
1

Survey of
DNN Hardware

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

CPUs Are Targeting Deep Learning

Image Source: Intel, Data Source: Next Platform

Knights Mill: next gen Xeon Phi “optimized for deep learning”

•  7 TFLOPS FP32

•  16GB MCDRAM– 400 GB/s

•  245W TDP

•  29 GFLOPS/W (FP32)

•  14nm process

Intel Knights Landing (2016)

Intel announced the addition of new vector instructions for deep learning
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016

3

GPUs Are Targeting Deep Learning

•  10/20 TFLOPS FP32/FP16

•  16GB HBM – 750 GB/s

•  300W TDP

•  67 GFLOPS/W (FP16)

•  16nm process

•  160GB/s NV Link

Source: Nvidia

Nvidia PASCAL GP100 (2016)

4

Systems for Deep Learning

•  170 TFLOPS

•  8× Tesla P100, Dual Xeon

•  NVLink Hybrid Cube Mesh

•  Optimized DL Software

•  7 TB SSD Cache

•  Dual 10GbE, Quad IB 100Gb

•  3RU – 3200W

Source: Nvidia

Nvidia DGX-1 (2016)

5

Cloud Systems for Deep Learning

•  Open Rack Compliant

•  Powered by 8 Tesla M40 GPUs

•  2x Faster Training for Faster Deployment

•  2x Larger Networks for Higher Accuracy

Source: Facebook

Facebook’s Deep Learning Machine

6

SOCs for Deep Learning Inference

ARM v8
CPU

COMPLEX
(2x Denver 2 + 4x

A57)
Coherent HMP

SECURITY
ENGINES

2D
ENGINE

4K60
VIDEO

ENCODER

4K60
VIDEO

DECODER

AUDIO
ENGINE

DISPLAY
ENGINES

IMAGE
PROC
(ISP)

128-bit
LPDDR4

BOOT and
PM PROC

GigE
Ethernet

MAC

I/O Safety
Engine

•  GPU: 1.5 TeraFLOPS FP16

•  4GB LPDDR4 @ 25.6 GB/s

•  15 W TDP
(1W idle, <10W typical)

•  100 GFLOPS/W (FP16)

•  16nm process

Source: Nvidia

Nvidia Tegra - Parker

Xavier: next gen Tegra to be an “AI supercomputer”

7

Mobile SOCs for Deep Learning

•  GPU: 0.26 TFLOPS

•  LPDDR4 @ 28.7 GB/s

•  14nm process

Exynos 8 Octa 8890

Source: Wikipedia

Samsung Exynos (ARM Mali)

8

FPGAs for Deep Learning

•  10 TFLOPS FP32
•  HBM2 integrated
•  Up to 1 GHz
•  14nm process
•  80 GFLOPS/W

Intel/Altera Stratix 10

Xilinx Virtex UltraSCALE+
•  DSP: up to 21.2 TMACS
•  DSP: up to 890 MHz
•  Up to 500Mb On-Chip Memory
•  16nm process

9

Kernel
Computation

10

Fully-Connected (FC) Layer

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M =

•  Matrix–Vector Multiply:
•  Multiply all inputs in all channels by a weight and sum

11

Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

•  Batching (N) turns operation into a Matrix-Matrix multiply

12

Fully-Connected (FC) Layer

•  Implementation: Matrix Multiplication (GEMM)

•  CPU: OpenBLAS, Intel MKL, etc
•  GPU: cuBLAS, cuDNN, etc

•  Optimized by tiling to storage hierarchy

13

Convolution (CONV) Layer
•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

14

Convolution (CONV) Layer
•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

Data is repeated

15

Convolution (CONV) Layer

•  Multiple Channels and Filters

1 2
3 4Filter 1

Input Fmap

Chnl 1 * = 1 2
3 4

1 2
3 4Filter 2

Chnl 1 Chnl 2

1 2 3
4 5 6
7 8 9
Chnl 1 Chnl 2

1 2
3 4

1 2
3 4

1 2 3
4 5 6
7 8 9

1 2
3 4 Chnl 2

Output Fmap

16

Convolution (CONV) Layer

= 1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2
1 2 3 4

3 4×

Toeplitz Matrix
(w/ redundant data)

