DNN Accelerator Architectures

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

* multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses

• Example: AlexNet [NIPS 2012] has **724M** MACs

→ 2896M DRAM accesses required

<u>Opportunities</u>: **1 data reuse**

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Filter Input Fmap

Fmap Reuse

CONV and FC layers

Reuse: Activations Filter weights

Reuse: Activations

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Fmap Reuse

CONV and FC layers

Filter Reuse

CONV and FC layers (batch size > 1)

Input Fmaps

Reuse: Activations Filter weights

Reuse: Activations

Reuse: Filter weights

Opportunities: 1 data reuse

Can reduce DRAM reads of filter/fmap by up to 500×**

** AlexNet CONV layers

Opportunities: 1 data reuse 2 local accumulation

000

Can reduce DRAM reads of filter/fmap by up to 500×

Partial sum accumulation does NOT have to access DRAM

Opportunities: 1 data reuse 2 local accumulation

- 12
- Can reduce DRAM reads of filter/fmap by up to 500×
- Partial sum accumulation does **NOT** have to access DRAM
- Example: DRAM access in AlexNet can be reduced from **2896M** to **61M** (best case)

Spatial Architecture for DNN

Low-Cost Local Data Access

* measured from a commercial 65nm process 14

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

Illii

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

specialized **processing dataflow** required!

Illiī

Dataflow Taxonomy

- Weight Stationary (WS)
- Output Stationary (OS)
- No Local Reuse (NLR)

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate psums spatially across the PE array.

WS Example: nn-X (NeuFlow)

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

OS Example: ShiDianNao

psums

No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Multicast activations, single-cast weights, and accumulate psums spatially across the PE array

NLR Example: UCLA

[Zhang et al., FPGA 2015]

Taxonomy: More Examples

• Weight Stationary (WS)

[Chakradhar, *ISCA* 2010] [nn-X (NeuFlow), *CVPRW* 2014] [Park, *ISSCC* 2015] [ISAAC, *ISCA* 2016] [PRIME, *ISCA* 2016]

Output Stationary (OS)

[Peemen, *ICCD* 2013] [ShiDianNao, *ISCA* 2015] [Gupta, *ICML* 2015] [Moons, *VLSI* 2016]

• No Local Reuse (NLR)

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Energy Efficiency Comparison

- Same total area 256 PEs ullet
- AlexNet CONV layers Batch size = 16 •

Energy Efficiency Comparison

- Same total area 256 PEs ullet
- AlexNet CONV layers • Batch size = 16 •

Energy-Efficient Dataflow: Row Stationary (RS)

- Maximize reuse and accumulation at RF
- Optimize for **overall** energy efficiency instead for *only* a certain data type

Row Stationary: Energy-efficient Dataflow

- Maximize row convolutional reuse in RF
 - Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF

2D Convolution in PE Array

2D Convolution in PE Array

2D Convolution in PE Array

2D Convolution in PE Array

Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

Fmap rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

Dimensions Beyond 2D Convolution

1 Multiple Fmaps **2** Multiple Filters **3** Multiple Channels

Filter Reuse in PE

1 Multiple Fmaps

2 Multiple Filters **3** Multiple Channels

Filter Reuse in PE

2 Multiple Filters **3** Multiple Channels

Filter 1 Fmap 1 Psum 1 Row 1 **=** Row 1 **Channel 1** Row 1 * C[≁]. R **C**[₹]. Filter 1 Fmap 2 Psum 2 ← R Row 1 Row 1 Row 1 **Channel 1** * = share the same filter row Н

1 Multiple Fmaps

Filter Reuse in PE

Processing in PE: concatenate fmap rows

Fmap Reuse in PE

Multiple Fmaps **2** Multiple Filters **3** Multiple Channels

Fmap Reuse in PE

Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

Fmap Reuse in PE

Processing in PE: interleave filter rows

Channel Accumulation in PE

Multiple Fmaps 🕗 Multiple Filters **3 Multiple Channels**

Channel Accumulation in PE

1 Multiple Fmaps **2** Multiple Filters **3** Multiple Channels

Channel Accumulation in PE

Processing in PE: interleave channels

DNN Processing – The Full Picture

to exploit other forms of reuse and local accumulation

Optimal Mapping in Row Stationary

[Chen et al., ISCA 2016]

Dataflow Simulation Results

Evaluate Reuse in Different Dataflows

Weight Stationary

Minimize movement of filter weights

Output Stationary

Minimize movement of partial sums

No Local Reuse

- No PE local storage. Maximize global buffer size.

