Hardware Architectures for Deep Neural Networks

CICS/MTL Tutorial

March 27, 2017

Website: http://eyeriss.mit.edu/tutorial.html

Speakers and Contributors

Joel Emer
Senior Distinguished
Research Scientist
NVIDIA
Professor
MIT

Vivienne Sze

Professor

MIT

Yu-Hsin Chen
PhD Candidate
MIT

Tien-Ju Yang

PhD Candidate

MIT

Outline

- Overview of Deep Neural Networks
- DNN Development Resources
- Survey of DNN Hardware
- DNN Accelerators
- DNN Model and Hardware Co-Design

Participant Takeaways

- Understand the key design considerations for DNNs
- Be able to evaluate different implementations of DNN with benchmarks and comparison metrics
- Understand the tradeoffs between various architectures and platforms
- Assess the utility of various optimization approaches
- Understand recent implementation trends and opportunities

Resources

- Eyeriss Project: http://eyeriss.mit.edu
 - Tutorial Slides
 - Benchmarking
 - Energy modeling
 - Mailing List for updates

- http://mailman.mit.edu/mailman/listinfo/eems-news
- Paper based on today's tutorial:
 - V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

Background of Deep Neural Networks

Artificial Intelligence

Artificial Intelligence

"The science and engineering of creating intelligent machines"

- John McCarthy, 1956

Al and Machine Learning

Artificial Intelligence

Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Brain-Inspired Machine Learning

Machine Learning

Brain-Inspired

An algorithm that takes its basic functionality from our understanding of how the brain operates

How Does the Brain Work?

- The basic computational unit of the brain is a neuron
 - → 86B neurons in the brain
- Neurons are connected with nearly 10¹⁴ 10¹⁵ synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

Spiking-based Machine Learning

Spiking Architecture

- Brain-inspired
- Integrate and fire
- Example: IBM TrueNorth

Machine Learning with Neural Networks

Neural Networks: Weighted Sum

Many Weighted Sums

Deep Learning

What is Deep Learning?

Why is Deep Learning Hot Now?

Big Data

Availability

GPU Acceleration

New ML Techniques

facebook

350M images uploaded per day

Walmart [']¦<

2.5 Petabytes of customer data hourly

300 hours of video uploaded every minute

ImageNet Challenge

Image Classification Task:

1.2M training images • 1000 object categories

Object Detection Task:

456k training images • 200 object categories

ImageNet: Image Classification Task

Hand-crafted featurebased designs Deep CNN-based designs

GPU Usage for ImageNet Challenge

Established Applications

Image

- Classification: image to object class
- Recognition: same as classification (except for faces)
- Detection: assigning bounding boxes to objects
- Segmentation: assigning object class to every pixel

Speech & Language

- Speech Recognition: audio to text
- Translation
- Natural Language Processing: text to meaning
- Audio Generation: text to audio

Games

Deep Learning on Games

Google DeepMind AlphaGo

Emerging Applications

Medical (Cancer Detection, Pre-Natal)

Finance (Trading, Energy Forecasting, Risk)

Infrastructure (Structure Safety and Traffic)

Weather Forecasting and Event Detection

Deep Learning for Self-driving Cars

Opportunities

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

- Greg Diamos, Senior Researcher, SVAIL, Baidu

Overview of Deep Neural Networks

DNN Timeline

- 1940s: Neural networks were proposed
- 1960s: Deep neural networks were proposed
- 1989: Neural network for recognizing digits (LeNet)
- 1990s: Hardware for shallow neural nets
 - Example: Intel ETANN (1992)
- 2011: Breakthrough DNN-based speech recognition
 - Microsoft real-time speech translation
- 2012: DNNs for vision supplanting traditional ML
 - AlexNet for image classification
- 2014+: Rise of DNN accelerator research
 - Examples: Neuflow, DianNao, etc.

Publications at Architecture Conferences

MICRO, ISCA, HPCA, ASPLOS

of Publications over the Years

So Many Neural Networks!

Each synapse has a weight for neuron activation

Weight Sharing: multiple synapses use the same weight value

DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons

hidden layer

DNN Terminology 101

Popular Types of DNNs

- Fully-Connected NN
 - feed forward, a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
 - feed forward, sparsely-connected w/ weight sharing
- Recurrent NN (RNN)
 - feedback
- Long Short-Term Memory (LSTM)
 - feedback + storage

Inference vs. Training

- Training: Determine weights
 - Supervised:
 - Training set has inputs and outputs, i.e., labeled
 - Unsupervised:
 - Training set is unlabeled
 - Semi-supervised:
 - Training set is partially labeled
 - Reinforcement:
 - Output assessed via rewards and punishments
- Inference: Apply weights to determine output

Modern Deep CNN: 5 – 1000 Layers

Low-Level Features > ... > CONV Layer > Features > Classes

1 – 3 Layers

Convolutions account for more than 90% of overall computation, dominating runtime and energy consumption

a plane of input activations a.k.a. input feature map (fmap)

Sliding Window Processing

Many Input Channels (C)

CNN Decoder Ring

- N Number of input fmaps/output fmaps (batch size)
- C Number of 2-D input fmaps /filters (channels)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of 2-D filter (weights)
- S Width of 2-D filter (weights)
- M Number of 2-D output fmaps (channels)
- E Height of output fmap (activations)
- F Width of output fmap (activations)

