dw’ij) = Dwij

[Gupta et al., ICML 2015]

17

Back Propagation Batches

Issue:

• N = 1 is often too noisy, weights

may oscillate around the

minimum

Solution:

• Use batches of N inputs…

• Max theoretical speed up: N

18

Parallel creation of gradient

• Steepest descent qk+1 = qk – a∙dE/dq

• Derivative dE/dq = 2 ∙ S[(y(q)-z) ∙ dy(q)/dq]

Split sum of pieces of dE/dq
across different nodes!

19

Batch Parameter Update

Parameter Server

Model!
Workers

Data!
Shards

p’ = p + ∆p

∆p p’

One method to achieve scale is parallelization

Large scale distributed deep networks
J Dean et al (2012)

[Dean et al., NIPS 2012]

20

Training Uses a Lot of Memory

GPU memory usage proportional
to network depth

GPU

memory

Network

topology

Feature

maps

[Rhu et al., vDNN, MICRO 2016]

21

How Much Memory Is It?

Up to Tens of Gigabytes

0

8000

16000

24000

32000

40000

10 layers 110 layers 210 layers 310 layers 410 layers

G
P
U

 m
e
m

o
r
y
 u

s
a
g
e
 (

M
B
)

Gradients
Feature maps
Weights

Deeper networks (VGG-like topology)

GPU

memory

[Rhu et al., vDNN, MICRO 2016]

22

Reuse Distance of Feature Maps

VGG-16

[Rhu et al., vDNN, MICRO 2016]

23

Problems with saturation

Sigmoid

ReLU

Issue

• A null gradient results in no
learning, which happens if:

• the sigmoid saturates, or
• the ReLU saturates

Solution

• Initialize weighs so the average
value is zero, i.e., work in the
interesting zone of the activation
functions

• Normalize data (zero mean)

24

Non-differential operations

Issue

• Discrete activation function / weights
– extreme case is binary net

• Derivative not well defined

Solution

• Use approximate derivative, or

• Discretize a-posteriori

25

Model Overfitting

Problem:

• Neural net learns too specifically from input set,
rather than generalizing from input, called overfitting

• Overfitting can be a result of too many parameters in
model

Solution:

• Dropout – turn off neurons at random; other neurons
will take care of their job.
– + Reliability
– - Redundancy (-> pruning)

26

Architecture Challenges for Training

• Floating point accuracy

• Where to store the gradients

• Synchronization for parallel processing

1

References

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

References (Alphabetical by Author)
•  Albericio, Jorge, et al. "Cnvlutin: ineffectual-neuron-free deep neural network computing." Computer

Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE, 2016.
•  Alwani, Manoj, et al., "Fused Layer CNN Accelerators," MICRO, 2016
•  Chakradhar, Srimat, et al., "A dynamically configurable coprocessor for convolutional neural networks,"

ISCA, 2010
•  Chen, Tianshi, et al., "DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-

learning," ASPLOS, 2014
•  Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional

neural networks." 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016.
•  Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow

for Convolutional Neural Networks,” ISCA, (2016).
•  Chen, Yunji, et al. "Dadiannao: A machine-learning supercomputer."Proceedings of the 47th Annual IEEE/

ACM International Symposium on Microarchitecture. IEEE Computer Society, 2014.
•  Chi, Ping, et al. "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in

ReRAM-based Main Memory." Proceedings of ISCA. Vol. 43. 2016.
•  Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural networks." International

Conference on Artificial Neural Networks. Springer International Publishing, 2014.
•  Courbariaux, Matthieu, and Yoshua Bengio. "Binarynet: Training deep neural networks with weights and

activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).
•  Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural

networks with binary weights during propagations." Advances in Neural Information Processing Systems.
2015.

3

References (Alphabetical by Author)
•  Dean, Jeffrey, et al., "Large Scale Distributed Deep Networks," NIPS, 2012
•  Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient

evaluation." Advances in Neural Information Processing Systems. 2014.
•  Dorrance, Richard, Fengbo Ren, and Dejan Marković. "A scalable sparse matrix-vector multiplication

kernel for energy-efficient sparse-blas on FPGAs." Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays. ACM, 2014.