Row Stationary

Evaluation Setup

- same total area
- 256 PEs
- AlexNet
- batch size = 16

Variants of Output Stationary

Dataflow Comparison: CONV Layers

Dataflow Comparison: CONV Layers

Dataflow Comparison: FC Layers

RS uses at least **1.3× lower** energy than other dataflows

Hardware Architecture for RS Dataflow

Eyeriss DNN Accelerator

Data Delivery with On-Chip Network

Link Clock Core Clock

DCNN Accelerator

How to accommodate different shapes with fixed PE array?

Logical to Physical Mappings

Physical PE Array

Physical PE Array

Logical to Physical Mappings

Data Delivery with On-Chip Network

Link Clock Core Clock

DCNN Accelerator

Compared to Broadcast, **Multicast** saves >80% of NoC energy

Chip Spec & Measurement Results

Technology	TSMC 65nm LP 1P9M
On-Chip Buffer	108 KB
# of PEs	168
Scratch Pad / PE	0.5 KB
Core Frequency	100 – 250 MHz
Peak Performance	33.6 – 84.0 GOPS
Word Bit-width	16-bit Fixed-Point
	Filter Width: 1 – 32
	Filter Height: 1 – 12
Natively Supported	Num. Filters: 1 – 1024
DNN Shapes	Num. Channels: 1 – 1024
	Horz. Stride: 1–12
	Vert. Stride: 1, 2, 4

To support 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

Summary of DNN Dataflows

Weight Stationary

- Minimize movement of filter weights
- Popular with processing-in-memory architectures

Output Stationary

- Minimize movement of partial sums
- Different variants optimized for CONV or FC layers

No Local Reuse

- No PE local storage \rightarrow maximize global buffer size

Row Stationary

- Adapt to the NN shape and hardware constraints

Optimized for overall system energy efficiency

Fused Layer

Dataflow across multiple layers

[Alwani et al., MICRO 2016]

Metrics for DNN Hardware

- Measure energy and DRAM access relative to number of non-zero MACs and bit-width of MACs
 - Account for impact of sparsity in weights and activations
 - Normalize DRAM access based on operand size
- Energy Efficiency of Design
 - pJ/(non-zero weight & activation)
- External Memory Bandwidth
 - DRAM operand access/(non-zero weight & activation)
- Area Efficiency
 - Total chip mm²/multi (also include process technology)
 - Accounts for on-chip memory

Website to Summarize Results

- <u>http://eyeriss.mit.edu/benchmarking.html</u>
- Send results or feedback to: <u>eyeriss@mit.edu</u>

Metric	Units	Input
Name of CNN	Text	AlexNet
# of Images Tested	#	100
Bits per operand	#	16
Batch Size	#	4
# of Non Zero MACs	#	409M
Runtime	ms	115.3
Power	mW	278
Energy/non-zero	pJ/MAC	21.7
MACs		
DRAM access/non- zero MACs	operands /MAC	0.005
	MetricName of CNN# of Images TestedBits per operandBatch Size# of Non Zero MACsRuntimePowerEnergy/non-zero MACsDRAM access/non- zero MACs	MetricUnitsName of CNNText# of Images Tested#Bits per operand#Batch Size## of Non Zero MACs#RuntimemsPowermWEnergy/non-zero MACspJ/MACDRAM access/non- zero MACsoperands

Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

Non-Volatile Stacked DRAM **Resistive Memories** Global dataline V₁ Bank Row Bank Bank **TSVs** Col dec Col de $I_1 = V_1 \times G_1$ Inter-bank data bus **Global SA** V_{2} G_2 To local Global DRAM Die vault Eyeriss Logic Die Buffe To remote design $I_2 = V_2 \times G_2$ vault Vault (Channel) Engine [Gao et al., Tetris, ASPLOS 2017] $| = |_1 + |_2$ [Kim et al., NeuroCube, ISCA 2016] $= V_1 \times G_1 + V_2 \times G_2$

eDRAM [Chen et al., DaDianNao, MICRO 2014]

14112

[Shafiee et al., ISCA 2016] [Chi et al., PRIME, ISCA 2016]

WS

dataflow