•  Multiple Channels and Filters

Chnl 1 Chnl 2
Filter 1
Filter 2

Chnl 1

Chnl 2

Chnl 1
Chnl 2

17

Computational
Transforms

18

Computation Transformations

•  Goal: Bitwise same result, but reduce
number of operations

•  Focuses mostly on compute

19

Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

20

Strassen

P1 = a(f – h)
P2 = (a + b)h
P3 = (c + d)e
P4 = d(g – e)

P5 = (a + d)(e + h)
P6 = (b - d)(g + h)
P7 = (a – c)(e + f)

8 multiplications + 4 additions

7 multiplications + 18 additions

7 multiplications + 13 additions (for constant B matrix – weights)

[Cong et al., ICANN, 2014]

21

Strassen

Comes at the price of reduced numerical stability
and requires significantly more memory

N

Naïve

Strassen

Complexity

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/

•  Reduce the complexity of matrix multiplication
from Θ(N3) to Θ(N2.807) by reducing multiplication

22

Winograd 1D – F(2,3)

[Lavin et al., ArXiv 2015]

•  Targeting convolutions instead of matrix multiply
•  Notation: F(size of output, filter size)

6 multiplications + 4 additions

=[█𝑦0@𝑦1 ]

4 multiplications + 12 additions + 2 shifts
4 multiplications + 8 additions (for constant weights)

input filter

23

Winograd 2D - F(2x2, 3x3)

•  1D Winograd is nested to make 2D Winograd

d00 d01 d02 d03

d10 d11 d12 d13

d20 d21 d22 d23

d30 d31 d32 d33

Winograd: 16 multiplications à 2.25 times reduction

g00 g01 g02

g10 g11 g12

g20 g21 g22

y00 y01

y10 y11

Original: 36 multiplications

Filter Input Fmap Output Fmap

* =

24

Winograd Halos
•  Winograd works on a small region of output at a

time, and therefore uses inputs repeatedly

d00 d01 d02 d03 d04 d05

d10 d11 d12 d13 d14 d15

d20 d21 d22 d23 d24 d25

d30 d31 d32 d33 d34 d35

g00 g01 g02

g10 g11 g12

g20 g21 g22

y00 y01

y10 y11

Filter Input Fmap Output Fmap

y02 y03

y12 y12

Halo columns

25

Winograd Performance Varies

Source: Nvidia

26

Winograd Summary

•  Winograd is an optimized computation for
convolutions

•  It can significantly reduce multiplies
–  For example, for 3x3 filter by 2.25X

•  But, each filter size is a different computation.

27

Winograd as a Transform

Transform inputs

Dot-product

Transform output

[Lavin et al., ArXiv 2015]

filter
input

GgGT can be precomputed

28

R

filter (weights)

S

FFT Flow

E

F

input fmap output fmap

H

W

an output
activation

* =

FFT(W)

F
F
T

FFT(I) X = FFT(0)

F
F
T

I
F
F
T

29

FFT Overview

•  Convert filter and input to frequency domain
to make convolution a simple multiply then
convert back to time domain.

•  Convert direct convolution O(No
2Nf

2)
computation to O(No

2log2No)

•  So note that computational benefit of FFT
decreases with decreasing size of filter

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014]

30

FFT Costs

•  Input and Filter matrices are ‘0-completed’,
–  i.e., expanded to size E+R-1 x F+S-1

•  Frequency domain matrices are same
dimensions as input, but complex.

•  FFT often reduces computation, but requires
much more memory space and bandwidth

31

Optimization opportunities

•  FFT of real matrix is symmetric allowing one
to save ½ the computes

•  Filters can be pre-computed and stored, but
convolutional filter in frequency domain is
much larger than in time domain

•  Can reuse frequency domain version of input
for creating different output channels to
avoid FFT re-computations

32

cuDNN: Speed up with Transformations

Source: Nvidia

