
Towards Closing the Energy Gap Between HOG
and CNN Features for Embedded Vision

(Invited Paper)

Amr Suleiman*, Yu-Hsin Chen*, Joel Emer, Vivienne Sze
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

{suleiman, yhchen, jsemer, sze}@mit.edu
*These authors contributed equally to this work

Abstract—Computer vision enables a wide range of appli-
cations in robotics/drones, self-driving cars, smart Internet of
Things, and portable/wearable electronics. For many of these ap-
plications, local embedded processing is preferred due to privacy
and/or latency concerns. Accordingly, energy-efficient embedded
vision hardware delivering real-time and robust performance
is crucial. While deep learning is gaining popularity in several
computer vision algorithms, a significant energy consumption dif-
ference exists compared to traditional hand-crafted approaches.
In this paper, we provide an in-depth analysis of the computation,
energy and accuracy trade-offs between learned features such as
deep Convolutional Neural Networks (CNN) and hand-crafted
features such as Histogram of Oriented Gradients (HOG). This
analysis is supported by measurements from two chips that
implement these algorithms. Our goal is to understand the source
of the energy discrepancy between the two approaches and to
provide insight about the potential areas where CNNs can be
improved and eventually approach the energy-efficiency of HOG
while maintaining its outstanding performance accuracy.

I. INTRODUCTION

Computer vision (CV) is a critical technology to numerous
smart embedded systems, such as advanced driver assistant
systems, autonomous cars/drones, and robotics. It extracts
meaningful information from visual data for further decision
making. However, many modern CV algorithms require high
computational complexity, which makes their deployment on
battery-powered devices challenging due to the tight energy
constraints. Near-sensor visual data processors should con-
sume under 1nJ/pixel with a logic gate counts of around 1000
kgates and a memory capacity of few hundred kBytes in order
to be comparable with video codecs, which are present in most
cameras [1]. For many applications, offloading computation to
the cloud is also undesirable because of latency, connectivity,
and security limitations. Thus, dedicated energy-efficient CV
hardware becomes very crucial.

Feature extraction is the first processing step in most CV
tasks, such as object classification and detection (Fig. 1).
It transforms the raw pixels into a high-dimensional space,
where only meaningful and distinctive information is kept.
Traditionally, features are designed by experts in the field
through a hand-crafted process. For instance, many well-
known hand-crafted features use image gradients, such as
histogram of oriented gradients (HOG) [2] and scale invariant
feature transform (SIFT) [3], based on the fact that human
eyes are sensitive to edges. In contrast, learned features learn

Feature
Extraction

Classification
(wTx)

Handcrafted Features
(e.g. HOG)

Learned Features
(e.g. CNN)

pixels Features (x)

Trained weights (w)
Image

Scores

Scores per class
(select class based

on max or threshold)

Fig. 1. General processing pipeline for object classification and detection.

a representation with the desired characteristics directly from
data using deep convolutional neural networks (CNNs) [4].
Learned features are gaining popularity, as they are outper-
forming hand-crafted features in many CV tasks [5, 6].

The differences in design between hand-crafted and learned
features lead to not only different performance in applications,
but also different hardware implementation considerations,
which have a strong implication for energy efficiency. In
general, hardware implementations for hand-crafted features
are widely understood to be more energy-efficient than learned
features. However, there is no analysis that explains the energy
gap between the two types of features. Also, an open question
is whether the energy gap can be closed in the future.

In this paper, we will provide an in-depth analysis on the
causes for the energy gap between hand-crafted and learned
features. We use results from two actual chip designs: [7]
implements the hand-crafted feature using HOG, and [8]
implements the learned feature using CNN. Both chips use
65nm CMOS technology and have similar hardware resource
utilization in terms of logic gate count and memory capacity.
Based on the insights derived from the two implementations,
we will discuss techniques to help close the energy gap.

II. FEATURE EXTRACTION HARDWARE IMPLEMENTATIONS

A. Hardware for Hand-crafted Feature: HOG

The chip presented in [7] implements the entire object de-
tection pipeline based on deformable parts models (DPM) [9]
for high throughput and low power embedded vision applica-
tions. DPM extracts HOG features from the input image, and
localizes objects by sweeping the features with support vector

Fig. 2. Feature extraction with histogram of oriented gradients (HOG).

Modern Deep CNN: 5 – 1000 Layers

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

1 – 3 Layers

convolu'on	 non-linearity	

×	

normaliza'on	 pooling	

Fig. 3. General processing pipeline of CNN.

machine (SVM) classifiers [10]. Fig. 2 shows the features
extraction process using HOG: the image is divided into non-
overlapping 8×8 pixel cells. A 9-bin histogram is then gener-
ated for each cell using gradients orientations. The histograms
are further normalized with respect to the surrounding cells for
robustness against illumination and texture variations. Since
HOG features are not scale invariant, the features are extracted
over an image pyramid to achieve multi-scale detection.

