Hardware Architectures for Deep Neural Networks

CICS/MTL Tutorial

March 27, 2017

Website: http://eyeriss.mit.edu/tutorial.html

IIIII
Massachusetts Institute of
Technology

Speakers and Contributors

Joel Emer
Senior Distinguished Research Scientist NVIDIA

Professor MIT

Vivienne Sze
Professor MIT

Yu-Hsin Chen
PhD Candidate MIT

Tien-Ju Yang PhD Candidate MIT

Outline

- Overview of Deep Neural Networks
- DNN Development Resources
- Survey of DNN Hardware
- DNN Accelerators
- DNN Model and Hardware Co-Design

Participant Takeaways

- Understand the key design considerations for DNNs
- Be able to evaluate different implementations of DNN with benchmarks and comparison metrics
- Understand the tradeoffs between various architectures and platforms
- Assess the utility of various optimization approaches
- Understand recent implementation trends and opportunities

Resources

- Eyeriss Project: http://eyeriss.mit.edu
- Tutorial Slides
- Benchmarking
- Energy modeling
- Mailing List for updates

```
y Follow @eems_mit
```

- http://mailman.mit.edu/mailman/listinfo/eems-news
- Paper based on today's tutorial:
- V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

Background of Deep Neural Networks

Artificial Intelligence

Artificial Intelligence

"The science and engineering of creating intelligent machines"

- John McCarthy, 1956

AI and Machine Learning

Brain-Inspired Machine Learning

How Does the Brain Work?

- The basic computational unit of the brain is a neuron \rightarrow 86B neurons in the brain
- Neurons are connected with nearly $10^{14} \mathbf{- 1 0}{ }^{15}$ synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights - learnable \& control influence strength

Spiking-based Machine Learning

Spiking Architecture

- Brain-inspired
- Integrate and fire
- Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016]

Machine Learning with Neural Networks

Neural Networks: Weighted Sum

Many Weighted Sums

hidden layer

Image Source: Stanford

Deep Learning

What is Deep Learning?

Mii@
Image Source: [Lee et al., Comm. ACM 2011]

Why is Deep Learning Hot Now?

Big Data Availability

350M images facebook uploaded per day

2.5 Petabytes Walmart凉 of customer data hourly

You Tubte | 300 hours of |
| :--- |
| video uploaded |
| every minute |

New ML Techniques

ImageNet Challenge

IM\&GENET

Image Classification Task:

1.2M training images • 1000 object categories

Object Detection Task:
456k training images • 200 object categories

ImageNet: Image Classification Task

[Russakovsky et al., IJCV 2015]

GPU Usage for ImageNet Challenge

Established Applications

- Image
- Classification: image to object class
- Recognition: same as classification (except for faces)
- Detection: assigning bounding boxes to objects
- Segmentation: assigning object class to every pixel
- Speech \& Language
- Speech Recognition: audio to text
- Translation
- Natural Language Processing: text to meaning
- Audio Generation: text to audio
- Games

Deep Learning on Games

Google DeepMind AlphaGo

Iliite

Emerging Applications

- Medical (Cancer Detection, Pre-Natal)
- Finance (Trading, Energy Forecasting, Risk)
- Infrastructure (Structure Safety and Traffic)
- Weather Forecasting and Event Detection

Deep Learning for Self-driving Cars

Ilin el

Opportunities

From EE Times - September 27, 2016
"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude - 100x or greater."

- Greg Diamos, Senior Researcher, SVAIL, Baidu

Overview of Deep Neural Networks

DNN Timeline

- 1940s: Neural networks were proposed
- 1960s: Deep neural networks were proposed
- 1989: Neural network for recognizing digits (LeNet)
- 1990s: Hardware for shallow neural nets
- Example: Intel ETANN (1992)
- 2011: Breakthrough DNN-based speech recognition
- Microsoft real-time speech translation
- 2012: DNNs for vision supplanting traditional ML
- AlexNet for image classification
- 2014+: Rise of DNN accelerator research
- Examples: Neuflow, DianNao, etc.

Publications at Architecture Conferences

- MICRO, ISCA, HPCA, ASPLOS
\# of Publications over the Years

So Many Neural Networks!

DNN Terminology 101

hidden layer

Image Source: Stanford

DNN Terminology 101

hidden layer

Image Source: Stanford

DNN Terminology 101

Each synapse has a weight for neuron activation

hidden layer

DNN Terminology 101

Weight Sharing: multiple synapses use the same weight value

hidden layer

DNN Terminology 101

Layer 1 L1 Neuron outputs

L1 Neuron inputs a.k.a. Activations e.g. image pixels

hidden layer

DNN Terminology 101

hidden layer
Image Source: Stanford

DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons

hidden layer
Image Source: Stanford

DNN Terminology 101

hidden layer

Image Source: Stanford

Popular Types of DNNs

- Fully-Connected NN
- feed forward, a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
- feed forward, sparsely-connected w/ weight sharing
- Recurrent NN (RNN)
- feedback
- Long Short-Term Memory (LSTM)
- feedback + storage

Inference vs. Training

- Training: Determine weights
- Supervised:
- Training set has inputs and outputs, i.e., labeled
- Unsupervised:
- Training set is unlabeled
- Semi-supervised:
- Training set is partially labeled
- Reinforcement:
- Output assessed via rewards and punishments
- Inference: Apply weights to determine output

Deep Convolutional Neural Networks

Modern Deep CNN: 5-1000 Layers

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Optional layers in between
CONV and/or FC layers

Deep Convolutional Neural Networks

| CONV |
| :---: | :---: |
| Layer |\rightarrow| NORM |
| :---: |
| Layer |\rightarrow| POOL |
| :--- | :--- |
| Layer |\rightarrow| CONV |
| :--- |
| Layer |\rightarrow Features \rightarrow| FC |
| :---: |
| Layer |

Convolutions account for more than 90% of overall computation, dominating runtime and energy consumption

Convolution (CONV) Layer

a plane of input activations a.k.a. input feature map (fmap)

filter (weights)

Convolution (CONV) Layer

input fmap

Element-wise Multiplication

Convolution (CONV) Layer

output fmap

Convolution (CONV) Layer

output fmap

Sliding Window Processing

Convolution (CONV) Layer

Many Input Channels (C)

Convolution (CONV) Layer

Convolution (CONV) Layer

CNN Decoder Ring

- \mathbf{N} - Number of input fmaps/output fmaps (batch size)
- C - Number of 2-D input fmaps /filters (channels)
- H - Height of input fmap (activations)
- W - Width of input fmap (activations)
- R - Height of 2-D filter (weights)
- S - Width of 2-D filter (weights)
- M - Number of 2-D output fmaps (channels)
- E - Height of output fmap (activations)
- F - Width of output fmap (activations)

CONV Layer Tensor Computation

Output fmaps (O)
Biases (B)