CONV Layer Tensor Computation

$$0 \le n < N, 0 \le m < M, 0 \le y < E, 0 \le x < F,$$

$$E = (H - R + U)/U, F = (W - S + U)/U.$$

Shape Parameter	Description
N	fmap batch size
M	# of filters / # of output fmap channels
C	# of input fmap/filter channels
H/W	input fmap height/width
R/S	filter height/width
E/F	output fmap height/width
U	convolution stride

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```
for (n=0; n<N; n++) {
      for (m=0; m<M; m++) {
          (m=0; m<M; m++) {
for (x=0; x<F; x++) {
                                               for each output fmap value
               for (y=0; y<E; y++) {
                   O[n][m][x][y] = B[m];
                   for (i=0; i<R; i++) {
 convolve
                       for (j=0; j<S; j++) {
a window
                           for (k=0; k<C; k++) {
                               O[n][m][x][y] += I[n][k][Ux+i][Uy+j] \times W[m][k][i][j];
and apply
activation
                   O[n][m][x][y] = Activation(O[n][m][x][y]);
```


Traditional Activation Functions

Sigmoid

$$y=1/(1+e^{-x})$$

Hyperbolic Tangent

$$y=(e^{x}-e^{-x})/(e^{x}+e^{-x})$$

Modern Activation Functions

Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 (E = F = 1)
- Filters as large as input fmaps (R = H, S = W)
- Implementation: Matrix Multiplication

FC Layer – from CONV Layer POV

Pooling (POOL) Layer

- Reduce resolution of each channel independently

Increases translation-invariance and noise-resilience

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:

```
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
   for (x=0; x<F; x++) {
     for (y=0; y<E; y++) {</pre>
                                               for each pooled value
                  max = -Inf;
                   for (i=0; i<R; i++) {
                       for (j=0; j<S; j++) {
                            if (I[n][m][Ux+i][Uy+j] > max) {
                                                                          find the max
                                 max = I[n][m][Ux+i][Uy+j];
                                                                          with in a window
                  O[n][m][x][y] = max;
```


Normalization (NORM) Layer

Batch Normalization (BN)

- Normalize activations towards mean=0 and std.
 dev.=1 based on the statistics of the training dataset
- put in between CONV/FC and Activation function

Believed to be key to getting high accuracy and faster training on very deep neural networks.

BN Layer Implementation

 The normalized value is further scaled and shifted, the parameters of which are learned from training

Normalization (NORM) Layer

- Local Response Normalization (LRN)
 - Tries to mimic the inhibition scheme in the brain

Now deprecated!

Relevant Components for Tutorial

- Typical operations that we will discuss:
 - Convolution (CONV)
 - Fully-Connected (FC)
 - Max Pooling
 - ReLU

Survey of DNN Development Resources

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Popular DNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

ImageNet: Large Scale Visual Recognition Challenge (ILSVRC)

LeNet-5

CONV Layers: 2

Fully Connected Layers: 2

Weights: 60k MACs: 341k

Sigmoid used for non-linearity

Digit Classification!

AlexNet

CONV Layers: 5

Fully Connected Layers: 3

Weights: 61M

MACs: 724M

ReLU used for non-linearity

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

[Krizhevsky et al., NIPS, 2012]

Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

Layer	Filter Size (RxS)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

34k Params
105M MACs

Layer 2

307k Params
224M MACs

Layer 3

885k Params
150M MACs

VGG-16

CONV Layers: 13

Fully Connected Layers: 3

Weights: 138M MACs: 15.5G

Also, 19 layer version

Reduce # of weights

stack 2 3x3 conv

for a 5x5 receptive field

ffigure credit A. Karpathy]

GoogLeNet (v1)

CONV Layers: 21 (depth), 57 (total)

Fully Connected Layers: 1

Weights: 7.0M MACs: 1.43G

Also, v2, v3 and v4 ILSVRC14 Winner

parallel filters of different size has the effect of processing image at different scales

GoogLeNet (v1)

CONV Layers: 21 (depth), 57 (total)

Fully Connected Layers: 1

Weights: 7.0M MACs: 1.43G

Also, v2, v3 and v4 ILSVRC14 Winner

ResNet-50

CONV Layers: 49

Also, 34,**152** and 1202 layer versions

Fully Connected Layers: 1

ILSVRC15 Winner

Weights: 25.5M

MACs: 3.9G

Short Cut Weight layer

F(x) weight layer

weight layer H(x) = F(x) + xrelu

relu

relu

relu

Helps address the vanishing gradient challenge for training very deep networks

Revolution of Depth

ImageNet Classification top-5 error (%)

Image Source: http://icml.cc/2016/tutorials/icml2016 tutorial deep residual networks kaiminghe.pdf

Summary of Popular DNNs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G

Summary of Popular DNNs

AlexNet

- First CNN Winner of ILSVRC
- Uses LRN (deprecated after this)
- VGG-16
 - Goes Deeper (16+ layers)
 - Uses only 3x3 filters (stack for larger filters)
- GoogLeNet (v1)
 - Reduces weights with Inception and only one FC layer
 - Inception: 1x1 and DAG (parallel connections)
 - Batch Normalization
- ResNet
 - Goes Deeper (24+ layers)
 - Shortcut connections

Frameworks

Caffe

Berkeley / BVLC (C, C++, Python, MATLAB)

Google (C++, Python)

theano

U. Montreal (Python)

Facebook / NYU (C, C++, Lua)

Also, CNTK, MXNet, etc.

Example: Layers in Caffe

