Hardware Architectures for Deep Neural Networks

CICS/MTL Tutorial

March 27, 2017

Website: http://eyeriss.mit.edu/tutorial.html

Speakers and Contributors

Joel Emer
Senior Distinguished
Research Scientist
NVIDIA
Professor
MIT

Vivienne Sze

Professor

MIT

Yu-Hsin Chen
PhD Candidate
MIT

Tien-Ju Yang

PhD Candidate

MIT

Outline

- Overview of Deep Neural Networks
- DNN Development Resources
- Survey of DNN Hardware
- DNN Accelerators
- DNN Model and Hardware Co-Design

Participant Takeaways

- Understand the key design considerations for DNNs
- Be able to evaluate different implementations of DNN with benchmarks and comparison metrics
- Understand the tradeoffs between various architectures and platforms
- Assess the utility of various optimization approaches
- Understand recent implementation trends and opportunities

Resources

- Eyeriss Project: http://eyeriss.mit.edu
 - Tutorial Slides
 - Benchmarking
 - Energy modeling
 - Mailing List for updates

- http://mailman.mit.edu/mailman/listinfo/eems-news
- Paper based on today's tutorial:
 - V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

Background of Deep Neural Networks

Artificial Intelligence

Artificial Intelligence

"The science and engineering of creating intelligent machines"

- John McCarthy, 1956

Al and Machine Learning

Artificial Intelligence

Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Brain-Inspired Machine Learning

Machine Learning

Brain-Inspired

An algorithm that takes its basic functionality from our understanding of how the brain operates

How Does the Brain Work?

- The basic computational unit of the brain is a neuron
 - → 86B neurons in the brain
- Neurons are connected with nearly 10¹⁴ 10¹⁵ synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

Spiking-based Machine Learning

Spiking Architecture

- Brain-inspired
- Integrate and fire
- Example: IBM TrueNorth

Machine Learning with Neural Networks

Neural Networks: Weighted Sum

Many Weighted Sums

Deep Learning

What is Deep Learning?

Why is Deep Learning Hot Now?

Big Data

Availability

GPU Acceleration

New ML Techniques

facebook

350M images uploaded per day

Walmart [']¦<

2.5 Petabytes of customer data hourly

300 hours of video uploaded every minute

ImageNet Challenge

Image Classification Task:

1.2M training images • 1000 object categories

Object Detection Task:

456k training images • 200 object categories

ImageNet: Image Classification Task

Hand-crafted featurebased designs Deep CNN-based designs

GPU Usage for ImageNet Challenge

Established Applications

Image

- Classification: image to object class
- Recognition: same as classification (except for faces)
- Detection: assigning bounding boxes to objects
- Segmentation: assigning object class to every pixel

Speech & Language

- Speech Recognition: audio to text
- Translation
- Natural Language Processing: text to meaning
- Audio Generation: text to audio

Games

Deep Learning on Games

Google DeepMind AlphaGo

Emerging Applications

Medical (Cancer Detection, Pre-Natal)

Finance (Trading, Energy Forecasting, Risk)

Infrastructure (Structure Safety and Traffic)

Weather Forecasting and Event Detection

Deep Learning for Self-driving Cars

Opportunities

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

- Greg Diamos, Senior Researcher, SVAIL, Baidu

Overview of Deep Neural Networks

DNN Timeline

- 1940s: Neural networks were proposed
- 1960s: Deep neural networks were proposed
- 1989: Neural network for recognizing digits (LeNet)
- 1990s: Hardware for shallow neural nets
 - Example: Intel ETANN (1992)
- 2011: Breakthrough DNN-based speech recognition
 - Microsoft real-time speech translation
- 2012: DNNs for vision supplanting traditional ML
 - AlexNet for image classification
- 2014+: Rise of DNN accelerator research
 - Examples: Neuflow, DianNao, etc.

Publications at Architecture Conferences

MICRO, ISCA, HPCA, ASPLOS

of Publications over the Years

So Many Neural Networks!