$\underline{\mathbf{O}[n][m][x][y]}=\operatorname{Activation(\underline {\mathbf {B}[m]}+\sum _{i=0}^{R-1}\sum _{j=0}^{S-1}\sum _{k=0}^{C-1}\underline {\mathbf {I}[n][k][Ux+i][Uy+j]}\times \underline {\mathbf {W}[m][k][i][j]}),~}$

$$
\begin{aligned}
& 0 \leq n<N, 0 \leq m<M, 0 \leq y<E, 0 \leq x<F, \\
& E=(H-R+U) / U, F=(W-S+U) / U .
\end{aligned}
$$

Filter weights (W) \downarrow

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

Traditional Activation Functions

Sigmoid

$$
y=1 /\left(1+e^{-x}\right)
$$

Hyperbolic Tangent

$y=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$

Modern Activation Functions

Rectified Linear Unit (ReLU)

Leaky ReLU

Exponential LU

$y=\max (0, x)$
$\underset{\alpha=\text { small const. (e.g. 0.1) }}{y=\max (\alpha x, x)} \quad y= \begin{cases}x, & x \geq 0 \\ \alpha\left(e^{x}-1\right), & x<0\end{cases}$

Image Source: Caffe Tutorial

Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 ($\mathrm{E}=\mathrm{F}=1$)
- Filters as large as input fmaps ($\mathrm{R}=\mathrm{H}, \mathrm{S}=\mathrm{W}$)
- Implementation: Matrix Multiplication

FC Layer - from CONV Layer POV

Pooling (POOL) Layer

- Reduce resolution of each channel independently
- Overlapping or non-overlapping \rightarrow depending on stride

Max pooling

Average pooling
Increases translation-invariance and noise-resilience

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:

```
for (n=0; n<N; n++) {
    for (m=0; m<M; m++) {
        for (x=0; x<F; X++) {
            for (y=0; y<E; y++) { ]
            max = - Inf;
                    for (i=0; i<R; i++) {
            for (j=0; j<S; j++) {
                if (I[n][m][Ux+i][Uy+j] > max) {
                        max = I[n][m][Ux+i][Uy+j];
                }
                }
}
                O[n][m][x][y] = max;
            }
        }
    }
}
```


Normalization (NORM) Layer

- Batch Normalization (BN)
- Normalize activations towards mean=0 and std. dev. $=1$ based on the statistics of the training dataset
- put in between CONV/FC and Activation function

Believed to be key to getting high accuracy and faster training on very deep neural networks.
[loffe et al., ICML 2015]

BN Layer Implementation

- The normalized value is further scaled and shifted, the parameters of which are learned from training

Normalization (NORM) Layer

- Local Response Normalization (LRN)
- Tries to mimic the inhibition scheme in the brain

Now deprecated!

Relevant Components for Tutorial

- Typical operations that we will discuss:
- Convolution (CONV)
- Fully-Connected (FC)
- Max Pooling
- ReLU

Survey of DNN Development Resources

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Popular DNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

LeNet-5

CONV Layers: 2
Fully Connected Layers: 2
Weights: 60k

Digit Classification!

MACs: 341 k
Sigmoid used for non-linearity

AlexNet

CONV Layers: 5

ILSCVR12 Winner

Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity
[Krizhevsky et al., NIPS, 2012]

Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

Layer	Filter Size (RxS)	\# Filters (M)	\# Channels (C)	Stride
$\mathbf{1}$	11×11	96	3	4
$\mathbf{2}$	5×5	256	48	1
$\mathbf{3}$	3×3	384	256	1
$\mathbf{4}$	3×3	384	192	1
$\mathbf{5}$	3×3	256	192	1

Layer 1

34k Params 105M MACs

Layer 2

307k Params
224M MACs

Layer 3

885k Params 150M MACs
[Krizhevsky et al., NIPS, 2012]

VGG-16

CONV Layers: 13
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5 G

Reduce \# of weights stack 2
3×3 conv

for a 5×5 receptive field
[figure credit A. Karpathy]

Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/
[Simonyan et al., arXiv 2014, ICLR 2015]

GoogLeNet (v1)

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G
parallel filters of different size has the effect of processing image at different scales

GoogLeNet (v1)

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

Also, v2, v3 and v4
ILSVRC14 Winner

Inception Layers

ResNet-50

CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

Also, 34,152 and 1202 layer versions ILSVRC15 Winner

Revolution of Depth

Image Source: http://icml.cc/2016/tutorials/icml2016 tutorial deep residual networks kaiminghe.pdf

Summary of Popular DNNs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28×28	227×227	224×224	224×224	224×224
\# of CONV Layers	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 6}$	$\mathbf{2 1}$ (depth)	49
Filter Sizes	5	$3,5,11$	3	$1,3,5,7$	$1,3,7$
\# of Channels	1,6	$3-256$	$3-512$	$3-1024$	$3-2048$
\# of Filters	6,16	$96-384$	$64-512$	$64-384$	$64-2048$
Stride	1	1,4	1	1,2	1,2
\# of Weights	2.6 k	2.3 M	14.7 M	6.0 M	23.5 M
\# of MACs	283 k	666 M	15.3 G	1.43 G	3.86 G
\# of FC layers	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$
\# of Weights	58 k	58.6 M	124 M	$\mathbf{1 M}$	2 M
\# of MACs	58 k	58.6 M	$\mathbf{1 2 4 M}$	$\mathbf{1 M}$	2 M
Total Weights	$\mathbf{6 0 k}$	$\mathbf{6 1 M}$	$\mathbf{1 3 8 M}$	$\mathbf{7 M}$	$\mathbf{2 5 . 5 M}$
Total MACs	$\mathbf{3 4 1 k}$	$\mathbf{7 2 4 M}$	$\mathbf{1 5 . 5 G}$	$\mathbf{1 . 4 3 G}$	$\mathbf{3 . 9 G}$

Iliit

CONV Layers increasingly important!

Summary of Popular DNNs

- AlexNet
- First CNN Winner of ILSVRC
- Uses LRN (deprecated after this)
- VGG-16
- Goes Deeper (16+ layers)
- Uses only 3×3 filters (stack for larger filters)
- GoogLeNet (v1)
- Reduces weights with Inception and only one FC layer
- Inception: 1x1 and DAG (parallel connections)
- Batch Normalization
- ResNet
- Goes Deeper (24+ layers)
- Shortcut connections

Frameworks

Caffe

Berkeley / BVLC (C, C++, Python, MATLAB)

theano

U. Montreal
(Python)

TensorFlow

Google (C++, Python)

Facebook / NYU
(C, C++, Lua)

Also, CNTK, MXNet, etc.

Example: Layers in Caffe

```
Convolution Layer
layer {
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    convolution_param {
        num_output: 20
        kernel_size: 5
        stride: 1
```


Non-Linearity

layer \{
name: "relu1"
type: "ReLu"
bottom: "conv1"
top: "conv1"
\}

Pooling Layer

layer \{
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param \{

```
        pool: MAX
```

kernel_size: 2
stride: 2 ...