```
Convolution Layer
layer {
  name: "conv1"
 type: "Convolution"
 bottom: "data"
  top: "conv1"
  convolution param {
    num output: 20
    kernel size: 5
    stride: 1
. . .
```

```
Non-Linearity
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
```

```
Pooling Layer
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2 ...
```


Benefits of Frameworks

- Rapid development
- Sharing models
- Workload profiling
- Network hardware co-design

Image Classification Datasets

- Image Classification/Recognition
 - Given an entire image → Select 1 of N classes
 - No localization (detection)

Image Source: Stanford cs231n

MNIST

Digit Classification

28x28 pixels (B&W) 10 Classes 60,000 Training 10,000 Testing

LeNet in 1998 (0.95% error)

ICML 2013 (0.21% error)

Object Classification

~256x256 pixels (color)

1000 Classes

1.3M Training

100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/

IM & GENET

Fine grained Classes (120 breeds)

Image Source: http://karpathy.github.io/

Image Source: Krizhevsky et al., NIPS 2012

Top-5 Error

Winner 2012 (16.42% error)

Winner 2016 (2.99% error)

Image Classification Summary

	MNIST	IMAGENET
Year	1998	2012
Resolution	28x28	256x256
Classes	10	1000
Training	60k	1.3M
Testing	10k	100k
Accuracy	0.21% error (ICML 2013)	2.99% top-5 error (2016 winner)

Next Tasks: Localization and Detection

Image classification

Ground truth

Steel drum Folding chair Loudspeaker

Accuracy: 1

Scale T-shirt Steel drum Drumstick Mud turtle

Accuracy: 1

Scale T-shirt Giant panda Drumstick Mud turtle

Accuracy: 0

Single-object localization

Ground truth

Accuracy: 1

Accuracy: 0

Accuracy: 0

Object detection

AP: 1.0 1.0 1.0 1.0

AP: 0.0 0.5 1.0 0.3

AP: 1.0 0.7 0.5 0.9

Others Popular Datasets

Pascal VOC

- 11k images
- Object Detection
- 20 classes

MS COCO

- 300k images
- Detection, Segmentation
- Recognition in context

Recently Introduced Datasets

- Google Open Images (~9M images)
 - https://github.com/openimages/dataset
- Youtube-8M (8M videos)
 - https://research.google.com/youtube8m/
- AudioSet (2M sound clips)
 - https://research.google.com/audioset/index.html

Summary

- Development resources presented in this section enable us to evaluate hardware using the appropriate DNN model and dataset
 - Difficult tasks typically require larger models
 - Different datasets for different tasks
 - Number of datasets growing at a rapid pace

Survey of DNN Hardware

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

CPUs Are Targeting Deep Learning

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM— 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

GPUs Are Targeting Deep Learning

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Source: Nvidia

Systems for Deep Learning

Nvidia DGX-1 (2016)

- 170 TFLOPS
- 8× Tesla P100, Dual Xeon
- NVLink Hybrid Cube Mesh
- Optimized DL Software
- 7 TB SSD Cache
- Dual 10GbE, Quad IB 100Gb
- 3RU 3200W

Source: Nvidia

Cloud Systems for Deep Learning

Facebook's Deep Learning Machine

- Open Rack Compliant
- Powered by 8 Tesla M40 GPUs
- 2x Faster Training for Faster Deployment
- 2x Larger Networks for Higher Accuracy

SOCs for Deep Learning Inference

Nvidia Tegra - Parker

- GPU: 1.5 TeraFLOPS FP16
- 4GB LPDDR4 @ 25.6 GB/s
- 15 W TDP
 (1W idle, <10W typical)</p>
- 100 GFLOPS/W (FP16)
- 16nm process

Xavier: next gen Tegra to be an "Al supercomputer"

Source: Nvidia

Mobile SOCs for Deep Learning

Samsung Exynos (ARM Mali)

Exynos 8 Octa 8890

- GPU: 0.26 TFLOPS
- LPDDR4 @ 28.7 GB/s
- 14nm process

FPGAs for Deep Learning

Intel/Altera Stratix 10

- 10 TFLOPS FP32
- HBM2 integrated
- Up to 1 GHz
- 14nm process
- 80 GFLOPS/W

Xilinx Virtex UltraSCALE+

- DSP: up to 21.2 TMACS
- DSP: up to 890 MHz
- Up to 500Mb On-Chip Memory
- 16nm process

Kernel Computation

Fully-Connected (FC) Layer

- Matrix–Vector Multiply:
 - Multiply all inputs in all channels by a weight and sum

Fully-Connected (FC) Layer

Batching (N) turns operation into a Matrix-Matrix multiply

Fully-Connected (FC) Layer

- Implementation: Matrix Multiplication (GEMM)
 - CPU: OpenBLAS, Intel MKL, etc
 - GPU: cuBLAS, cuDNN, etc

Optimized by tiling to storage hierarchy

Convert to matrix mult. using the Toeplitz Matrix

Convert to matrix mult. using the Toeplitz Matrix

Data is repeated

Multiple Channels and Filters

Multiple Channels and Filters

Computational Transforms

Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute

Gauss's Multiplication Algorithm

$$(a+bi)(c+di)=(ac-bd)+(bc+ad)i.$$
4 multiplications + 3 additions

$$k_1 = c \cdot (a + b)$$

$$k_2 = a \cdot (d - c)$$

$$k_3 = b \cdot (c + d)$$

Real part =
$$k_1 - k_3$$

Imaginary part = $k_1 + k_2$.

3 multiplications + 5 additions

Strassen

8 multiplications + 4 additions

$$\begin{array}{lll} P1 = a(f-h) & P5 = (a+d)(e+h) \\ P2 = (a+b)h & P6 = (b-d)(g+h) \\ P3 = (c+d)e & P7 = (a-c)(e+f) \end{array} \quad AB = \begin{bmatrix} & & & & & & & & & & & \\ & P5 + P4 - P2 + P6 & & & & & \\ & P3 + P4 & & P1 + P5 - P3 - P7 \end{bmatrix}$$

