Hardware Architectures for Deep Neural Networks

CICS/MTL Tutorial

March 27, 2017

Website: http://eyeriss.mit.edu/tutorial.html
Speakers and Contributors

Joel Emer
Senior Distinguished Research Scientist
NVIDIA

Vivienne Sze
Professor
MIT

Yu-Hsin Chen
PhD Candidate
MIT

Tien-Ju Yang
PhD Candidate
MIT
Outline

• Overview of Deep Neural Networks
• DNN Development Resources
• Survey of DNN Hardware
• DNN Accelerators
• DNN Model and Hardware Co-Design
Participant Takeaways

• Understand the key design considerations for DNNs

• Be able to evaluate different implementations of DNN with benchmarks and comparison metrics

• Understand the tradeoffs between various architectures and platforms

• Assess the utility of various optimization approaches

• Understand recent implementation trends and opportunities
Resources

• Eyeriss Project: http://eyeriss.mit.edu
 – Tutorial Slides
 – Benchmarking
 – Energy modeling
 – Mailing List for updates
 – Paper based on today’s tutorial:
Background of Deep Neural Networks
Artificial Intelligence

“The science and engineering of creating intelligent machines”
- John McCarthy, 1956
"Field of study that gives computers the ability to learn without being explicitly programmed"

– Arthur Samuel, 1959
An algorithm that takes its basic functionality from our understanding of how the brain operates
How Does the Brain Work?

- The basic computational unit of the brain is a neuron → 86B neurons in the brain
- Neurons are connected with nearly \(10^{14} – 10^{15}\) synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights – learnable & control influence strength

Image Source: Stanford
Spiking-based Machine Learning

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking
Spiking Architecture

• Brain-inspired
• Integrate and fire
• Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016]
Machine Learning with Neural Networks

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking

Neural Networks
Neural Networks: Weighted Sum

Image Source: Stanford
Many Weighted Sums

Image Source: Stanford
Deep Learning

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking

Neural Networks

Deep Learning
What is Deep Learning?

Image Source: [Lee et al., Comm. ACM 2011]
Why is Deep Learning Hot Now?

Big Data Availability
- 350M images uploaded per day
- 2.5 Petabytes of customer data hourly
- 300 hours of video uploaded every minute

GPU Acceleration

New ML Techniques
ImageNet Challenge

Image Classification Task:
1.2M training images • 1000 object categories

Object Detection Task:
456k training images • 200 object categories
ImageNet: Image Classification Task

Top 5 Classification Error (%)

large error rate reduction due to Deep CNN

Hand-crafted feature-based designs
Deep CNN-based designs

[Russakovsky et al., IJCV 2015]
GPU Usage for ImageNet Challenge

![Graph showing the decline in top 5 error rate and the increase in entries using GPUs from 2010 to 2014. The error rate decreases from 28% in 2010 to 7% in 2014, while the number of entries using GPUs increases from 0 in 2010 to 110 in 2014.](image)
Established Applications

- **Image**
 - Classification: image to object class
 - Recognition: same as classification (except for faces)
 - Detection: assigning bounding boxes to objects
 - Segmentation: assigning object class to every pixel

- **Speech & Language**
 - Speech Recognition: audio to text
 - Translation
 - Natural Language Processing: text to meaning
 - Audio Generation: text to audio

- **Games**
Deep Learning on Games

Google DeepMind AlphaGo
Emerging Applications

• **Medical** (Cancer Detection, Pre-Natal)

• **Finance** (Trading, Energy Forecasting, Risk)

• **Infrastructure** (Structure Safety and Traffic)

• Weather Forecasting and Event Detection

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/
Deep Learning for Self-driving Cars
"Today the job of training machine learning models is limited by compute, if we had faster processors we’d run bigger models... in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

– Greg Diamos, Senior Researcher, SVAIL, Baidu
Overview of Deep Neural Networks
DNN Timeline

• 1940s: Neural networks were proposed
• 1960s: Deep neural networks were proposed
• 1989: Neural network for recognizing digits (LeNet)
• 1990s: Hardware for shallow neural nets
 – Example: Intel ETANN (1992)
• 2011: Breakthrough DNN-based speech recognition
 – Microsoft real-time speech translation
• 2012: DNNs for vision supplanting traditional ML
 – AlexNet for image classification
• 2014+: Rise of DNN accelerator research
 – Examples: Neuflow, DianNao, etc.
Publications at Architecture Conferences

- MICRO, ISCA, HPCA, ASPLOS
So Many Neural Networks!