Benefits of Frameworks

- Rapid development
- Sharing models
- Workload profiling
- Network hardware co-design

Image Classification Datasets

- Image Classification/Recognition
- Given an entire image \rightarrow Select 1 of \mathbf{N} classes
- No localization (detection)

Image Source: Stanford cs231n
Datasets affect difficulty of task

MNIST

Digit Classification 28×28 pixels (B\&W) 10 Classes
60,000 Training 10,000 Testing

LeNet in 1998 (0.95\% error)

ICML 2013
(0.21\% error)

3681796691
6757863485
2179712845
4819018894
$761864 / 560$
7592658197
2222234480
0 2 38073857
0146460243
ク/28へ6986/

IM\&GENET

Object Classification
 ~256x256 pixels (color)
 1000 Classes
 1.3M Training 100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/
 http://www.image-net.org/challenges/LSVRC/

IM \&GENET

Image Source: http://karpathy.github.io/
Image Source: Krizhevsky et al., NIPS 2012

http://www.image-net.org/challenges/LSVRC/

Image Classification Summary

	MNIST	IMAGENET
Year	1998	2012
Resolution	28×28	256×256
Classes	10	1000
Training	60 k	1.3 M
Testing	10 k	100 k
Accuracy	0.21% error (ICML 2013)	2.99% top-5 error $(2016$ winner)

http://rodrigob.github.io/are we there yet/build/

Next Tasks: Localization and Detection

Others Popular Datasets

- Pascal VOC
- 11k images
- Object Detection
- 20 classes
- MS COCO
- 300k images

- Detection, Segmentation
- Recognition in context

Recently Introduced Datasets

- Google Open Images (~9M images)
- https://github.com/openimages/dataset
- Youtube-8M (8M videos)
- https://research.google.com/youtube8m/
- AudioSet (2M sound clips)
- https://research.google.com/audioset/index.html

Summary

- Development resources presented in this section enable us to evaluate hardware using the appropriate DNN model and dataset
- Difficult tasks typically require larger models
- Different datasets for different tasks
- Number of datasets growing at a rapid pace

Survey of DNN Hardware

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html Joel Emer, Vivienne Sze, Yu-Hsin Chen

CPUs Are Targeting Deep Learning

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM- 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- $14 n m$ process

Knights Mill: next gen Xeon Phi "optimized for deep learning"
Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

Image Source: Intel, Data Source: Next Platform

GPUs Are Targeting Deep Learning

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM - 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Source: Nvidia

Systems for Deep Learning

Nvidia DGX-1 (2016)

- 170 TFLOPS
- $8 \times$ Tesla P100, Dual Xeon
- NVLink Hybrid Cube Mesh
- Optimized DL Software
- 7 TB SSD Cache
- Dual 10GbE, Quad IB 100Gb
- 3RU - 3200W

Source: Nvidia

Cloud Systems for Deep Learning

Facebook's Deep Learning Machine

- Open Rack Compliant
- Powered by 8 Tesla M40 GPUs
- 2x Faster Training for Faster Deployment
- 2x Larger Networks for Higher Accuracy

SOCs for Deep Learning Inference

Nvidia Tegra - Parker

- GPU: 1.5 TeraFLOPS FP16
- 4GB LPDDR4 @ 25.6 GB/s
- 15 W TDP
(1W idle, <10W typical)
- 100 GFLOPS/W (FP16)
- 16nm process

Xavier: next gen Tegra to be an "Al supercomputer"

Mobile SOCs for Deep Learning

Samsung Exynos (ARM Mali)

Exynos 8 Octa 8890

- GPU: 0.26 TFLOPS
- LPDDR4 @ 28.7 GB/s
- 14nm process

Source: Wikipedia

FPGAs for Deep Learning

Intel/AItera Stratix 10

- 10 TFLOPS FP32
- HBM2 integrated
- Up to 1 GHz
- 14nm process
- 80 GFLOPS/W

Xilinx Virtex UltraSCALE+

- DSP: up to 21.2 TMACS
- DSP: up to 890 MHz
- Up to 500 Mb On-Chip Memory
- 16nm process

Kernel Computation

Fully-Connected (FC) Layer

- Matrix-Vector Multiply:
- Multiply all inputs in all channels by a weight and sum

Filters

Input fmaps

Output fmaps

Fully-Connected (FC) Layer

- Batching (N) turns operation into a Matrix-Matrix multiply

Fully-Connected (FC) Layer

- Implementation: Matrix Multiplication (GEMM)
- CPU: OpenBLAS, Intel MKL, etc
- GPU: cuBLAS, cuDNN, etc
- Optimized by tiling to storage hierarchy

Convolution (CONV) Layer

- Convert to matrix mult. using the Toeplitz Matrix

Convolution (CONV) Layer

- Convert to matrix mult. using the Toeplitz Matrix

Data is repeated

Convolution (CONV) Layer

- Multiple Channels and Filters

Illii

Convolution (CONV) Layer

- Multiple Channels and Filters

Toeplitz Matrix
Chnl 1 Chnl 2 (w/ redundant data)

Computational Transforms

Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute

Gauss's Multiplication Algorithm

$$
(a+b i)(c+d i)=(a c-b d)+(b c+a d) i
$$

$$
4 \text { multiplications + } 3 \text { additions }
$$

$$
\begin{aligned}
& k_{1}=c \cdot(a+b) \\
& k_{2}=a \cdot(d-c) \\
& k_{3}=b \cdot(c+d) \\
& \text { Real part }=k_{1}-k_{3} \\
& \text { Imaginary part }=k_{1}+k_{2} .
\end{aligned}
$$

3 multiplications +5 additions

Strassen

8 multiplications +4 additions

$$
\begin{aligned}
& P 1=a(f-h) \\
& P 2=(a+b) h \\
& P 5=(a+d)(e+h) \\
& P 3=(c+d) e \\
& P 6=(b-d)(g+h) \\
& P 4=d(g-e)
\end{aligned} \quad A B=(a-c)(e+f) \quad\left[\begin{array}{cc}
P 5+P 4-P 2+P 6 & P 1+P 2 \\
P 3+P 4 & P 1+P 5-P 3-P 7
\end{array}\right]
$$

7 multiplications + 18 additions
7 multiplications + 13 additions (for constant B matrix - weights)

Illit

[Cong et al., ICANN, 2014]

Strassen

- Reduce the complexity of matrix multiplication from $\boldsymbol{\Theta}\left(\mathbf{N}^{3}\right)$ to $\boldsymbol{\Theta}\left(\mathbf{N}^{2.807}\right)$ by reducing multiplication

Complexity

Comes at the price of reduced numerical stability and requires significantly more memory

Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$
F(2,3)=\left[\begin{array}{ccc}
& \text { input } & \left.\begin{array}{cc}
d_{0} & d_{1} \\
d_{1} & d_{2} \\
&
\end{array}\right]\left[\begin{array}{l}
d_{3}
\end{array}\right] \\
g_{1} \\
g_{2}
\end{array}\right]
$$