7 multiplications + 18 additions

7 multiplications + 13 additions (for constant B matrix – weights)

Strassen

 Reduce the complexity of matrix multiplication from Θ(N³) to Θ(N².807) by reducing multiplication

Comes at the price of reduced numerical stability and requires significantly more memory

Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$F(2,3) = egin{bmatrix} d_0 & d_1 & d_2 \ d_1 & d_2 & d_3 \end{bmatrix} egin{bmatrix} g_0 \ g_1 \ g_2 \end{bmatrix}$$

6 multiplications + 4 additions

$$m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2) rac{g_0 + g_1 + g_2}{2} \ m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1) rac{g_0 - g_1 + g_2}{2}$$

4 multiplications + 12 additions + 2 shifts

4 multiplications + 8 additions (for constant weights)

Winograd 2D - F(2x2, 3x3)

1D Winograd is nested to make 2D Winograd

Filter

 $\begin{array}{c|cccc} g_{00} & g_{01} & g_{02} \\ g_{10} & g_{11} & g_{12} \\ g_{20} & g_{21} & g_{22} \\ \end{array}$

Input Fmap

d ₀₀	d ₀₁	d ₀₂	d ₀₃
d ₁₀	d ₁₁	d ₁₂	d ₁₃
d ₂₀	d ₂₁	d ₂₂	d ₂₃
d ₃₀	d ₃₁	d ₃₂	d ₃₃

Output Fmap

y ₀₀	y ₀₁	
y ₁₀	y ₁₁	

Original: 36 multiplications

*

Winograd: 16 multiplications → 2.25 times reduction

Winograd Halos

 Winograd works on a small region of output at a time, and therefore uses inputs repeatedly

Filter

g₀₀ g₀₁ g₀₂
g₁₀ g₁₁ g₁₂
g₂₀ g₂₁ g₂₂

Output Fmap

y ₀₀	y ₀₁	y ₀₂	y ₀₃
y ₁₀	y ₁₁	y ₁₂	y ₁₂

Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Winograd speedup over GEMM-based convolution (VGG-E layers, N=1)

Meta-parameters (data layouts, texture memory) afford higher performance

Using texture memory for convolutions: 13% inference speedup (GoogLeNet, batch size 1)

Winograd Summary

Winograd is an optimized computation for convolutions

- It can significantly reduce multiplies
 - For example, for 3x3 filter by 2.25X
- But, each filter size is a different computation.

Winograd as a Transform

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$filter \quad g = \begin{bmatrix} g_{0} & g_{1} & g_{2} \end{bmatrix}^{T}$$

$$input \quad d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{3} \end{bmatrix}^{T}$$

GgG^T can be precomputed

FFT Flow

FFT Overview

 Convert filter and input to frequency domain to make convolution a simple multiply then convert back to time domain.

 Convert direct convolution O(N_o²N_f²) computation to O(N_o²log₂N_o)

 So note that computational benefit of FFT decreases with decreasing size of filter

FFT Costs

- Input and Filter matrices are '0-completed',
 - i.e., expanded to size E+R-1 x F+S-1
- Frequency domain matrices are same dimensions as input, but complex.
- FFT often reduces computation, but requires much more memory space and bandwidth

Optimization opportunities

- FFT of real matrix is symmetric allowing one to save ½ the computes
- Filters can be pre-computed and stored, but convolutional filter in frequency domain is much larger than in time domain
- Can reuse frequency domain version of input for creating different output channels to avoid FFT re-computations

cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:

CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04

M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

DNN Accelerator Architectures

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

* multiply-and-accumulate

Worst Case: all memory R/W are **DRAM** accesses

• Example: AlexNet [NIPS 2012] has **724M** MACs

→ 2896M DRAM accesses required

* multiply-and-accumulate

Opportunities: 1 data reuse

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Activations

Filter weights

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Activations
Filter weights

Fmap Reuse

CONV and FC layers

Reuse: Activations

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Activations
Filter weights

Fmap Reuse

CONV and FC layers

Reuse: Activations

Filter Reuse

CONV and FC layers (batch size > 1)

Reuse: Filter weights

Opportunities: 1 data reuse

1 Can reduce DRAM reads of filter/fmap by up to 500×**

** AlexNet CONV layers

- Opportunities: 1 data reuse 2 local accumulation
 - 1 Can reduce DRAM reads of filter/fmap by up to 500×
 - Partial sum accumulation does NOT have to access DRAM

- Opportunities: 1 data reuse 2 local accumulation
 - 1 Can reduce DRAM reads of filter/fmap by up to 500×
 - Partial sum accumulation does NOT have to access DRAM
 - Example: DRAM access in AlexNet can be reduced from 2896M to 61M (best case)

Spatial Architecture for DNN

Low-Cost Local Data Access

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

specialized processing dataflow required!

Dataflow Taxonomy

- Weight Stationary (WS)
- Output Stationary (OS)
- No Local Reuse (NLR)

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate psums spatially across the PE array.