A mostly complete chart of Neural Networks

http://www.asimovinstitute.org/neural-network-zoo/
DNN Terminology 101

Neurons

input layer

hidden layer

output layer

Image Source: Stanford
DNN Terminology 101

Synapses

input layer

hidden layer

output layer

Image Source: Stanford
DNN Terminology 101

Each synapse has a **weight** for neuron **activation**

![Diagram of a neural network showing input layer, hidden layer, and output layer with weight matrices W11 and W34, and activation function Y_j = activation(∑_{i=1}^{3} W_{ij} \times X_i)](image)

Image Source: Stanford
DNN Terminology 101

Weight Sharing: multiple synapses use the **same weight value**

\[Y_j = \text{activation} \left(\sum_{i=1}^{3} W_{ij} \times X_i \right) \]

![Diagram of a neural network with weight sharing](image-source: Stanford)
DNN Terminology 101

L1 Neuron inputs

e.g. image pixels

Layer 1

L1 Neuron outputs

a.k.a. Activations

input layer

hidden layer

Image Source: Stanford
DNN Terminology 101

Image Source: Stanford
DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected
DNN Terminology 101

Feed Forward

Feedback

input layer

hidden layer

output layer

Image Source: Stanford
Popular Types of DNNs

• **Fully-Connected NN**
 – feed forward, a.k.a. multilayer perceptron (MLP)

• **Convolutional NN (CNN)**
 – feed forward, sparsely-connected w/ weight sharing

• **Recurrent NN (RNN)**
 – feedback

• **Long Short-Term Memory (LSTM)**
 – feedback + storage
Inference vs. Training

• **Training**: Determine weights
 – **Supervised**:
 • Training set has inputs and outputs, i.e., labeled
 – **Unsupervised**:
 • Training set is unlabeled
 – **Semi-supervised**:
 • Training set is partially labeled
 – **Reinforcement**:
 • Output assessed via rewards and punishments

• **Inference**: Apply weights to determine output
Deep Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

1 – 3 Layers
Deep Convolutional Neural Networks

Diagram:
- **CONV Layer** → **Low-Level Features** → ... → **CONV Layer** → **High-Level Features** → **FC Layer** → **Classes**
- **Convolution** → **Activation**
Deep Convolutional Neural Networks

CONV Layer → Low-Level Features → ... → CONV Layer → High-Level Features → FC Layer → Classes

Fully Connected

Activation
Deep Convolutional Neural Networks

Optional layers in between CONV and/or FC layers

CONV Layer → NORM Layer → POOL Layer → CONV Layer → High-Level Features → FC Layer → Classes

Normalization

Pooling
Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating runtime and energy consumption.
Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)
Convolution (CONV) Layer

filter (weights)

Element-wise Multiplication

input fmap
Convolution (CONV) Layer

- **filter (weights)**
- **input fmap**
- **output fmap**
 - **Element-wise Multiplication**
 - **Partial Sum (psum)** Accumulation
 - **an output activation**
Convolution (CONV) Layer

Sliding Window Processing

input fmap

output fmap

filter (weights)
Convolution (CONV) Layer

Many Input Channels (C)
Convolution (CONV) Layer

Many filters (M)

input fmap

output fmap

Many Output Channels (M)
CNN Decoder Ring

- N – Number of input fmaps/output fmaps (batch size)
- C – Number of 2-D input fmaps/filters (channels)
- H – Height of input fmap (activations)
- W – Width of input fmap (activations)
- R – Height of 2-D filter (weights)
- S – Width of 2-D filter (weights)
- M – Number of 2-D output fmaps (channels)
- E – Height of output fmap (activations)
- F – Width of output fmap (activations)
CONV Layer Tensor Computation

\[
O[n,m,x,y] = \text{Activation}(B[m]) + \sum_{i=0}^{R-1} \sum_{j=0}^{S-1} \sum_{k=0}^{C-1} I[n,k,Ux+i][Uy+j] \times W[m,k][i][j],
\]

\[
0 \leq n < N, 0 \leq m < M, 0 \leq y < E, 0 \leq x < F,
\]

\[
E = (H - R + U)/U, F = (W - S + U)/U.
\]

