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CPUs Are Targeting Deep Learning 

Image Source: Intel, Data Source: Next Platform 

Knights Mill: next gen Xeon Phi “optimized for deep learning”  

•  7 TFLOPS FP32 

•  16GB MCDRAM– 400 GB/s 

•  245W TDP 

•  29 GFLOPS/W (FP32) 

•  14nm process 

Intel Knights Landing (2016) 

Intel announced the addition of new vector instructions for deep learning 
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016 
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GPUs Are Targeting Deep Learning 

•  10/20 TFLOPS FP32/FP16 

•  16GB HBM – 750 GB/s 

•  300W TDP 

•  67 GFLOPS/W (FP16) 

•  16nm process 

•  160GB/s NV Link  

Source: Nvidia 

Nvidia PASCAL GP100 (2016) 
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Systems for Deep Learning 

•  170 TFLOPS 

•  8× Tesla P100, Dual Xeon 

•  NVLink Hybrid Cube Mesh 

•  Optimized DL Software 

•  7 TB SSD Cache 

•  Dual 10GbE, Quad IB 100Gb 

•  3RU – 3200W 

Source: Nvidia 

Nvidia DGX-1 (2016) 
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Cloud Systems for Deep Learning 

•  Open Rack Compliant 

•  Powered by 8 Tesla M40 GPUs 

•  2x Faster Training for Faster Deployment 

•  2x Larger Networks for Higher Accuracy 
 

Source: Facebook 

Facebook’s Deep Learning Machine 
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SOCs for Deep Learning Inference 
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•  GPU: 1.5 TeraFLOPS FP16 

•  4GB LPDDR4 @ 25.6 GB/s 

•  15 W TDP  
(1W idle, <10W typical) 

•  100 GFLOPS/W (FP16) 

•  16nm process 

Source: Nvidia 

Nvidia Tegra - Parker 

Xavier: next gen Tegra to be an “AI supercomputer” 
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Mobile SOCs for Deep Learning 

•  GPU: 0.26 TFLOPS 

•  LPDDR4 @ 28.7 GB/s 

•  14nm process 

Exynos 8 Octa 8890 

Source: Wikipedia 

Samsung Exynos (ARM Mali) 
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FPGAs for Deep Learning 

•  10 TFLOPS FP32 
•  HBM2 integrated 
•  Up to 1 GHz 
•  14nm process 
•  80 GFLOPS/W 

Intel/Altera Stratix 10 

Xilinx Virtex UltraSCALE+ 
•  DSP: up to 21.2 TMACS 
•  DSP: up to 890 MHz 
•  Up to 500Mb On-Chip Memory 
•  16nm process 
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Kernel  
Computation 
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Fully-Connected (FC) Layer 

M 
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Filters Input fmaps 
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1 
Output fmaps 

M = 

•  Matrix–Vector Multiply:  
•  Multiply all inputs in all channels by a weight and sum 
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Fully-Connected (FC) Layer 
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•  Batching (N) turns operation into a Matrix-Matrix multiply 
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Fully-Connected (FC) Layer 

•  Implementation: Matrix Multiplication (GEMM) 
 

•  CPU: OpenBLAS, Intel MKL, etc 
•  GPU: cuBLAS, cuDNN, etc 

•  Optimized by tiling to storage hierarchy 
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Convolution (CONV) Layer 
•  Convert to matrix mult. using the Toeplitz Matrix 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
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Convolution: 

Matrix Mult: 
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Convolution (CONV) Layer 
•  Convert to matrix mult. using the Toeplitz Matrix 
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1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 

Data is repeated 



15 

Convolution (CONV) Layer 

•  Multiple Channels and Filters 
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Convolution (CONV) Layer 
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Computational  
Transforms 
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Computation Transformations 

•  Goal: Bitwise same result, but reduce 
number of operations 

•  Focuses mostly on compute 
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Gauss’s Multiplication Algorithm 

4 multiplications + 3 additions 

3 multiplications + 5 additions 
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Strassen 

P1 = a(f – h) 
P2 = (a + b)h 
P3 = (c + d)e 
P4 = d(g – e) 

P5 = (a + d)(e + h) 
P6 = (b - d)(g + h) 
P7 = (a – c)(e + f) 

8 multiplications + 4 additions 

7 multiplications + 18 additions 

7 multiplications + 13 additions (for constant B matrix – weights) 

[Cong et al., ICANN, 2014] 
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Strassen 

Comes at the price of reduced numerical stability 
and requires significantly more memory 

N 

Naïve 

Strassen 

Complexity 

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/  

•  Reduce the complexity of matrix multiplication 
from Θ(N3) to Θ(N2.807) by reducing multiplication 
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Winograd 1D – F(2,3) 

[Lavin et al., ArXiv 2015] 

•  Targeting convolutions instead of matrix multiply 
•  Notation: F(size of output, filter size) 

6 multiplications + 4 additions 

=[█𝑦0@𝑦1 ] 

4 multiplications + 12 additions + 2 shifts 
4 multiplications + 8 additions (for constant weights) 

input filter 
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Winograd 2D - F(2x2, 3x3) 

•  1D Winograd is nested to make 2D Winograd 

d00 d01 d02 d03 

d10 d11 d12 d13 

d20 d21 d22 d23 

d30 d31 d32 d33 

Winograd:  16 multiplications à 2.25 times reduction 

g00 g01 g02 

g10 g11 g12 

g20 g21 g22 

y00 y01 

y10 y11 

Original:  36 multiplications 

Filter Input Fmap Output Fmap 

* = 
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Winograd Halos 
•  Winograd works on a small region of output at a 

time, and therefore uses inputs repeatedly 

d00 d01 d02 d03 d04 d05 

d10 d11 d12 d13 d14 d15 

d20 d21 d22 d23 d24 d25 

d30 d31 d32 d33 d34 d35 

g00 g01 g02 

g10 g11 g12 

g20 g21 g22 

y00 y01 

y10 y11 

Filter Input Fmap Output Fmap 

y02 y03 

y12 y12 

Halo columns 
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Winograd Performance Varies 

Source: Nvidia  
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Winograd Summary 

•  Winograd is an optimized computation for 
convolutions 
 

•  It can significantly reduce multiplies 
–  For example, for 3x3 filter by 2.25X 

 

•  But, each filter size is a different computation. 
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Winograd as a Transform 

Transform inputs 

Dot-product 

Transform output 

[Lavin et al., ArXiv 2015] 

filter 
input 

GgGT can be precomputed 
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FFT Overview 

•  Convert filter and input to frequency domain 
to make convolution a simple multiply then 
convert back to time domain. 
 

•  Convert direct convolution O(No
2Nf

2) 
computation to O(No

2log2No) 

•  So note that computational benefit of FFT 
decreases with decreasing size of filter 

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014] 
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FFT Costs 

•  Input and Filter matrices are ‘0-completed’, 
–   i.e., expanded to size E+R-1 x F+S-1 

•  Frequency domain matrices are same 
dimensions as input, but complex.  

•  FFT often reduces computation, but requires 
much more memory space and bandwidth 
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Optimization opportunities 

•  FFT of real matrix is symmetric allowing one 
to save ½ the computes 

•  Filters can be pre-computed and stored, but 
convolutional filter in frequency domain is 
much larger than in time domain 

•  Can reuse frequency domain version of input 
for creating different output channels to 
avoid FFT re-computations 
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cuDNN: Speed up with Transformations 

Source: Nvidia  