WS Example: nn-X (NeuFlow)

A 3×3 2D Convolution Engine

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

OS Example: ShiDianNao

Top-Level Architecture

PE Architecture

No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Multicast activations, single-cast weights, and accumulate psums spatially across the PE array

NLR Example: UCLA

Taxonomy: More Examples

Weight Stationary (WS)

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]

Output Stationary (OS)

[Peemen, ICCD 2013] [ShiDianNao, ISCA 2015] [Gupta, ICML 2015] [Moons, VLSI 2016]

No Local Reuse (NLR)

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Energy Efficiency Comparison

Same total area

- 256 PEs
- AlexNet CONV layers Batch size = 16

Energy Efficiency Comparison

Same total area

- 256 PEs
- AlexNet CONV layers
 - Batch size = 16

Energy-Efficient Dataflow: Row Stationary (RS)

- Maximize reuse and accumulation at RF
- Optimize for overall energy efficiency instead for only a certain data type

Row Stationary: Energy-efficient Dataflow

- Maximize row convolutional reuse in RF
 - Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF

Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

Fmap rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

Dimensions Beyond 2D Convolution

- 1 Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

Filter Reuse in PE

Multiple Fmaps

Filter Reuse in PE

1 Multiple Fmaps

2 Multiple Filters 3 Multiple Channels

Filter Reuse in PE

1 Multiple Fmaps

2 Multiple Filters 3 Multiple Channels

Processing in PE: concatenate fmap rows

Fmap Reuse in PE

- Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

Fmap Reuse in PE

- Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

share the same fmap row

Fmap Reuse in PE

- Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

share the same fmap row

Processing in PE: interleave filter rows

Filter 1 & 2 Fmap 1 Psum 1 & 2 Row 1 **Channel 1** *

Channel Accumulation in PE

- Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

Channel Accumulation in PE

- Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

accumulate psums

Channel Accumulation in PE

- Multiple Fmaps 2 Multiple Filters 3 Multiple Channels

accumulate psums

Processing in PE: interleave channels

DNN Processing – The Full Picture

Map rows from **multiple fmaps**, **filters** and **channels** to same PE to exploit other forms of reuse and local accumulation

Optimal Mapping in Row Stationary

Dataflow Simulation Results

Evaluate Reuse in Different Dataflows

Weight Stationary

Minimize movement of filter weights

Output Stationary

Minimize movement of partial sums

No Local Reuse

No PE local storage. Maximize global buffer size.

Row Stationary

Evaluation Setup

- same total area
- 256 PEs
- AlexNet
- batch size = 16

Variants of Output Stationary

	OSA	OS _B	os _c
Parallel Output Region	M	M	M ?
# Output Channels # Output Activations	Single Multiple	Multiple Multiple	Multiple Single
Notes	Targeting CONV layers		Targeting FC layers

Dataflow Comparison: CONV Layers

RS optimizes for the best **overall** energy efficiency

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Dataflow Comparison: FC Layers

RS uses at least 1.3× lower energy than other dataflows

Row Stationary: Layer Breakdown

Row Stationary: Layer Breakdown

Row Stationary: Layer Breakdown

[Chen et al., ISCA 2016]

Row Stationary: Layer Breakdown

CONV layers dominate energy consumption!

Hardware Architecture for RS Dataflow

Eyeriss DNN Accelerator

Data Delivery with On-Chip Network

Link Clock;Core Clock

DCNN Accelerator

How to accommodate different shapes with fixed PE array?

Logical to Physical Mappings

Replication

Physical PE Array

Folding

Physical PE Array

Logical to Physical Mappings

Data Delivery with On-Chip Network

Link Clock;Core Clock

DCNN Accelerator

Compared to Broadcast, Multicast saves >80% of NoC energy

Chip Spec & Measurement Results

Technology	TSMC 65nm LP 1P9M	
On-Chip Buffer	108 KB	
# of PEs	168	
Scratch Pad / PE	0.5 KB	
Core Frequency	100 – 250 MHz	
Peak Performance 33.6 – 84.0 GOPS		
Word Bit-width	16-bit Fixed-Point	
Natively Supported DNN Shapes	Filter Width: 1 – 32 Filter Height: 1 – 12 Num. Filters: 1 – 1024 Num. Channels: 1 – 1024 Horz. Stride: 1–12 Vert. Stride: 1, 2, 4	

To support 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

Summary of DNN Dataflows

Weight Stationary

- Minimize movement of filter weights
- Popular with processing-in-memory architectures

Output Stationary

- Minimize movement of partial sums
- Different variants optimized for CONV or FC layers

No Local Reuse

No PE local storage → maximize global buffer size

Row Stationary

- Adapt to the NN shape and hardware constraints
- Optimized for overall system energy efficiency

Fused Layer

Dataflow across multiple layers

Metrics for DNN Hardware