<table>
<thead>
<tr>
<th>Shape Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>fmap batch size</td>
</tr>
<tr>
<td>(M)</td>
<td># of filters / # of output fmap channels</td>
</tr>
<tr>
<td>(C)</td>
<td># of input fmap/filter channels</td>
</tr>
<tr>
<td>(H/W)</td>
<td>input fmap height/width</td>
</tr>
<tr>
<td>(R/S)</td>
<td>filter height/width</td>
</tr>
<tr>
<td>(E/F)</td>
<td>output fmap height/width</td>
</tr>
<tr>
<td>(U)</td>
<td>convolution stride</td>
</tr>
</tbody>
</table>
CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```c
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
        for (x=0; x<F; x++) {
            for (y=0; y<E; y++) {
                O[n][m][x][y] = B[m];
                for (i=0; i<R; i++) {
                    for (j=0; j<S; j++) {
                        O[n][m][x][y] += I[n][k][Ux+i][Uy+j] × W[m][k][i][j];
                    }
                }
                O[n][m][x][y] = Activation(O[n][m][x][y]);
            }
        }
    }
}
```
Traditional Activation Functions

Sigmoid

\[y = \frac{1}{1 + e^{-x}} \]

Hyperbolic Tangent

\[y = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]
Modern Activation Functions

Rectified Linear Unit (ReLU)

\[y = \max(0, x) \]

Leaky ReLU

\[y = \max(\alpha x, x) \]
\[\alpha = \text{small const. (e.g. 0.1)} \]

Exponential LU

\[y = \begin{cases}
 x, & x \geq 0 \\
 \alpha(e^x - 1), & x < 0
\end{cases} \]

Image Source: Caffe Tutorial
Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 ($E = F = 1$)
- Filters as large as input fmaps ($R = H$, $S = W$)
- Implementation: **Matrix Multiplication**

![Diagram of fully-connected layer](image)

\[
\text{Filters} \times \text{Input fmaps} = \text{Output fmaps}
\]
FC Layer – from CONV Layer POV

filters

input fmaps

output fmaps

...
Pooling (POOL) Layer

- Reduce resolution of each channel independently
- Overlapping or non-overlapping → depending on stride

Increases translation-invariance and noise-resilience

Image Source: Caffe Tutorial
Naïve 6-layer for-loop max-pooling implementation:

```c
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
        for (x=0; x<F; x++) {
            for (y=0; y<E; y++) {
                max = -Inf;
                for (i=0; i<R; i++) {
                    for (j=0; j<S; j++) {
                        if (I[n][m][Ux+i][Uy+j] > max) {
                            max = I[n][m][Ux+i][Uy+j];
                        }
                    }
                }
                O[n][m][x][y] = max;
            }
        }
    }
}
```

For each pooled value, find the max with in a window.
Normalization (NORM) Layer

• Batch Normalization (BN)
 – Normalize activations towards mean=0 and std. dev.=1 based on the statistics of the training dataset
 – put in between CONV/FC and Activation function

Believed to be key to getting high accuracy and faster training on very deep neural networks.

[Ioffe et al., ICML 2015]
BN Layer Implementation

- The normalized value is further scaled and shifted, the parameters of which are learned from training.

\[y = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \gamma + \beta \]

- **data mean**
- **learned scale factor**
- **learned shift factor**
- **data std. dev.**
- **small const. to avoid numerical problems**
Normalization (NORM) Layer

- Local Response Normalization (LRN)
 - Tries to mimic the inhibition scheme in the brain

Now deprecated!

Image Source: Caffe Tutorial
Relevant Components for Tutorial

• Typical operations that we will discuss:
 – Convolution (CONV)
 – Fully-Connected (FC)
 – Max Pooling
 – ReLU