

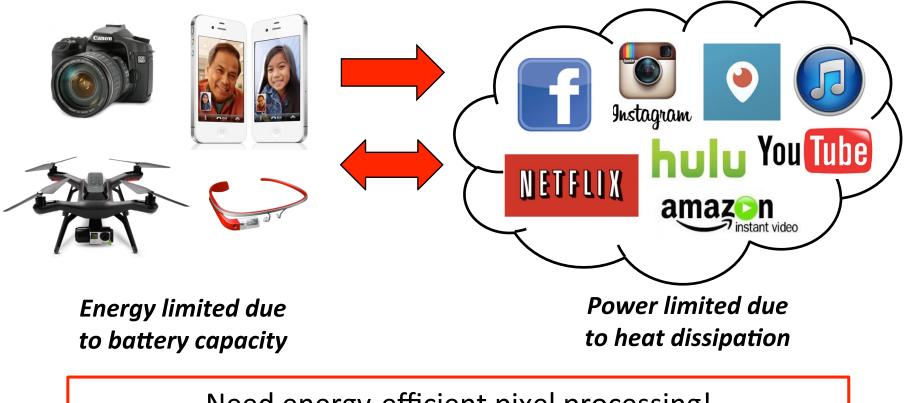
|'|iT

Follow @eems_mit

ns technology laboratories

Video is the Biggest Big Data

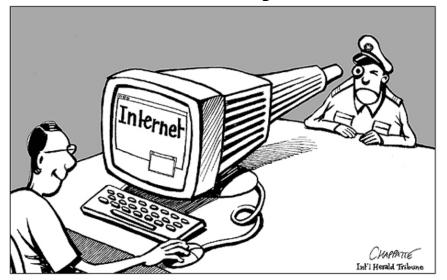
Over 70% of today's Internet traffic is video Over 300 hours of video uploaded to YouTube <u>every minute</u> Over 500 million hours of video surveillance collected <u>every day</u>



Need energy-efficient pixel processing!

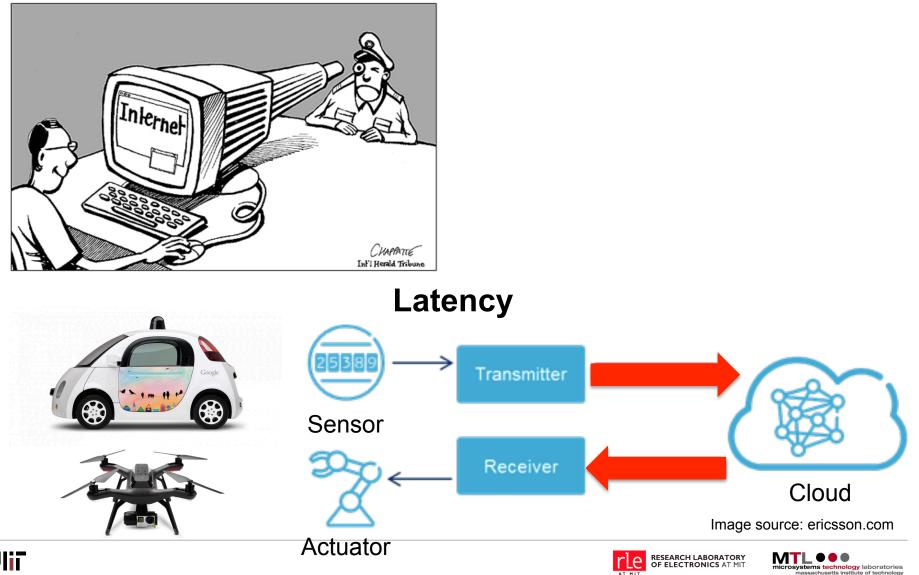
Processing at "Edge" instead of the "Cloud"