- Measure energy and DRAM access relative to number of non-zero MACs and bit-width of MACs
 - Account for impact of sparsity in weights and activations
 - Normalize DRAM access based on operand size
- Energy Efficiency of Design
 - pJ/(non-zero weight & activation)
- External Memory Bandwidth
 - DRAM operand access/(non-zero weight & activation)
- Area Efficiency
 - Total chip mm²/multi (also include process technology)
 - Accounts for on-chip memory

Website to Summarize Results

- http://eyeriss.mit.edu/benchmarking.html
- Send results or feedback to: <u>eyeriss@mit.edu</u>

ASIC Specs	Input
Process Technology	65nm LP TSMC (1.0V)
Core area (mm²) / multiplier	0.073
On-Chip memory (kB) / multiplier	1.14
Measured or Simulated	Measured
If Simulated, Syn or PnR? Which corner?	n/a

Metric	Units	Input
Name of CNN	Text	AlexNet
# of Images Tested	#	100
Bits per operand	#	16
Batch Size	#	4
# of Non Zero MACs	#	409M
Runtime	ms	115.3
Power	mW	278
Energy/non-zero MACs	pJ/MAC	21.7
DRAM access/non- zero MACs	operands /MAC	0.005

Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

Stacked DRAM

[Gao et al., Tetris, ASPLOS 2017] [Kim et al., NeuroCube, ISCA 2016]

eDRAM

[Chen et al., DaDianNao, MICRO 2014]

Non-Volatile Resistive Memories

[Shafiee et al., ISCA 2016] [Chi et al., PRIME, ISCA 2016]

DNN Model and Hardware Co-Design

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Approaches

- Reduce size of operands for storage/compute
 - Floating point -> Fixed point
 - Bit-width reduction
 - Non-linear quantization
- Reduce number of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

Cost of Operations

[Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC 2014]

Number Representation

Floating Point -> Fixed Point

Floating Point

-1.4212242J X 10

Fixed Point

N-bit Precision

For no loss in precision, **M** is determined based on largest filter size (in the range of 10 to 16 bits for popular DNNs)

Dynamic Fixed Point

Floating Point

Fixed Point

Allow *f* to vary based on data type and layer

Impact on Accuracy

Top-1 accuracy on of CaffeNet on ImageNet

	Layer outputs	CONV parameters	FC parameters	32-bit floating point baseline	Fixed point accuracy
LeNet (Exp 1)	4-bit	4-bit	4-bit	99.1%	99.0% (98.7%)
LeNet (Exp 2)	4-bit	2-bit	2-bit	99.1%	98.8% (98.0%)
Full CIFAR-10	8-bit	8-bit	8-bit	81.7%	81.4% (80.6%)
SqueezeNet top-1	8-bit	8-bit	8-bit	57.7%	57.1% (55.2%)
CaffeNet top-1	8-bit	8-bit	8-bit	56.9%	56.0% (55.8%)
GoogLeNet top-1	8-bit	8-bit	8-bit	68.9%	66.6% (66.1%)

Avoiding Dynamic Fixed Point

Batch normalization 'centers' dynamic range

'Centered' dynamic ranges might reduce need for dynamic fixed point

Nvidia PASCAL

"New half-precision, 16-bit floating point instructions deliver over 21 TeraFLOPS for unprecedented training performance. With 47 TOPS (tera-operations per second) of performance, new 8-bit integer instructions in Pascal allow AI algorithms to deliver real-time responsiveness for deep learning inference."

– Nvidia.com (April 2016)

Google's Tensor Processing Unit (TPU)

"With its TPU Google has seemingly focused on delivering the data really quickly by <u>cutting</u> down on precision. Specifically, it doesn't rely on floating point precision like a GPU

. . . .

Instead the chip uses integer math...TPU used **8-bit integer**."

- Next Platform (May 19, 2016)

Precision Varies from Layer to Layer

Tolerance	Bits per layer (I+F)	
AlexNet (F=0)		
1%	10-8-8-8-8-6-4	
2%	10-8-8-8-8-5-4	
5%	10-8-8-8-7-7-5-3	
10%	9-8-8-8-7-7-5-3	

Bitwidth Scaling (Speed)

Bit-Serial Processing: Reduce Bit-width → Skip Cycles Speed up of 2.24x vs. 16-bit fixed

$$\sum_{i=0}^{N_i-1} s_i \times n_i = \sum_{i=0}^{N_i-1} s_i \times \sum_{b=0}^{P-1} n_i^b \times 2^b = \sum_{b=0}^{P-1} 2^b \times \sum_{i=0}^{N_i-1} n_i^b \times S_i$$

Bitwidth Scaling (Power)

Reduce Bit-width → Shorter Critical Path → Reduce Voltage

Root-Mean-Square Error [-]

Power reduction of 2.56x vs. 16-bit fixed On AlexNet Layer 2

Binary Nets

Binary Connect (BC)

- Weights {-1,1}, Activations 32-bit float
- MAC → addition/subtraction
- Accuracy loss: 19% on AlexNet[Courbariaux, NIPS 2015]

Lrab

Binarized Neural Networks (BNN)

- Weights {-1,1}, Activations {-1,1}
- MAC → XNOR
- Accuracy loss: 29.8% on AlexNet[Courbariaux, arXiv 2016]

Scale the Weights and Activations

Binary Weight Nets (BWN)

- − Weights $\{-\alpha, \alpha\}$ → except first and last layers are 32-bit float
- Activations: 32-bit float
- α determined by the l₁-norm of all weights in a layer
- Accuracy loss: 0.8% on AlexNet

XNOR-Net

- Weights $\{-\alpha, \alpha\}$
- Activations $\{-\beta_i, \beta_i\} \rightarrow$ except first and last layers are 32-bit float
- β_i determined by the I₁-norm of all activations across channels
 for given position i of the input feature map
- Accuracy loss: 11% on AlexNet

Scale factors (α, β_i) can change per layer or position in filter