6 multiplications +4 additions

$$
\begin{array}{ll}
m_{1}=\left(d_{0}-d_{2}\right) g_{0} & m_{2}=\left(d_{1}+d_{2}\right) \frac{g_{0}+g_{1}+g_{2}}{2} \\
m_{4}=\left(d_{1}-d_{3}\right) g_{2} & m_{3}=\left(d_{2}-d_{1}\right) \frac{g_{0}-g_{1}+g_{2}}{2}
\end{array}
$$

4 multiplications +12 additions +2 shifts
4 multiplications +8 additions (for constant weights)

Winograd 2D - F(2x2, 3x3)

- 1D Winograd is nested to make 2D Winograd

Filter

g_{00}	g_{01}	g_{02}
g_{10}	g_{11}	g_{12}
g_{20}	g_{21}	g_{22}

d_{00}	d_{01}	d_{02}	d_{03}
d_{10}	d_{11}	d_{12}	d_{13}
d_{20}	d_{21}	d_{22}	d_{23}
d_{30}	d_{31}	d_{32}	d_{33}

Original: $\quad 36$ multiplications
Winograd: 16 multiplications $\rightarrow 2.25$ times reduction

Winograd Halos

- Winograd works on a small region of output at a time, and therefore uses inputs repeatedly

Filter		
g_{00} g_{01} g_{02} g_{10} g_{11} g_{12} g_{20} g_{21} g_{22}		

Input Fmap					
d_{00} d_{01} d_{02} d_{03} d_{04} d_{05} d_{10} d_{11} d_{12} d_{13} d_{14} d_{15} d_{20} d_{21} d_{22} d_{23} d_{24} d_{25} d_{30} d_{31} d_{32} d_{33} d_{34} d_{35} 					

Halo columns

Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Winograd speedup over GEMM-based convolution (VGG-E layers, $\mathrm{N}=1$)								
0.73	1.84	1.83	2.03	2.07	2.26	1.92	1.98	1.25
conv 1.1	conv 1.2	conv 2.1	conv 2.2	conv 3.1	conv 3.2	conv 4.1	conv 4.2	conv 5.0

Meta-parameters (data layouts, texture memory) afford higher performance
Using texture memory for convolutions: 13\% inference speedup
(GoogLeNet, batch size 1)

Winograd Summary

- Winograd is an optimized computation for convolutions
- It can significantly reduce multiplies
- For example, for 3x3 filter by 2.25X
- But, each filter size is a different computation.

Winograd as a Transform

$$
\begin{aligned}
B^{T} & =\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \\
G & =\left[\begin{array}{rrr}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right] \\
A^{T} & =\left[\begin{array}{rrrr}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

filter $g=\left[\begin{array}{lll}g_{0} & g_{1} & g_{2}\end{array}\right]^{T}$
input $d=\left[\begin{array}{llll}d_{0} & d_{1} & d_{2} & d_{3}\end{array}\right]^{T}$

Transform output
GgG^{\top} can be precomputed

FFT Flow

FFT Overview

- Convert filter and input to frequency domain to make convolution a simple multiply then convert back to time domain.
- Convert direct convolution $\mathrm{O}\left(\mathrm{N}_{\mathrm{o}}{ }^{2} \mathbf{N}_{\mathrm{f}}{ }^{2}\right)$ computation to $\mathrm{O}\left(\mathrm{N}_{\mathrm{o}}{ }^{2} \log _{2} \mathrm{~N}_{\mathrm{o}}\right)$
- So note that computational benefit of FFT decreases with decreasing size of filter

FFT Costs

- Input and Filter matrices are ' 0 -completed',
- i.e., expanded to size E+R-1 x F+S-1
- Frequency domain matrices are same dimensions as input, but complex.
- FFT often reduces computation, but requires much more memory space and bandwidth

Optimization opportunities

- FFT of real matrix is symmetric allowing one to save $1 / 2$ the computes
- Filters can be pre-computed and stored, but convolutional filter in frequency domain is much larger than in time domain
- Can reuse frequency domain version of input for creating different output channels to avoid FFT re-computations

cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:
CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04
M40 bar: $8 \times$ M40 GPUs in a node, P100: 8x P100 NVLink-enabled

Source: Nvidia

DNN Accelerator Architectures

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Memory Access is the Bottleneck

Memory Write
updated partial sum

* multiply-and-accumulate

Memory Access is the Bottleneck

Worst Case: all memory R/W are DRAM accesses

- Example: AlexNet [NIPS 2012] has 724M MACs
$\rightarrow \mathbf{2 8 9 6 M}$ DRAM accesses required

Memory Access is the Bottleneck

Extra levels of local memory hierarchy

Memory Access is the Bottleneck

Extra levels of local memory hierarchy
Opportunities: 1 data reuse

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Reuse:
Activations
Filter weights

Types of Data Reuse in DNN

Reuse:
Activations
Filter weights

Fmap Reuse

CONV and FC layers

Filters

Reuse: Activations

Types of Data Reuse in DNN

Reuse:
Activations
Filter weights

Fmap Reuse

CONV and FC layers

Filters

Reuse: Activations

Filter Reuse

CONV and FC layers (batch size > 1)

Input Fmaps

Reuse: Filter weights

Memory Access is the Bottleneck

Extra levels of local memory hierarchy
Opportunities: 1 data reuse
(1) Can reduce DRAM reads of filter/fmap by up to $\mathbf{5 0 0 \times * *}$
** AlexNet CONV layers

Memory Access is the Bottleneck

Extra levels of local memory hierarchy

Opportunities: (1) data reuse
(2) local accumulation

1 Can reduce DRAM reads of filter/fmap by up to $500 \times$
(2) Partial sum accumulation does NOT have to access DRAM

Memory Access is the Bottleneck

Extra levels of local memory hierarchy

Opportunities: 1 data reuse
(2) local accumulation

1 Can reduce DRAM reads of filter/fmap by up to $500 \times$
(2) Partial sum accumulation does NOT have to access DRAM

- Example: DRAM access in AlexNet can be reduced from 2896M to 61M (best case)

Spatial Architecture for DNN

DRAM

Low-Cost Local Data Access

Normalized Energy Cost ${ }^{*}$

Low-Cost Local Data Access

How to exploit (1) data reuse and (2) local accumulation with limited low-cost local storage?

Low-Cost Local Data Access

How to exploit 1 data reuse and (2) local accumulation with limited low-cost local storage?

specialized processing dataflow required!

Dataflow Taxonomy

- Weight Stationary (WS)
- Output Stationary (OS)
- No Local Reuse (NLR)
[Chen et al., ISCA 2016]

Weight Stationary (WS)

Weight

- Minimize weight read energy consumption
- maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate psums spatially across the PE array.