B. Hardware for Learned Feature: CNN

The second chip presented in [8], called Eyeriss, is an
energy-efficient accelerator for deep CNNs. Fig. 3 shows
a general CNN processing pipeline, consisting mainly of a
series of convolutional (CONV) layers. In each CONV layer,
a collection of 3D filters are applied to the input images
or feature maps to generate output feature maps, which are
then used as the input to the next CONV layer. Eyeriss is
programmable in terms of the size and shape of filters as well
as number of layers. Therefore, it can accommodate different
CNN architectures, such as AlexNet [5] and VGG-16 [11].

C. Performance Comparison

Table I shows the hardware specification and measured
performance of the two designs for feature extraction. For
CNN, Eyeriss is programmed to run two CNN models (five
CONV layers of AlexNet and thirteen CONV layers of VGG-
16) to demonstrate the hardware performance variations of
running different CNN features. Both chip designs use around
1000 kgates and 150 kB memory. While Eyeriss achieves
approximately the same computation throughput (i.e., GOPS)

TABLE I
HARDWARE SPECIFICATION AND MEASURED PERFORMANCE OF

HAND-CRAFTED FEATURE HOG [7] AND LEARNED FEATURE CNN [8].

[7] [8]

Implemented Feature HOG CNN CNN
(AlexNet) (VGG-16)

Technology 65nm 65nm
Gate Counts (kgates) 893.0 1176.0
Memory (kB) 159.0 181.5
Multiplier Bitwidth 5×11 – 22×22 16×16
Throughput (Mpixels/s) 62.5 1.8 0.04
Throughput (GOPS) 46.0 46.2 21.4
Power (mW) 29.3 278.0 236.0
DRAM access (B/pixel) 1.0 74.7 2128.6
Energy Efficiency (nJ/pixel) 0.5 155.5 6742.9
Energy Efficiency (GOPS/W) 1570.0 166.2 90.7

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN FEATURES

Feature GOP/Mpixel Ratio
Hand-crafted HOG 0.7 1.0×

Learned CNN (AlexNet) 25.8 36.9×
CNN (VGG-16) 610.3 871.9×

as the HOG design when running AlexNet features, HOG
processes 35× more input pixels per second; the gap is even
larger between HOG and VGG-16 features. This is due to
the differences in computational complexity (i.e., operations
per pixel) between different features as shown in Table II.
However, the HOG design also consumes around 10× less
power than Eyeriss. Thus, the HOG hardware consumes 311×
and 13,486× less energy per pixel than Eyeriss running
AlexNet and VGG-16 features, respectively. In terms of energy
per operation, the HOG hardware is 10× less than Eyeriss. In
Section III, we will discuss the cause of this energy gap.

D. Accuracy vs. Energy Efficiency

While there is a large energy gap between the hardware for
hand-crafted and learned features, the performance differences
in applications, e.g., accuracy, between the features should
also be taken into account. To measure accuracy, we use the
features for object detection, which localizes and classifies
objects in provided images (i.e., the outputs are the class and
coordinates of each object in the images). The mean average
precision (mAP) metric is used to quantify detection accuracy.

Fig. 4 shows the trade-off between detection accuracy and
energy consumption. Note that the vertical axis is logarithmic.
All reported detection accuracy numbers are measured on
PASCAL VOC 2007 dataset [12], which is a widely used
image dataset containing 20 different object classes in 9,963
images. In order to achieve the same detection accuracy of
HOG features, it only requires the features extracted from
the first three CONV layers of AlexNet instead of five [13],
but it comes at the cost of 100× higher energy consumption
per pixel to generate the features. Fortunately, mAP can be
nearly doubled by using the ouput of all five layers of AlexNet
with minimal increase in energy consumption (only 22%).
Even higher mAP has been demonstrated by using VGG-16
features [14]. However, the accompanying energy consumption

Fig. 4. Energy versus accuracy trade-off comparison for hand-crafted and
learned features.

per pixel becomes four orders of magnitude higher than using
HOG features. If we look at the minimum hardware energy
consumption required for a given accuracy in Fig. 4, we
roughly see that a linear increase in detection accuracy requires
an exponential increase in energy consumption per pixel.

III. HARDWARE IMPLEMENTATION CONSIDERATIONS

One of the key factors that differentiates the two types
of features in hardware implementation is programmability,
which defines the flexibility of a feature to be configured
to deal with different data statistics or different tasks. While
hand-crafted features can achieve a certain degree of invari-
ance to data variations (e.g., images with different exposures),
they are mostly designed for very specific tasks with known
data statistics, leaving little to be programmed when deployed.
In contrast, learned features isolate algorithm design from
learning the data statistics, which leaves room for programma-
bility to take advantage of the flexibility. We categorize
programmability into two types: Programmability of Hyper-
Parameters (PoHP) and Programmability of Parameters (PoP).