Hardware needs to support both activation precisions

XNOR-Net

Ternary Nets

- Allow for weights to be zero
 - Increase sparsity, but also increase number of bits (2-bits)
- Ternary Weight Nets (TWN) [Li et al., arXiv 2016]
 - Weights {-w, 0, w} → except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 3.7% on AlexNet
- Trained Ternary Quantization (TTQ) [Zhu et al., ICLR 2017]
 - Weights $\{-w_1, 0, w_2\} \rightarrow$ except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 0.6% on AlexNet

Non-Linear Quantization

- Precision refers to the number of levels
 - Number of bits = log₂ (number of levels)
- Quantization: mapping data to a smaller set of levels
 - Linear, e.g., fixed-point
 - Non-linear
 - Computed
 - Table lookup

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Computed Non-linear Quantization

Log Domain Quantization

Product = X * W

Product = X << W

Log Domain Computation

max, bitshifts, adds/subs

Log Domain Quantization

- Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
- Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016], [Lee et al., LogNet, ICASSP 2017]

Reduce Precision Overview

 Learned mapping of data to quantization levels (e.g., k-means)

Implement with look up table

[Han et al., ICLR 2016]

- Additional Properties
 - Fixed or Variable (across data types, layers, channels, etc.)

Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering to reduce number of unique weights *per layer* (weight sharing)

Example: AlexNet (no accuracy loss)256 unique weights for CONV layer16 unique weights for FC layer

Consequences: Narrow weight memory and second access from (small) table

Summary of Reduce Precision

Category	Method	Weights (# of bits)	Activations (# of bits)	Accuracy Loss vs. 32-bit float (%)
Dynamic Fixed	w/o fine-tuning	8	10	0.4
Point	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2*	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Linear	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0

^{*} first and last layers are 32-bit float

Reduce Number of Ops and Weights

- Exploit Activation Statistics
- Network Pruning
- Compact Network Architectures
- Knowledge Distillation

Sparsity in Fmaps

Many zeros in output fmaps after ReLU

I/O Compression in Eyeriss

Compression Reduces DRAM BW

Simple RLC within 5% - 10% of theoretical entropy limit

Data Gating / Zero Skipping in Eyeriss

Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

Pruning Activations

Remove small activation values

Speed up 11% (ImageNet)

google ● ● nin ● ● vqq19 0.70 Cnvlutin 0.65 Accuracy 0.60 0.55 0.50 1.0 1.2 1.4 1.8 2.0 2.2 2.4 1.6 Speedup

Reduce power 2x (MNIST)

Pruning – Make Weights Sparse

Optimal Brain Damage

- 1. Choose a reasonable network architecture
- 2. Train network until reasonable solution obtained
- 3. Compute the second derivative for each weight
- 4. Compute saliencies (i.e. impact on training error) for each weight
- 5. Sort weights by saliency and delete low-saliency weights
- 6. Iterate to step 2

Pruning – Make Weights Sparse

Prune based on *magnitude* of weights

Example: AlexNet

Weight Reduction: CONV layers 2.7x, FC layers 9.9x

(Most reduction on fully connected layers)

Overall: 9x weight reduction, 3x MAC reduction

Speed up of Weight Pruning on CPU/GPU

On Fully Connected Layers

Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

Key Metrics for Embedded DNN

- Accuracy → Measured on Dataset
- Speed → Number of MACs
- Storage Footprint

 Number of Weights
- Energy → ?

Energy-Aware Pruning

- # of Weights alone is not a good metric for energy
 - Example (AlexNet):
 - # of Weights (FC Layer) > # of Weights (CONV layer)
 - Energy (FC Layer) < Energy (CONV layer)
- Use energy evaluation method to estimate DNN energy
 - Account for data movement

Energy-Evaluation Methodology

Key Observations

- Number of weights alone is not a good metric for energy
- All data types should be considered

Energy Consumption of GoogLeNet

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Magnitude-based Weight Pruning

Reduce number of weights by removing small magnitude weights

Energy-Aware Pruning

Remove weights from layers in order of highest to lowest energy 3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

Compression of Weights & Activations

- Compress weights and activations between DRAM and accelerator
- Variable Length / Huffman Coding

Example:

Value: 16'b0 → Compressed Code: {1'b0}

Value: 16'bx → Compressed Code: {1'b1, 16'bx}

Tested on AlexNet → 2× overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffIO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)
General CNN	16 (0%) / 16 (0%)	1.0x		1.1	_	288	0.3
AlexNet 11	7 (21%) / 4 (29%)	1.17x / 1.3x	1 / 0.77	0.85	105	85	0.96
AlexNet 12	7 (19%) / 7 (89%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11%) / 9 (82%)	1.05x / 4.1x	6.5 / 2.8	0.92	150	77	0.7