WS Example: nn-X (NeuFlow)

A 3×3 2D Convolution Engine

activations

Output Stationary (OS)

Psum

- Minimize partial sum R/W energy consumption
- maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

OS Example: ShiDianNao

Top-Level Architecture

PE Architecture

No Local Reuse (NLR)

- Use a large global buffer as shared storage
- Reduce DRAM access energy consumption
- Multicast activations, single-cast weights, and accumulate psums spatially across the PE array

NLR Example: UCLA

Taxonomy: More Examples

- Weight Stationary (WS)
[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]
- Output Stationary (OS)
[Peemen, ICCD 2013] [ShiDianNao, ISCA 2015] [Gupta, ICML 2015] [Moons, VLSI 2016]
- No Local Reuse (NLR)
[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Energy Efficiency Comparison

- Same total area
- AlexNet CONV layers
- 256 PEs
- Batch size = 16

Normalized
Energy/MAC

[Chen et al., ISCA 2016]

Energy Efficiency Comparison

- Same total area
- AlexNet CONV layers
- 256 PEs
- Batch size $=16$

[Chen et al., ISCA 2016]

Energy-Efficient Dataflow: Row Stationary (RS)

- Maximize reuse and accumulation at RF
- Optimize for overall energy efficiency instead for only a certain data type

Row Stationary: Energy-efficient Dataflow

1D Row Convolution in PE

1D Row Convolution in PE

1D Row Convolution in PE

1D Row Convolution in PE

1D Row Convolution in PE

- Maximize row convolutional reuse in RF
- Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF

2D Convolution in PE Array

囲 $*$ 曲 $=$ 囲

2D Convolution in PE Array

囲＊曲＝囲

2D Convolution in PE Array

Row 2

2D Convolution in PE Array

Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

Fmap rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

Dimensions Beyond 2D Convolution

(1) Multiple Fmaps
(2) Multiple Filters

3 Multiple Channels

Filter Reuse in PE

(1) Multiple Fmaps

Filter Reuse in PE

(1) Multiple Fmaps

share the same filter row

Filter Reuse in PE

(1) Multiple Fmaps

share the same filter row
Processing in PE: concatenate fmap rows
\square
Filter $1 \quad$ Fmap 1\&2 Psum 1 \& 2

Fmap Reuse in PE

Multiple Fmaps

(2) Multiple Filters

Filter 2 Fmap $1 \quad$ Psum 2
Channel 1 Row 1 $*$ Row 1 $=$ Row 1

Fmap Reuse in PE

Multiple Fmaps

(2) Multiple Filters

Fmap Reuse in PE

(2) Multiple Filters

Processing in PE: interleave filter rows
Filter 1 \& $2 \quad$ Fmap $1 \quad$ Psum 1 \& 2
Channel 1

Filter 1 \& 2
Fmap 1 Row 1 $=$

Channel Accumulation in PE

Multiple Fmaps

Channel Accumulation in PE

Multiple Fmaps
 Multiple Filters 3 Multiple Channels

Channel Accumulation in PE

Multiple Fmaps (2) Multiple Filters 3 Multiple Channels

Processing in PE: interleave channels
Filter 1
Fmap 1
Psum
Channel 1 \& 2 \square

	Fmap 1				
\square					Psum
:---:					
Row 1					

DNN Processing - The Full Picture

Optimal Mapping in Row Stationary

CNN Configurations

Hardware Resources

Dataflow Simulation Results

Evaluate Reuse in Different Dataflows

- Weight Stationary
- Minimize movement of filter weights
- Output Stationary
- Minimize movement of partial sums
- No Local Reuse
- No PE local storage. Maximize global buffer size.
- Row Stationary

Evaluation Setup

- same total area
- 256 PEs
- AlexNet
- batch size $=16$

Variants of Output Stationary

	$\mathrm{OS}_{\text {A }}$	$0 S_{B}$	OS_{C}
Parallel Output Region			
\# Output Channels \# Output Activations	Single Multiple	Multiple Multiple	Multiple Single
Notes	Targeting CONV layers		Targeting FC layers

Dataflow Comparison: CONV Layers

RS optimizes for the best overall energy efficiency

Dataflow Comparison: CONV Layers

RS uses $1.4 \times \mathbf{- 2 . 5 \times}$ lower energy than other dataflows

Dataflow Comparison: FC Layers

RS uses at least $1.3 \times$ lower energy than other dataflows

Row Stationary: Layer Breakdown

Row Stationary: Layer Breakdown

[Chen et al., ISCA 2016]

Row Stationary: Layer Breakdown

[Chen et al., ISCA 2016]

Row Stationary: Layer Breakdown

CONV layers dominate energy consumption!

Hardware Architecture for RS Dataflow

[Chen et al., ISSCC 2016]

Eyeriss DNN Accelerator

Link Clock; Core Clock

Off-Chip DRAM

64 bits
[Chen et al., ISSCC 2016]

Data Delivery with On-Chip Network

How to accommodate different shapes with fixed PE array?

Logical to Physical Mappings

Replication

Physical PE Array

Folding

Logical to Physical Mappings

Replication

Physical PE Array

Folding

14

Physical PE Array

Data Delivery with On-Chip Network

Compared to Broadcast, Multicast saves $\mathbf{> 8 0 \%}$ of NoC energy

Chip Spec \& Measurement Results

Technology	TSMC 65nm LP 1P9M		
On-Chip Buffer	108 KB		
\# of PEs	168		
Scratch Pad / PE	0.5 KB		
Core Frequency	$100-250 \mathrm{MHz}$		
Peak Performance	$33.6-84.0 \mathrm{GOPS}$		
Word Bit-width	16-bit Fixed-Point		
	Filter Width: $1-32$ Natively Supported DNN Shapes		Filter Height: 1 - 12
:---			
Num. Filters: $1-1024$			
Num. Channels: $1-1024$			
Horz. Stride: $1-12$			
Vert. Stride: $1,2,4$			

To support 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion outputs (5.4GB)], only requires 208.5MB (buffer) and 15.4MB (DRAM)
[Chen et al., ISSCC 2016]

Summary of DNN Dataflows

- Weight Stationary
- Minimize movement of filter weights
- Popular with processing-in-memory architectures
- Output Stationary
- Minimize movement of partial sums
- Different variants optimized for CONV or FC layers
- No Local Reuse
- No PE local storage \rightarrow maximize global buffer size
- Row Stationary
- Adapt to the NN shape and hardware constraints
- Optimized for overall system energy efficiency

Fused Layer

- Dataflow across multiple layers

[Alwani et al., MICRO 2016]

Metrics for DNN Hardware

- Measure energy and DRAM access relative to number of non-zero MACs and bit-width of MACs
- Account for impact of sparsity in weights and activations
- Normalize DRAM access based on operand size
- Energy Efficiency of Design
- pJ/(non-zero weight \& activation)
- External Memory Bandwidth
- DRAM operand access/(non-zero weight \& activation)
- Area Efficiency
- Total chip mm²/multi (also include process technology)
- Accounts for on-chip memory

Website to Summarize Results

- http://eyeriss.mit.edu/benchmarking.html
- Send results or feedback to: eyeriss@mit.edu