Privacy

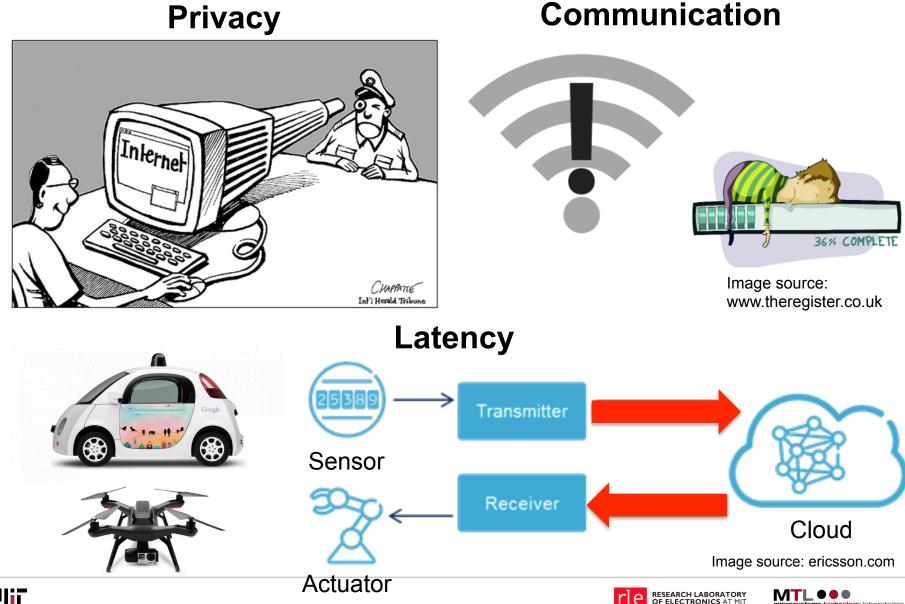


Processing at "Edge" instead of the "Cloud"

Privacy



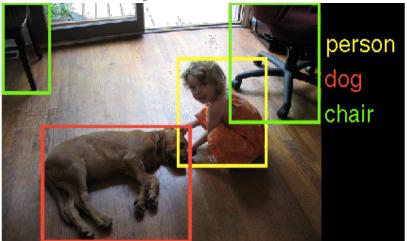
Processing at "Edge" instead of the "Cloud"



ystems technology laboratories

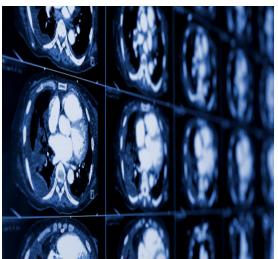
Example Applications of Machine Learning

Computer Vision



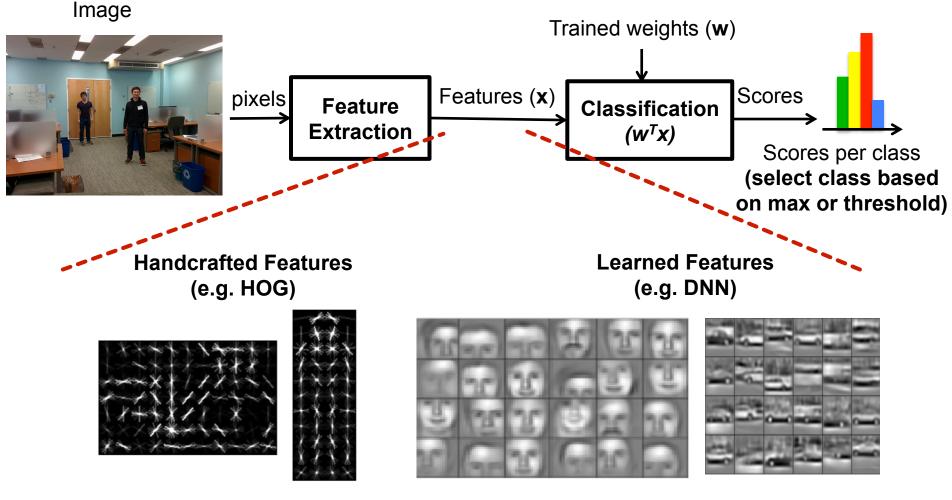
Speech Recognition

Medical



Machine Learning Pipeline (Inference)

7



Score =
$$\Sigma_n x_i w_i$$

Main Computation: Dot Product of Features (x) and Weights (w)

What is Deep Learning?

