DNN Model and Hardware Co-Design

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang

Approaches

- <u>Reduce size</u> of operands for storage/compute
 - Floating point -> Fixed point
 - Bit-width reduction
 - Non-linear quantization
- Reduce number of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

Cost of Operations

[Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC 2014]

11117

Ø,

Number Representation

Image Source: B. Dally

Floating Point \rightarrow Fixed Point

Floating Point

Fixed Point

sign mantissa (7-bits) 8-bit fixed (4-bits) (3-bits) s = 0 m = 102

N-bit Precision

Dynamic Fixed Point

Floating Point

Fixed Point

Allow **f** to vary based on data type and layer

Impact on Accuracy

Avoiding Dynamic Fixed Point

'Centered' dynamic ranges might reduce need for dynamic fixed point

Nvidia PASCAL

"New half-precision, 16-bit floating point instructions deliver over 21 TeraFLOPS for unprecedented training performance. With 47 TOPS (tera-operations per second) of performance, new 8-bit integer instructions in Pascal allow AI algorithms to deliver real-time responsiveness for deep learning inference."

- Nvidia.com (April 2016)

Google's Tensor Processing Unit (TPU)

"With its TPU Google has seemingly focused on delivering the data really quickly by <u>cutting</u> <u>down on precision</u>. Specifically, it doesn't rely <u>on floating point</u> <u>precision like a GPU</u>

. . . .

Instead the chip uses integer math...TPU used **<u>8-bit integer</u>**."

- Next Platform (May 19, 2016)

Precision Varies from Layer to Layer

[Judd et al., ArXiv 2016]

[Moons et al., WACV 2016]

12

Bitwidth Scaling (Speed)

Bit-Serial Processing: Reduce Bit-width → Skip Cycles Speed up of 2.24x vs. 16-bit fixed

[Judd et al., Stripes, CAL 2016]

Bitwidth Scaling (Power)

[Moons et al., VLSI 2016]

Binary Nets

Binary Connect (BC)

- Weights {-1,1}, Activations 32-bit float
- MAC \rightarrow addition/subtraction
- Accuracy loss: 19% on AlexNet
 [Courbariaux, NIPS 2015]

Binarized Neural Networks (BNN)

- Weights {-1,1}, Activations {-1,1}
- MAC \rightarrow XNOR
- Accuracy loss: 29.8% on AlexNet

[Courbariaux, arXiv 2016]

Scale the Weights and Activations

• Binary Weight Nets (BWN)

- Weights $\{-\alpha, \alpha\} \rightarrow$ except first and last layers are 32-bit float
- Activations: 32-bit float
- $-\alpha$ determined by the I₁-norm of all weights in a layer
- Accuracy loss: 0.8% on AlexNet

XNOR-Net

- Weights $\{-\alpha, \alpha\}$

- Hardware needs to support both activation precisions
- − Activations $\{-\beta_i, \beta_i\}$ → except first and last layers are 32-bit float
- β_i determined by the l₁-norm of all activations across channels for given position i of the input feature map
- Accuracy loss: 11% on AlexNet

Scale factors (α , β_i) can change per layer or position in filter

XNOR-Net

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

MiT 💿

Ternary Nets

• Allow for weights to be zero

- Increase sparsity, but also increase number of bits (2-bits)
- Ternary Weight Nets (TWN) [Li et al., arXiv 2016]
 - Weights {-w, 0, w} \rightarrow except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 3.7% on AlexNet
- Trained Ternary Quantization (TTQ) [Zhu et al., ICLR 2017]
 - Weights $\{-w_1, 0, w_2\} \rightarrow$ except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 0.6% on AlexNet

Non-Linear Quantization

- Precision refers to the number of levels
 - Number of bits = \log_2 (number of levels)
- Quantization: mapping data to a smaller set of levels
 - Linear, e.g., fixed-point
 - Non-linear
 - Computed
 - Table lookup

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Computed Non-linear Quantization

Log Domain Quantization

Product = X * W

Product = X << W

[Lee et al., LogNet, ICASSP 2017]

Log Domain Computation

max, bitshifts, adds/subs

[Miyashita et al., arXiv 2016]

Log Domain Quantization

- Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
- Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016], [Lee et al., LogNet, ICASSP 2017]

Reduce Precision Overview

 Learned mapping of data to quantization levels (e.g., k-means)

- Additional Properties
 - Fixed or Variable (across data types, layers, channels, etc.)

Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering to reduce number of unique weights *per layer* (weight sharing)

Example: AlexNet (no accuracy loss)256 unique weights for CONV layer16 unique weights for FC layer

Consequences: Narrow weight memory and second access from (small) table

Summary of Reduce Precision

Category	Method	Weights (# of bits)	Activations (# of bits)	Accuracy Loss vs. 32-bit float (%)
Dynamic Fixed	w/o fine-tuning	8	10	0.4
Point	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2*	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Linear	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0

* first and last layers are 32-bit float

Full list @ [Sze et al., arXiv, 2017] ²⁵

Reduce Number of Ops and Weights

- Exploit Activation Statistics
- Network Pruning
- Compact Network Architectures
- Knowledge Distillation

Sparsity in Fmaps

Many zeros in output fmaps after ReLU

I/O Compression in Eyeriss

DCNN Accelerator

Compression Reduces DRAM BW

Simple RLC within 5% - 10% of theoretical entropy limit

[Chen et al., ISSCC 2016]

Data Gating / Zero Skipping in Eyeriss

[Chen et al., ISSCC 2016]

11117

Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

Pruning Activations

Remove small activation values

[Albericio et al., ISCA 2016]

Plii

[Reagen et al., ISCA 2016]

Pruning – Make Weights Sparse

- Optimal Brain Damage
- 1. Choose a reasonable network architecture
- 2. Train network until reasonable solution obtained
- 3. Compute the second derivative for each weight
- 4. Compute saliencies (i.e. impact on training error) for each weight
- 5. Sort weights by saliency and delete low-saliency weights
- 6. Iterate to step 2

[Lecun et al., NIPS 1989]

Pruning – Make Weights Sparse

Prune based on *magnitude* of weights

Example: AlexNet **Weight Reduction:** CONV layers 2.7x, FC layers 9.9x (Most reduction on fully connected layers) **Overall:** 9x weight reduction, 3x MAC reduction

[Han et al., NIPS 2015]

Speed up of Weight Pruning on CPU/GPU

On Fully Connected Layers

Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

1467

[Han et al., NIPS 2015]

Key Metrics for Embedded DNN

- Accuracy → Measured on Dataset
- Speed \rightarrow Number of MACs
- Storage Footprint → Number of Weights
- Energy \rightarrow ?

Energy-Aware Pruning

- # of Weights alone is not a good metric for energy
 - Example (AlexNet):
 - # of Weights (FC Layer) > # of Weights (CONV layer)
 - Energy (FC Layer) < Energy (CONV layer)
- Use energy evaluation method to estimate DNN energy
 - Account for data movement

Energy-Evaluation Methodology

1467

Key Observations

- Number of weights *alone* is not a good metric for energy
- All data types should be considered

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

[Yang et al., CVPR 2017]

Magnitude-based Weight Pruning

Reduce number of weights by removing small magnitude weights

Energy-Aware Pruning

3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

[Yang et al., CVPR 2017]

14112

Compression of Weights & Activations

- Compress weights and activations between DRAM and accelerator
- Variable Length / Huffman Coding

Example:

Value: $16'b0 \rightarrow$ Compressed Code: $\{1'b0\}$

Value: 16'bx \rightarrow Compressed Code: {1'b1, 16'bx}

Tested on AlexNet → 2× overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffIO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)
General CNN	16 (0%) / 16 (0%)	1.0x		1.1	_	288	0.3
AlexNet 11	7 (21%) / 4 (29%)	1.17x / 1.3x	1 / 0.77	0.85	105	85	0.96
AlexNet 12	7 (19%) / 7 (89%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11%) / 9 (82%)	1.05x / 4.1x	6.5 / 2.8	0.92	150	77	0.7
AlexNet 14	9 (04%) / 8 (72%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04%) / 8 (72%)	1.00x / 2.9x	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	_	—	19.8 / 10	_	_	76	0.94
LeNet-5 11	3 (35%) / 1 (87%)	1.40x / 5.2x	0.003 / 0.001	0.7	0.3	25	1.07
LeNet-5 12	4 (26%) / 6 (55%)	1.25x / 1.9x	0.050 / 0.042	0.8	1.6	35	1.75
Total / avg.	_	_	0.053 / 0.043	-	-	33	1.6

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Sparse Matrix-Vector DSP

Use CSC rather than CSR for SpMxV

Reduce memory bandwidth by 2x (when not **M** >> **N**) For DNN, **M** = # of filters, **N** = # of weights per filter

[Dorrance et al., FPGA 2014]

14112

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format
 - Non-zero weights, Run-length of zeros
 - Start location of each column since variable length
- Read relative column when input is non-zero

Illii

Compact Network Architectures

- Break large convolutional layers into a series of smaller convolutional layers
 - Fewer weights, but same effective receptive field
- Before Training: Network Architecture Design

After Training: Decompose Trained Filters

Build Network with series of Small Filters

GoogleNet/Inception v3

Apply sequentially

VGG-16

Apply sequentially

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Bottleneck in Popular DNN models

SqueezeNet

|||iT 📀

[F.N. landola et al., ArXiv, 2016]

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

[Yang et al., CVPR 2017]

Decompose Trained Filters

After training, perform low-rank approximation by applying tensor decomposition to weight kernel; then fine-tune weights for accuracy

(c) CP-decomposition

Decompose Trained Filters

Visualization of Filters

- Speed up by 1.6 2.7x on CPU/GPU for CONV1, CONV2 layers
- Reduce size by 5 13x for FC layer
- < 1% drop in accuracy