A. Programmability of Hyper-Parameters (PoHP)

Hyperparameters refer to the number and/or dimensionality
of parameters of a feature such as the number of layers and
size of filters in a CNN, or the number of histogram bins in
HOG. They are usually determined at design time by using
heuristics or through experiments.
Advantages: For learned features, changes in hyperparameters
with proper (re-)training can result in significant performance
improvements. As a result, hardware that supports PoHP can
easily trade-off computational complexity for higher accuracy.
For instance, a CNN object detection system with PoHP
can choose between lower-complexity, lower-accuracy, e.g.,
AlexNet, and higher-complexity, higher-accuracy, e.g., VGG-
16, according to the use cases. For hand-crafted features,
however, the impact of PoHP on performance is usually
limited, since it can be hard to capture the changes in pa-
rameter dimensionality without redesign. As a result, PoHP
are not commonly supported for the hardware implementation
of hand-crafted features.

Energy Cost: Although PoHP can greatly benefits the perfor-
mance of learned features, it comes at the price of lowered
energy efficiency, since the hardware implementation must
accommodates a wide range of possible configurations. First,
it introduces irregular data movement. For example, a CNN
processor that supports PoHP has to deal with filters of
many shapes and sizes, which complicates the control logic,
synchronization schemes between parallel blocks, and data
tiling optimization. Second, it usually requires higher dynamic
range and resolution for data representation, which have a
negative impact on both computation and data movement.
The bitwidth of datapath and the bandwidth requirement of
memory all need to be designed for the worst-case scenario,
which penalize the average energy efficiency.

B. Programmability of Parameters (PoP)

Parameters are the actual coefficients, such as the filter
weights, that are used in the computation. For learned fea-
tures, parameters are learned through training; for hand-crafted
features, they are usually carefully designed according to
the data statistics or pre-determined based on the desired
properties. For instance, in HOG, the filter mask for the
gradient extraction is simply [−1 0 1].
Advantages: With PoP, learned features can adapt to new data
by simply retraining the parameters. For example, AlexNet
has been shown to work for both RGB images and depth
images [15]. For hand-crafted features, however, there is no
PoP since all parameters are fixed at design time.
Energy Cost: PoP also negatively impacts the hardware
energy efficiency since the parameters have to be treated as
data instead of fixed values during hardware implementation.
This not only increases the required memory capacity and data
movement, but also complicates the datapath design. In the
case of CNN, the amount of parameters is usually too large to
fit on-chip, which increases the accesses to energy-consuming
off-chip memory, such as DRAM. In contrast, hand-crafted
features can be greatly optimized for energy efficiency by
hard-wiring the fixed parameters in datapaths or ROM. In the
case of HOG, multiplications between the input images and
gradient filter can be completely avoided.

IV. CLOSING THE ENERGY GAP

In Section II, we have shown the energy efficiency results of
hardware implementations from two extremes: the HOG hand-
crafted feature with no PoP or PoHP, and the CNN learned
feature with both PoP and PoHP, and the latter consumes an
order of magnitude higher normalized energy per pixel than
the former. A simple approach to reduce this energy gap is to
remove all programmability in the hardware implementation
of CNN, but this is not straightforward.

For example, the CONV layer weights from AlexNet can
either be hard-wired in the multipliers, or stored in on-chip
SRAM or ROM. This is not feasible if the available hardware
resources are constrained to the level of the HOG design [7],
i.e., 1000 kgates with 150 kB SRAM. Assuming each input
and weight value take 1 byte, only 10k multipliers with fixed

TABLE III
CNN ENERGY AND MEMORY SAVINGS USING DIFFERENT TECHNIQUES.

*MEASURED ON ALEXNET **ASSUMING A 16-BIT BASELINE

Method Energy Memory Size
Reduced precision [17, 22] 2.56× 2.0×

Sparsity by pruning [25] 3.7× 6.6×*
Data Compression [22] - >2.0×**

Energy optimized dataflow [27] 1.4–2.5× -

weights can be implemented in 1000 kgates, and only 150k
weight values can fit in the SRAM. This number of multipliers
cannot even fit 1% of AlexNet 2334k weights in the CONV
layers, and 15× larger memory is required to store all weights.

In this section, we will discuss some techniques that can be
applied to reduce the energy efficiency gap.

Reduced Precision: Reducing data precision is an active
research area for DNN [16], which directly reduces the worst-
case bitwidth requirement when supporting PoHP. Specifically,
8-bit integer precision has become popular in recent DNN
hardware [17]. Non-uniform quantization [18] and bitwidth
reduction to 1-bit [19–21] have also been demonstrated. En-
ergy efficiency can also be improved if the hardware can adapt
to the need of actual data. Custom datapath designs that adapt
to the lower data precision show 2.56× energy savings in [22].