ASIC Specs	Input
Process Technology	65 nm LP TSMC $(1.0 \mathrm{~V})$
Core area $\left(\mathrm{mm}^{2}\right) /$ multiplier	0.073
On-Chip memory (kB) / multiplier	1.14
Measured or Simulated	Measured
If Simulated, Syn or PnR? Which corner?	n / a

Metric	Units	Input
Name of CNN	Text	AlexNet
\# of Images Tested	$\#$	100
Bits per operand	$\#$	16
Batch Size	$\#$	4
\# of Non Zero MACs	$\#$	409 M
Runtime	ms	115.3
Power	mW	278
Energy/non-zero MACs	pJ/MAC	$\mathbf{2 1 . 7}$
DRAM access/non- zero MACs	operands IMAC	$\mathbf{0 . 0 0 5}$

Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

Stacked DRAM

[Gao et al., Tetris, ASPLOS 2017]
[Kim et al., NeuroCube, ISCA 2016]

eDRAM

[Chen et al., DaDianNao, MICRO 2014]

Non-Volatile Resistive Memories

dataflow

$$
\begin{gathered}
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \\
=\mathrm{V}_{1} \times \mathrm{G}_{1}+\mathrm{V}_{2} \times \mathrm{G}_{2}
\end{gathered}
$$

[Shafiee et al., ISCA 2016]
[Chi et al., PRIME, ISCA 2016]

DNN Model and Hardware Co-Design

CICS/MTL Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Approaches

- Reduce size of operands for storage/compute
- Floating point -> Fixed point
- Bit-width reduction
- Non-linear quantization
- Reduce number of operations for storage/compute
- Exploit Activation Statistics (Compression)
- Network Pruning
- Compact Network Architectures

Cost of Operations

[Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC 2014]
Illit

Number Representation

	1				23	Range	Accuracy
FP32	S				M	$10^{-38}-10^{38}$.000006\%
	1	5					
FP16	S	E				$6 \times 10^{-5}-6 \times 10^{4}$.05\%
	1			31			
Int32	S			M		$0-2 \times 10^{9}$	$1 / 2$
	1		15				
Int16	s		M			$0-6 \times 10^{4}$	1/2
	1						
Int8	S					0-127	$1 / 2$

Floating Point \rightarrow Fixed Point

Floating Point

Fixed Point

$\begin{aligned} & \text { 8-bit } \\ & \text { fixed } \end{aligned}$	sign mantissa (7 -bits) 01100110	
	integer (4-bits)	fractional (3-bits)
12.75	$s=0$	$m=102$

Iliii

N-bit Precision

For no loss in precision, \mathbf{M} is determined based on largest filter size (in the range of 10 to 16 bits for popular DNNs)

Dynamic Fixed Point

Floating Point

Fixed Point

Impact on Accuracy

Static vs Dynamic Fixed Point

Top-1 accuracy on of CaffeNet on ImageNet

[Gysel et al., Ristretto, ICLR 2016]

Avoiding Dynamic Fixed Point

Batch normalization 'centers' dynamic range

'Centered' dynamic ranges might reduce need for dynamic fixed point

Nvidia PASCAL

"New half-precision, 16-bit floating point instructions deliver over 21 TeraFLOPS for unprecedented training performance. With 47 TOPS (tera-operations per second) of performance, new 8-bit integer instructions in Pascal allow AI algorithms to deliver real-time responsiveness for deep learning inference."

- Nvidia.com (April 2016)

Google's Tensor Processing Unit (TPU)

" With its TPU Google has seemingly focused on delivering the data really quickly by cutting down on precision. Specifically, it doesn't rely on floating point precision like a GPU

Instead the chip uses integer math...TPU used 8 -bit integer."

- Next Platform (May 19, 2016)

Precision Varies from Layer to Layer

Tolerance	
Bits per layer (I+F)	
1%	$10-8-8-8-8-8-6-4$
2%	$10-8-8-8-8-8-5-4$
5%	$10-8-8-8-7-7-5-3$
10%	$9-8-8-8-7-7-5-3$

Bitwidth Scaling (Speed)

Bit-Serial Processing: Reduce Bit-width \rightarrow Skip Cycles Speed up of 2.24x vs. 16-bit fixed

$$
\sum_{i=0}^{N_{i}-1} s_{i} \times n_{i}=\sum_{i=0}^{N_{i}-1} s_{i} \times \sum_{b=0}^{P-1} n_{i}^{b} \times 2^{b}=\sum_{b=0}^{P-1} 2^{b} \times \sum_{i=0}^{N_{i}-1} n_{i}^{b} \times S_{i}
$$

[Judd et al., Stripes, CAL 2016]

Bitwidth Scaling (Power)

Reduce Bit-width \rightarrow Shorter Critical Path \rightarrow Reduce Voltage

Root-Mean-Square Error [-]

Binary Nets

- Binary Connect (BC)
- Weights \{-1,1\}, Activations 32-bit float
- MAC \rightarrow addition/subtraction
- Accuracy loss: 19\% on AlexNet [Courbariaux, NIPS 2015]
- Binarized Neural Networks (BNN)
- Weights $\{-1,1\}$, Activations $\{-1,1\}$
- MAC \rightarrow XNOR
- Accuracy loss: 29.8\% on AlexNet
[Courbariaux, arXiv 2016]

Scale the Weights and Activations

- Binary Weight Nets (BWN)
- Weights $\{-\alpha, \alpha\} \rightarrow$ except first and last layers are 32-bit float
- Activations: 32-bit float
- α determined by the I_{1}-norm of all weights in a layer
- Accuracy loss: 0.8\% on AlexNet
- XNOR-Net
- Weights $\{-\alpha, \alpha\}$
- Activations $\left\{-\beta_{i}, \beta_{i}\right\} \rightarrow$ except first and last layers are 32-bit float
- β_{i} determined by the l_{1}-norm of all activations across channels for given position i of the input feature map
- Accuracy loss: 11\% on AlexNet

Scale factors $\left(\alpha, \beta_{i}\right)$ can change per layer or position in filter

XNOR-Net

Ternary Nets

- Allow for weights to be zero
- Increase sparsity, but also increase number of bits (2-bits)
- Ternary Weight Nets (TWN) [Li et al., arXiv 2016]
- Weights $\{-\mathrm{w}, 0, \mathrm{w}\} \rightarrow$ except first and last layers are 32-bit float
- Activations: 32-bit float
- Accuracy loss: 3.7\% on AlexNet
- Trained Ternary Quantization (TTQ) [Zhu et al., ICLR 2017]
- Weights $\left\{-\mathrm{w}_{1}, 0, \mathrm{w}_{2}\right\} \rightarrow$ except first and last layers are 32-bit float
- Activations: 32-bit float
- Accuracy loss: 0.6\% on AlexNet

Non-Linear Quantization

- Precision refers to the number of levels
- Number of bits $=\log _{2}$ (number of levels)
- Quantization: mapping data to a smaller set of levels
- Linear, e.g., fixed-point
- Non-linear
- Computed
- Table lookup

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Computed Non-linear Quantization

Log Domain Quantization

Product $=X * W$

Product $=\mathrm{X} \ll \mathrm{W}$

IIITiT

[Lee et al., LogNet, ICASSP 2017]

Log Domain Computation

Only activation in log domain

Both weights and activations in log domain

max, bitshifts, adds/subs
[Miyashita et al., arXiv 2016]

Log Domain Quantization

- Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
- Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016],
[Lee et al., LogNet, ICASSP 2017]

Reduce Precision Overview

- Learned mapping of data to quantization levels (e.g., k-means)

Implement with look up table
[Han et al., ICLR 2016]

- Additional Properties
- Fixed or Variable (across data types, layers, channels, etc.)

Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering to reduce number of unique weights per layer (weight sharing)

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer
16 unique weights for FC layer

Consequences: Narrow weight memory and second access from (small) table

Summary of Reduce Precision

Category	Method	Weights (\# of bits)	Activations (\# of bits)	Accuracy Loss vs. 32-bit float (\%)
Dynamic Fixed Point	w/o fine-tuning	8	10	0.4
	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2^{*}	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Linear	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0
* first and last layers are 32-bit float				

Full list @ [Sze et al., arXiv, 2017] ${ }^{25}$

Reduce Number of Ops and Weights

- Exploit Activation Statistics
- Network Pruning
- Compact Network Architectures
- Knowledge Distillation

Sparsity in Fmaps

Many zeros in output fmaps after ReLU

I/O Compression in Eyeriss

DCNN Accelerator

Run-Length Compression (RLC)

Example:

Input: $0,0,12,0,0,0,0,53,0,0,22, \ldots$

Off-Chip DRAM

64 bits
[Chen et al., ISSCC 2016]

Compression Reduces DRAM BW

Simple RLC within 5\% - 10\% of theoretical entropy limit

Data Gating / Zero Skipping in Eyeriss

Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49\% area overhead)
- Speed up of $1.37 x$ (1.52x with activation pruning)

Illii
[Albericio et al., ISCA 2016]

Pruning Activations

Remove small activation values

Speed up 11\% (ImageNet)

Reduce power 2x (MNIST)

[Reagen et al., ISCA 2016]

Pruning - Make Weights Sparse

- Optimal Brain Damage

1. Choose a reasonable network architecture
2. Train network until reasonable solution obtained
3. Compute the second derivative for each weight
4. Compute saliencies (i.e. impact on training error) for each weight
5. Sort weights by saliency and
 delete low-saliency weights
6. Iterate to step 2

Pruning - Make Weights Sparse

Prune based on magnitude of weights

Example: AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

Speed up of Weight Pruning on CPU/GPU

On Fully Connected Layers

Average Speed up of $3.2 x$ on GPU, $3 x$ on CPU, $5 x$ on mGPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size $=1$

Key Metrics for Embedded DNN

- Accuracy \rightarrow Measured on Dataset
- Speed \rightarrow Number of MACs
- Storage Footprint \rightarrow Number of Weights
- Energy \rightarrow ?

Energy-Aware Pruning

- \# of Weights alone is not a good metric for energy
- Example (AlexNet):
- \# of Weights (FC Layer) > \# of Weights (CONV layer)
- Energy (FC Layer) < Energy (CONV layer)
- Use energy evaluation method to estimate DNN energy
- Account for data movement
[Yang et al., CVPR 2017]

Energy-Evaluation Methodology

CNN Shape Configuration (\# of channels, \# of filters, etc.)

CNN Energy Consumption

Key Observations

- Number of weights alone is not a good metric for energy
- All data types should be considered

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Magnitude-based Weight Pruning

Reduce number of weights by removing small magnitude weights

Energy-Aware Pruning

Remove weights from layers in order of highest to lowest energy 3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

Compression of Weights \& Activations

- Compress weights and activations between DRAM and accelerator
- Variable Length / Huffman Coding

Example:

> Value: $16^{\prime} \mathrm{b0} \rightarrow$ Compressed Code: $\left\{1^{\prime} \mathrm{b} 0\right\}$
> Value: $16^{\prime} \mathrm{bx} \rightarrow$ Compressed Code: $\left\{1^{\prime} \mathrm{b} 1,16^{\prime} \mathrm{bx}\right\}$

- Tested on AlexNet \rightarrow 2× overall BW Reduction

Layer	Filter / Image bits (0\%)	Filter / Image BW Reduc.	IO / HuffiO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)
General CNN	16 (0\%) / 16 (0\%)	1.0x		1.1	-	288	0.3
AlexNet 11	7 (21\%)/4 (29\%)	$1.17 \mathrm{x} / 1.3 \mathrm{x}$	$1 / 0.77$	0.85	105	85	0.96
AlexNet 12	7 (19\%) / 7 (89\%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11\%) / 9 (82\%)	1.05x / 4.1x	$6.5 / 2.8$	0.92	150	77	0.7
AlexNet 14	9 (04\%) / 8 (72\%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04\%) / 8 (72\%)	$1.00 \mathrm{x} / 2.9 \mathrm{x}$	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	-	-	19.8 / 10	-	-	76	0.94
LeNet-5 11	3 (35\%) / 1 (87\%)	1.40x / 5.2x	0.009 - -0.001	0.7	0.3	25	1.07
LeNet-5 12	4 (26\%) / 6 (55\%)	$1.25 \mathrm{x} / 1.9 \mathrm{x}$	$0.050 / 0.042$	0.8	1.6	35	1.75
Total / avg.	-	-	0.053 / 0.043	-	-	33	1.6

Sparse Matrix-Vector DSP

- Use CSC rather than CSR for SpMxV

Compressed Sparse Row (CSR)

Compressed Sparse Column (CSC)

fomemotamo

Reduce memory bandwidth by $2 x$ (when not $\mathbf{M} \gg \mathbf{N}$) For DNN, $\boldsymbol{M}=\#$ of filters, $\boldsymbol{N}=\#$ of weights per filter
Illit
[Dorrance et al., FPGA 2014]

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format
- Non-zero weights, Run-length of zeros
- Start location of each column since variable length
- Read relative column when input is non-zero

Compact Network Architectures

- Break large convolutional layers into a series of smaller convolutional layers
- Fewer weights, but same effective receptive field
- Before Training: Network Architecture Design
- After Training: Decompose Trained Filters

Network Architecture Design

Build Network with series of Small Filters

GoogleNet/Inception v3

5×1 filter

separable filters

Apply sequentially

Apply sequentially

VGG-16
5×5 filter

Network Architecture Design

Reduce size and computation with 1×1 Filter (bottleneck)

64

Figure Source:
Stanford cs231n
(each filter has size 1x1x64, and performs a 64-dimensional dot product)

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Network Architecture Design

Reduce size and computation with 1×1 Filter (bottleneck)

64

Figure Source: Stanford cs231n

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiv 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Network Architecture Design

Reduce size and computation with 1×1 Filter (bottleneck)

Figure Source: Stanford cs231n

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiv 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Bottleneck in Popular DNN models

ResNet

SqueezeNet

Reduce weights by reducing number of input channels by "squeezing" with 1×1 50x fewer weights than AlexNet (no accuracy loss)
"labrador
retriever
Fire Module

[F.N. landola et al., ArXiv, 2016]

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Decompose Trained Filters

After training, perform low-rank approximation by applying tensor decomposition to weight kernel; then fine-tune weights for accuracy

(a) Full convolution
(b) Two-component decomposition (Jaderberg et al., 2014a)

(c) CP-decomposition

Iliit

$\mathbf{R}=$ canonical rank
[Lebedev et al., ICLR 2015]

Decompose Trained Filters

Visualization of Filters
Original Approx.