•  Du, Zidong, et al., "ShiDianNao: shifting vision processing closer to the sensor," ISCA, 2015
•  Eryilmaz, Sukru Burc, et al. "Neuromorphic architectures with electronic synapses." 2016 17th

International Symposium on Quality Electronic Design (ISQED). IEEE, 2016.
•  Esser, Steven K., et al., "Convolutional networks for fast, energy-efficient neuromorphic computing,"

PNAS 2016
•  Farabet, Clement, et al., "An FPGA-Based Stream Processor for Embedded Real-Time Vision with

Convolutional Networks," ICCV 2009
•  Gokhale, Vinatak, et al., "A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks," CVPR Workshop,

2014
•  Govoreanu, B., et al. "10× 10nm 2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability

and low-energy operation." Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE, 2011.
•  Gupta, Suyog, et al., "Deep Learning with Limited Numerical Precision," ICML, 2015
•  Gysel, Philipp, Mohammad Motamedi, and Soheil Ghiasi. "Hardware-oriented Approximation of

Convolutional Neural Networks." arXiv preprint arXiv:1604.03168 (2016).
•  Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network." arXiv preprint

arXiv:1602.01528 (2016).

4

References (Alphabetical by Author)
•  Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in

Neural Information Processing Systems. 2015.
•  Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with

pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015).
•  He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015).

•  Horowitz, Mark. "1.1 Computing's energy problem (and what we can do about it)." 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014.

•  Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model
size." arXiv preprint arXiv:1602.07360 (2016).

•  Ioffe, Sergey, and Szegedy, Christian, "Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift," ICML 2015

•  Jermyn, Michael, et al., "Neural networks improve brain cancer detection with Raman spectroscopy in the
presence of operating room light artifacts," Journal of Biomedical Optics, 2016

•  Judd, Patrick, et al. "Reduced-precision strategies for bounded memory in deep neural nets." arXiv
preprint arXiv:1511.05236 (2015).

•  Judd, Patrick, Jorge Albericio, and Andreas Moshovos. "Stripes: Bit-serial deep neural network
computing." IEEE Computer Architecture Letters (2016).

•  Kim, Duckhwan, et al. "Neurocube: a programmable digital neuromorphic architecture with high-density
3D memory." Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on.
IEEE, 2016.

•  Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power mobile
applications." ICLR 2016

5

References (Alphabetical by Author)
•  Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional

neural networks." Advances in neural information processing systems. 2012.
•  Lavin, Andrew, and Gray, Scott, "Fast Algorithms for Convolutional Neural Networks," arXiv preprint

arXiv:1509.09308 (2015)
•  LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE

86.11 (1998): 2278-2324.
•  LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.
•  Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).
•  Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through FFTs."

arXiv preprint arXiv:1312.5851 (2013).
•  Merola, Paul A., et al. "Artificial brains. A million spiking-neuron integrated circuit with a scalable

communication network and interface," Science, 2014
•  Moons, Bert, and Marian Verhelst. "A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-

scale ConvNets." VLSI Circuits (VLSI-Circuits), 2016 IEEE Symposium on. IEEE, 2016.
•  Moons, Bert, et al. "Energy-efficient ConvNets through approximate computing." 2016 IEEE Winter

Conference on Applications of Computer Vision (WACV). IEEE, 2016.
•  Park, Seongwook, et al., "A 1.93TOPS/W Scalable Deep Learning/Inference Processor with Tetra-Parallel

MIMD Architecture for Big-Data Applications," ISSCC, 2015
•  Peemen, Maurice, et al., "Memory-centric accelerator design for convolutional neural networks," ICCD,

2013
•  Prezioso, Mirko, et al. "Training and operation of an integrated neuromorphic network based on metal-

oxide memristors." Nature 521.7550 (2015): 61-64.

6

References (Alphabetical by Author)
•  Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural

Networks." arXiv preprint arXiv:1603.05279(2016).
•  Reagen, Brandon, et al. "Minerva: Enabling low-power, highly-accurate deep neural network accelerators."

Proceedings of the 43rd International Symposium on Computer Architecture. IEEE Press, 2016.
•  Rhu, Minsoo, et al., "vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural

Network Design," MICRO, 2016
•  Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of

Computer Vision 115.3 (2015): 211-252.
•  Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional

networks." arXiv preprint arXiv:1312.6229 (2013).
•  Shafiee, Ali, et al. "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in

Crossbars." Proc. ISCA. 2016.
•  Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image

recognition." arXiv preprint arXiv:1409.1556 (2014).
•  Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2015.
•  Vasilache, Nicolas, et al. "Fast convolutional nets with fbfft: A GPU performance evaluation." arXiv

preprint arXiv:1412.7580 (2014).
•  Yang, Tien-Ju, et al. "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware

Pruning," arXiv, 2016
•  Zhang, Chen, et al., "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural

Networks," FPGA, 2015