Each synapse has a weight for neuron activation

Weight Sharing: multiple synapses use the same weight value

DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons

hidden layer

DNN Terminology 101

Popular Types of DNNs

- Fully-Connected NN
 - feed forward, a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
 - feed forward, sparsely-connected w/ weight sharing
- Recurrent NN (RNN)
 - feedback
- Long Short-Term Memory (LSTM)
 - feedback + storage

Inference vs. Training

- Training: Determine weights
 - Supervised:
 - Training set has inputs and outputs, i.e., labeled
 - Unsupervised:
 - Training set is unlabeled
 - Semi-supervised:
 - Training set is partially labeled
 - Reinforcement:
 - Output assessed via rewards and punishments
- Inference: Apply weights to determine output

Modern Deep CNN: 5 – 1000 Layers

Low-Level Features > ... > CONV Layer > Features > Classes

1 – 3 Layers

Convolutions account for more than 90% of overall computation, dominating runtime and energy consumption

a plane of input activations a.k.a. input feature map (fmap)

Sliding Window Processing

Many Input Channels (C)

CNN Decoder Ring

- N Number of input fmaps/output fmaps (batch size)
- C Number of 2-D input fmaps /filters (channels)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of 2-D filter (weights)
- S Width of 2-D filter (weights)
- M Number of 2-D output fmaps (channels)
- E Height of output fmap (activations)
- F Width of output fmap (activations)

CONV Layer Tensor Computation

$$0 \le n < N, 0 \le m < M, 0 \le y < E, 0 \le x < F,$$

$$E = (H - R + U)/U, F = (W - S + U)/U.$$

Shape Parameter	Description
N	fmap batch size
M	# of filters / # of output fmap channels
C	# of input fmap/filter channels
H/W	input fmap height/width
R/S	filter height/width
E/F	output fmap height/width
U	convolution stride

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```
for (n=0; n<N; n++) {
      for (m=0; m<M; m++) {
          (m=0; m<M; m++) {
for (x=0; x<F; x++) {
                                               for each output fmap value
               for (y=0; y<E; y++) {
                   O[n][m][x][y] = B[m];
                   for (i=0; i<R; i++) {
 convolve
                       for (j=0; j<S; j++) {
a window
                           for (k=0; k<C; k++) {
                               O[n][m][x][y] += I[n][k][Ux+i][Uy+j] \times W[m][k][i][j];
and apply
activation
                   O[n][m][x][y] = Activation(O[n][m][x][y]);
```


Traditional Activation Functions

Sigmoid

$$y=1/(1+e^{-x})$$

Hyperbolic Tangent

$$y=(e^{x}-e^{-x})/(e^{x}+e^{-x})$$

Modern Activation Functions

Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 (E = F = 1)
- Filters as large as input fmaps (R = H, S = W)
- Implementation: Matrix Multiplication

FC Layer – from CONV Layer POV

Pooling (POOL) Layer

- Reduce resolution of each channel independently

Increases translation-invariance and noise-resilience

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:

```
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
   for (x=0; x<F; x++) {
     for (y=0; y<E; y++) {</pre>
                                               for each pooled value
                  max = -Inf;
                   for (i=0; i<R; i++) {
                       for (j=0; j<S; j++) {
                            if (I[n][m][Ux+i][Uy+j] > max) {
                                                                          find the max
                                 max = I[n][m][Ux+i][Uy+j];
                                                                          with in a window
                  O[n][m][x][y] = max;
```


Normalization (NORM) Layer

Batch Normalization (BN)

- Normalize activations towards mean=0 and std.
 dev.=1 based on the statistics of the training dataset
- put in between CONV/FC and Activation function

Believed to be key to getting high accuracy and faster training on very deep neural networks.

BN Layer Implementation

 The normalized value is further scaled and shifted, the parameters of which are learned from training

Normalization (NORM) Layer

- Local Response Normalization (LRN)
 - Tries to mimic the inhibition scheme in the brain

Now deprecated!

Relevant Components for Tutorial

- Typical operations that we will discuss:
 - Convolution (CONV)
 - Fully-Connected (FC)
 - Max Pooling
 - ReLU