[Denton et al., NIPS 2014]

Decompose Trained Filters on Phone

					12.45	TTAN
Model	Top-5	Weights	FLOPs	S	6	Titan X
AlexNet	80.03	61M	725M	117ms	245mJ	0.54ms
AlexNet*	78.33	11 M	272M	43ms	72mJ	0.30ms
(imp.)	(-1.70)	$(\times 5.46)$	$(\times 2.67)$	$(\times 2.72)$	$(\times 3.41)$	$(\times 1.81)$
VGG-S	84.60	103M	2640M	357ms	825mJ	1.86ms
VGG-S*	84.05	14M	549M	97ms	193mJ	0.92ms
(imp.)	(-0.55)	(×7.40)	(×4.80)	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9M	1566M	273ms	473mJ	1.83ms
GoogLeNet*	88.66	4.7M	760M	192ms	296mJ	1.48ms
(imp.)	(-0.24)	$(\times 1.28)$	$(\times 2.06)$	(×1.42)	$(\times 1.60)$	$(\times 1.23)$
VGG-16	89.90	138M	15484M	1926ms	4757mJ	10.67ms
VGG-16*	89.40	127M	3139M	576ms	1346mJ	4.58ms
(imp.)	(-0.50)	(×1.09)	(×4.93)	$(\times 3.34)$	$(\times 3.53)$	$(\times 2.33)$

[Kim et al., ICLR 2016]

Knowledge Distillation

[Bucilu et al., KDD 2006], [Hinton et al., arXiv 2015]

Metrics to Compare DNN Models

- How can we compare different models?
- Accuracy
- Network Architecture
 - # Layers, filter size, # of filters, # of channels
- # of Weights (storage capacity)
 - Number of non-zero (NZ) weights
- # of MACs (operations)

– Number of non-zero (NZ) MACS

Metrics of DNN Models

Metrics	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Accuracy (top-5 error)*	19.8	8.80	10.7	7.02
Input	227x227	224x224	224x224	224x224
# of CONV Layers	5	16	21	49
Filter Sizes	3, 5, 11	3	1, 3, 5, 7	1, 3, 7
# of Channels	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1, 4	1	1, 2	1, 2
# of Weights	2.3M	14.7M	6.0M	23.5M
# of MACs	666M	15.3G	1.43G	3.86G
# of FC layers	3	3	1	1
# of Weights	58.6M	124M	1M	2M
# of MACs	58.6M	124M	1M	2M
Total Weights	61M	138M	7M	25.5M
Total MACs	724M	15.5G	1.43G	3.9G

*Single crop results: <u>https://github.com/jcjohnson/cnn-benchmarks</u>

Metrics of DNN Models

Metrics	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Accuracy (top-5 error)*	19.8	8.80	10.7	7.02
# of CONV Layers	5	16	21	49
# of Weights	2.3M	14.7M	6.0M	23.5M
# of MACs	666M	15.3G	1.43G	3.86G
# of NZ MACs**	394M	7.3G	806M	1.5G
# of FC layers	3	3	1	1
# of Weights	58.6M	124M	1M	2M
# of MACs	58.6M	124M	1M	2M
# of NZ MACs**	14.4M	17.7M	639k	1.8M
Total Weights	61M	138M	7M	25.5M
Total MACs	724M	15.5G	1.43G	3.9G
# of NZ MACs**	409M	7.3G	806M	1.5G

*Single crop results: <u>https://github.com/jcjohnson/cnn-benchmarks</u>

IIIIT I with the second of t

Metrics of DNN Algorithms

Metrics	AlexNet	AlexNet (sparse)
Accuracy (top-5 error)	19.8	19.8
# of Conv Layers	5	5
# of Weights	2.3M	2.3M
# of MACs	666M	666M
# of NZ weights	2.3M	863k
# of NZ MACs	394M	207M
# of FC layers	3	3
# of Weights	58.6M	58.6M
# of MACs	58.6M	58.6M
# of NZ weights	58.6M	5.9M
# of NZ MACs	14.4M	2.1M
Total Weights	61M	61M
Total MACs	724M	724M
# of NZ weights	61M	6.8M
# of NZ MACs	409M	209M

of NZ MACs based on 50k ImageNet validation images

14111

Tutorial Summary

- DNNs are a critical component in the Al revolution, delivering record breaking accuracy on many important Al tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to evaluate with the appropriate workload in term of both input and model, and recognize that they are evolving rapidly.
- It's important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, speed, energy, and cost

Resources

Eyeriss Project: <u>http://eyeriss.mit.edu</u>

- Tutorial Slides
- Benchmarking
- Energy modeling
- Mailing List for updates Follow @eems_mit
 - <u>http://mailman.mit.edu/mailman/listinfo/eems-news</u>
- Paper based on today's tutorial:
 - V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing* of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