AlexNet 14	9 (04%) / 8 (72%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04%) / 8 (72%)	1.00x / 2.9x	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	_	_	19.8 / 10	_	_	76	0.94
LeNet-5 11	3 (35%) / 1 (87%)	1.40x / 5.2x	0.003 / 0.001	0.7	0.3	25	1.07
LeNet-5 12	4 (26%) / 6 (55%)	1.25x / 1.9x	0.050 / 0.042	0.8	1.6	35	1.75
Total / avg.	-	_	0.053 / 0.043	_	_	33	1.6

Sparse Matrix-Vector DSP

Use CSC rather than CSR for SpMxV

Reduce memory bandwidth by 2x (when not M >> N) For DNN, M = # of filters, N = # of weights per filter

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format
 - Non-zero weights, Run-length of zeros
 - Start location of each column since variable length
- Read relative column when input is non-zero

Compact Network Architectures

- Break large convolutional layers into a series of smaller convolutional layers
 - Fewer weights, but same effective receptive field

Before Training: Network Architecture Design

After Training: Decompose Trained Filters

Build Network with series of Small Filters

GoogleNet/Inception v3

VGG-16

Apply sequentially

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Bottleneck in Popular DNN models

SqueezeNet

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Decompose Trained Filters

After training, perform low-rank approximation by applying tensor decomposition to weight kernel; then fine-tune weights for accuracy

Decompose Trained Filters

Visualization of Filters

Original Approx.

- Speed up by 1.6 2.7x on CPU/GPU for CONV1, CONV2 layers
- Reduce size by 5 13x for FC layer
- < 1% drop in accuracy

Decompose Trained Filters on Phone

Model	Top-5	Weights	FLOPs	S	6	Titan X
AlexNet	80.03	61M	725M	117ms	245mJ	0.54ms
AlexNet*	78.33	11 M	272M	43ms	72mJ	0.30ms
(imp.)	(-1.70)	$(\times 5.46)$	$(\times 2.67)$	$(\times 2.72)$	$(\times 3.41)$	$(\times 1.81)$
VGG-S	84.60	103M	2640M	357ms	825mJ	1.86ms
VGG-S*	84.05	14 M	549M	97ms	193mJ	0.92ms
(imp.)	(-0.55)	$(\times 7.40)$	$(\times 4.80)$	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9M	1566M	273ms	473mJ	1.83ms
GoogLeNet*	88.66	4.7M	760M	192ms	296mJ	1.48ms
(imp.)	(-0.24)	$(\times 1.28)$	$(\times 2.06)$	$(\times 1.42)$	$(\times 1.60)$	$(\times 1.23)$
VGG-16	89.90	138M	15484M	1926ms	4757mJ	10.67ms
<i>VGG-16</i> *	89.40	127M	3139M	576ms	1346mJ	4.58ms
(imp.)	(-0.50)	$(\times 1.09)$	$(\times 4.93)$	$(\times 3.34)$	$(\times 3.53)$	$(\times 2.33)$

Knowledge Distillation

Metrics to Compare DNN Models

- How can we compare different models?
- Accuracy
- Network Architecture
 - # Layers, filter size, # of filters, # of channels
- # of Weights (storage capacity)
 - Number of non-zero (NZ) weights
- # of MACs (operations)
 - Number of non-zero (NZ) MACS

Metrics of DNN Models

Metrics	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Accuracy (top-5 error)*	19.8	8.80	10.7	7.02
Input	227x227	224x224	224x224	224x224
# of CONV Layers	5	16	21	49
Filter Sizes	3, 5, 11	3	1, 3, 5, 7	1, 3, 7
# of Channels	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1, 4	1	1, 2	1, 2
# of Weights	2.3M	14.7M	6.0M	23.5M
# of MACs	666M	15.3G	1.43G	3.86G
# of FC layers	3	3	1	1
# of Weights	58.6M	124M	1M	2M
# of MACs	58.6M	124M	1M	2M
Total Weights	61M	138M	7M	25.5M
Total MACs	724M	15.5G	1.43G	3.9G

^{*}Single crop results: https://github.com/jcjohnson/cnn-benchmarks

Metrics of DNN Models

Metrics	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Accuracy (top-5 error)*	19.8	8.80	10.7	7.02
# of CONV Layers	5	16	21	49
# of Weights	2.3M	14.7M	6.0M	23.5M
# of MACs	666M	15.3G	1.43G	3.86G
# of NZ MACs**	394M	7.3G	806M	1.5G
# of FC layers	3	3	1	1
# of Weights	58.6M	124M	1M	2M
# of MACs	58.6M	124M	1M	2M
# of NZ MACs**	14.4M	17.7M	639k	1.8M
Total Weights	61M	138M	7M	25.5M
Total MACs	724M	15.5G	1.43G	3.9G
# of NZ MACs**	409M	7.3G	806M	1.5G

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

Metrics of DNN Algorithms

Metrics	AlexNet	AlexNet (sparse)
Accuracy (top-5 error)	19.8	19.8
# of Conv Layers	5	5
# of Weights	2.3M	2.3M
# of MACs	666M	666M
# of NZ weights	2.3M	863k
# of NZ MACs	394M	207M
# of FC layers	3	3
# of Weights	58.6M	58.6M
# of MACs	58.6M	58.6M
# of NZ weights	58.6M	5.9M
# of NZ MACs	14.4M	2.1M
Total Weights	61M	61M
Total MACs	724M	724M
# of NZ weights	61M	6.8M
# of NZ MACs	409M	209M

Tutorial Summary

- DNNs are a critical component in the Al revolution, delivering record breaking accuracy on many important Al tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to evaluate with the appropriate workload in term of both input and model, and recognize that they are evolving rapidly.
- It's important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, speed, energy, and cost

Resources

- Eyeriss Project: http://eyeriss.mit.edu
 - Tutorial Slides
 - Benchmarking
 - Energy modeling
 - Mailing List for updates

- http://mailman.mit.edu/mailman/listinfo/eems-news
- Paper based on today's tutorial:
 - V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