- Speed up by 1.6 - 2.7x on CPU/GPU for CONV1, CONV2 layers
- Reduce size by 5-13x for FC layer
- < 1\% drop in accuracy
[Denton et al., NIPS 2014]

Decompose Trained Filters on Phone

Model	Top-5	Weights	FLOPs	S6		(1)
AlexNet	80.03	61M	725M	117 ms	245 mJ	0.54 ms
AlexNet*	78.33	11M	272M	43ms	72 mJ	0.30 ms
(imp.)	(-1.70)	($\times 5.46$)	($\times 2.67$)	($\times 2.72$)	($\times 3.41$)	($\times 1.81$)
VGG-S	84.60	103M	2640M	357 ms	825 mJ	1.86 ms
$V G G-S^{*}$	84.05	14M	549M	97 ms	193mJ	0.92 ms
(imp.)	(-0.55)	$(\times 7.40)$	($\times 4.80$)	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9 M	1566M	273ms	473 mJ	1.83 ms
GoogLeNet*	88.66	4.7M	760M	192ms	296 mJ	1.48 ms
(imp.)	(-0.24)	($\times 1.28$)	($\times 2.06$)	($\times 1.42$)	($\times 1.60$)	($\times 1.23$)
VGG-16	89.90	138M	15484M	1926ms	4757 mJ	10.67 ms
$V G G-16^{*}$	89.40	127M	3139M	576 ms	1346 mJ	4.58 ms
(imp.)	(-0.50)	($\times 1.09$)	($\times 4.93$)	($\times 3.34$)	($\times 3.53$)	$(\times 2.33)$

Knowledge Distillation

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]

Metrics to Compare DNN Models

- How can we compare different models?
- Accuracy
- Network Architecture
- \# Layers, filter size, \# of filters, \# of channels
- \# of Weights (storage capacity)
- Number of non-zero (NZ) weights
- \# of MACs (operations)
- Number of non-zero (NZ) MACS

Metrics of DNN Models

Metrics	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Accuracy (top-5 error)	*	19.8	8.80	10.7
Input	227×227	224×224	224×224	224×224
\# of CONV Layers	$\mathbf{5}$	$\mathbf{1 6}$	$\mathbf{2 1}$	49
Filter Sizes	$3,5,11$	3	$1,3,5,7$	$1,3,7$
\# of Channels	$3-256$	$3-512$	$3-1024$	$3-2048$
\# of Filters	$96-384$	$64-512$	$64-384$	$64-2048$
Stride	1,4	1	1,2	1,2
\# of Weights	2.3 M	14.7 M	6.0 M	23.5 M
\# of MACs	666 M	15.3 G	1.43 G	3.86 G
\# of FC layers	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$
\# of Weights	58.6 M	124 M	1 M	2 M
\# of MACs	58.6 M	124 M	$\mathbf{1 M}$	$\mathbf{2 M}$
Total Weights	$\mathbf{6 1 M}$	$\mathbf{1 3 8 M}$	$\mathbf{7 M}$	$\mathbf{2 5 . 5 M}$
Total MACs	$\mathbf{7 2 4 M}$	$\mathbf{1 5 . 5 G}$	$\mathbf{1 . 4 3 G}$	$\mathbf{3 . 9 G}$

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

Metrics of DNN Models

Metrics	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Accuracy (top-5 error)*	19.8	8.80	10.7	7.02
\# of CONV Layers	$\mathbf{5}$	$\mathbf{1 6}$	$\mathbf{2 1}$	49
\# of Weights	2.3 M	14.7 M	6.0 M	23.5 M
\# of MACs	666 M	15.3 G	1.43 G	3.86 G
\# of NZ MACs**	$\mathbf{3 9 4 M}$	$\mathbf{7 . 3 G}$	$\mathbf{8 0 6 M}$	$\mathbf{1 . 5 G}$
\# of FC layers	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$
\# of Weights	58.6 M	124 M	1 M	2 M
\# of MACs	58.6 M	124 M	1 M	2 M
\# of NZ MACs**	$\mathbf{1 4 . 4 M}$	$\mathbf{1 7 . 7 M}$	$\mathbf{6 3 9 k}$	$\mathbf{1 . 8 M}$
Total Weights	$\mathbf{6 1 M}$	$\mathbf{1 3 8 M}$	$\mathbf{7 M}$	$\mathbf{2 5 . 5 M}$
Total MACs	$\mathbf{7 2 4 M}$	$\mathbf{1 5 . 5 G}$	$\mathbf{1 . 4 3 G}$	$\mathbf{3 . 9 G}$
\# of NZ MACs**	$\mathbf{4 0 9 M}$	$\mathbf{7 . 3 G}$	$\mathbf{8 0 6 M}$	$\mathbf{1 . 5 G}$

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks
Illii e **\# of NZ MACs based on 50k ImageNet validation images

Metrics of DNN Algorithms

Metrics	AlexNet	AlexNet (sparse)
Accuracy (top-5 error)	19.8	19.8
\# of Conv Layers	5	5
\# of Weights	2.3M	2.3M
\# of MACs	666M	666M
\# of NZ weights	2.3M	863k
\# of NZ MACs	394M	207M
\# of FC layers	3	3
\# of Weights	58.6M	58.6M
\# of MACs	58.6M	58.6M
\# of NZ weights	58.6M	5.9M
\# of NZ MACs	14.4M	2.1M
Total Weights	61M	61M
Total MACs	724M	724M
\# of NZ weights	61M	6.8M
\# of NZ MACs	409M	209M

Tutorial Summary

- DNNs are a critical component in the AI revolution, delivering record breaking accuracy on many important Al tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to evaluate with the appropriate workload in term of both input and model, and recognize that they are evolving rapidly.
- It's important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, speed, energy, and cost

Resources

- Eyeriss Project: http://eyeriss.mit.edu
- Tutorial Slides
- Benchmarking
- Energy modeling
- Mailing List for updates

```
y Follow @eems_mit
```

- http://mailman.mit.edu/mailman/listinfo/eems-news
- Paper based on today's tutorial:
- V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