Sparsity: Increasing data sparsity reduces the intrinsic amount
of computation and data movement, which improve energy
efficiency. For CNN, the number of weights can be greatly
reduced without reducing accuracy through pruning [23–25].
Specifically, [25] has shown that the number of CONV layer
weights in AlexNet can be reduced from 2334k to 352k, which
is only double the memory capacity used in HOG; furthermore
it reduces energy by 3.7×. Specialized hardware designs can
be used to exploit sparsity for increased speed or reduced
energy consumption [8, 18, 26].

Data Compression: Sparsity also suggests opportunities for
compression, which saves memory space and data transfer
bandwidth. Many lightweight lossless compression schemes,
such as run-length coding [8] and Huffman coding [18], are
proposed to reduce the amount of off-chip data [8, 18, 22].

Energy Optimized Dataflow: PoHP incurs irregular data
movement, preventing memory access optimization during
hardware design. Therefore, designing hardware architecture
that can adapt to the irregular data movement becomes critical
to high energy efficiency, since data movement often consumes
more energy than computation. Eyeriss demonstrates a recon-
figurable architecture that can optimize data movement for var-
ious CNNs with a row stationary dataflow, and achieves 1.4×
to 2.5× higher energy efficiency than existing designs [27].

Table III summarizes the energy and memory savings using
the discussed techniques. Combining them all can potentially
deliver an order of magnitude reduction. Taking into account
the fundamental computation gap discussed in Section II, this
reduction has the potential of closing the gap between HOG
and CNN features.

V. CONCLUSION

The CNN learned features outperform the HOG hand-
crafted features in visual object classification and detection
tasks. This paper compares two chip designs for CNN and
HOG to better understand the energy discrepancy between
the two approaches and provide insight about the potential
optimizations. Although learned features achieve more than
2× accuracy, it comes at a large 311× to 13,486× overhead
in energy consumption. While a fundamental computation
overhead exists, another order of magnitude gap is mainly
caused by the fact that CNN architecture is programmable. A
simple approach of removing all programmability in CNN and
hard-wiring all multiplications doesn’t work due to significant
area cost (i.e., logic gates and on-chip memory). Combing the
techniques highlighted in the paper can potentially reduce the
energy and memory sizes by an order of magnitude, and help
reduce the gap between learned and hand-crafted features.

REFERENCES
[1] C. C. Ju and et al., “A 0.5nJ/pixel 4K H.265/HEVC codec LSI for multi-format

smartphone applications,” in ISSCC, pp. 1–3, Feb 2015.
[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in CVPR, 2005.
[3] D. G. Lowe, “Object recognition from local scale-invariant features,” in ICCV,

1999.
[4] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applica-

tions in vision,” in ISCAS, 2010.
[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” in NIPS, 2012.
[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation,” in CVPR, 2014.
[7] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mW real-time programmable object

detector with multi-scale multi-object support using deformable parts model on
1920× 1080 video at 30fps,” in Sym. on VLSI, 2016.

[8] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,” in ISSCC,
2016.

[9] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, “Discriminatively trained
deformable part models, release 5,” 2012.

[10] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines
and other kernel-based learning methods. Cambridge University Press, 2000.

[11] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” in ICLR, 2015.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.”
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[13] W. Zou, X. Wang, M. Sun, and Y. Lin, “Generic Object Detection with Dense
Neural Patterns and Regionlets,” in BMVC, 2014.

[14] R. Girshick, “Fast R-CNN,” in ICCV, 2015.
[15] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning rich features from

RGB-D images for object detection and segmentation,” in ECCV, 2014.
[16] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented Approximation of

Convolutional Neural Networks,” in ICLR, 2016.
[17] S. Higginbotham, “Google Takes Unconventional Route with Homegrown Machine

Learning Chips,” May 2016.
[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE:

efficient inference engine on compressed deep neural network,” in ISCA, 2016.
[19] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural

networks with binary weights during propagations,” in NIPS, 2015.
[20] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with

weights and activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,
2016.

[21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks,” in ECCV, 2016.

[22] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W precision-scalable processor for
real-time large-scale ConvNets,” in Sym. on VLSI, 2016.

[23] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,” in NIPS, 1990.
[24] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and Connections

for Efficient Neural Network,” in NIPS, 2015.
[25] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Convolutional

Neural Networks using Energy-Aware Pruning,” CVPR, 2017.
[26] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,

“Cnvlutin: ineffectual-neuron-free deep neural network computing,” in ISCA, 2016.
[27] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks,” in ISCA, 2016.