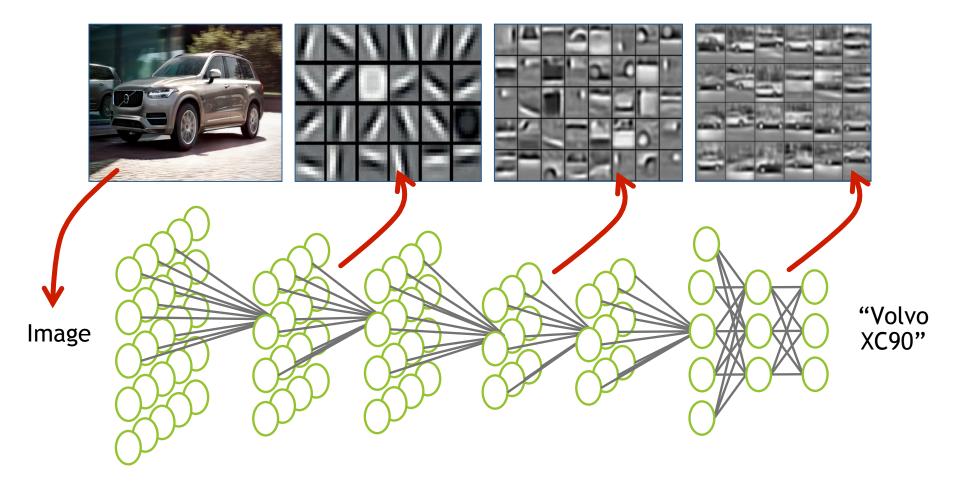


Image Source: [Lee et al., Comm. ACM 2011]

Weighted Sums

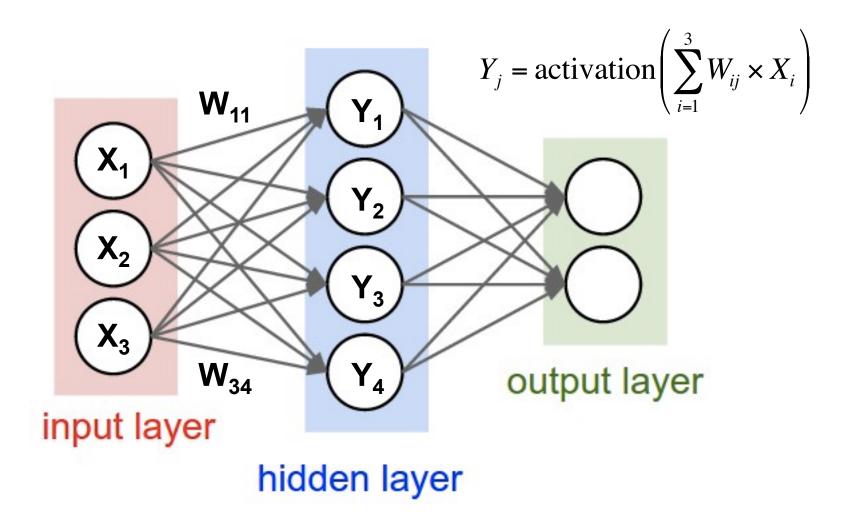
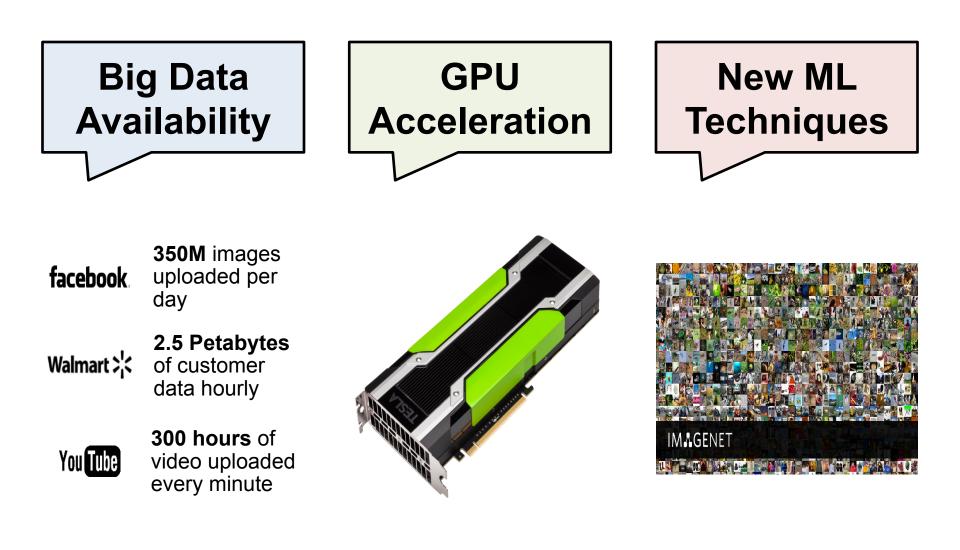
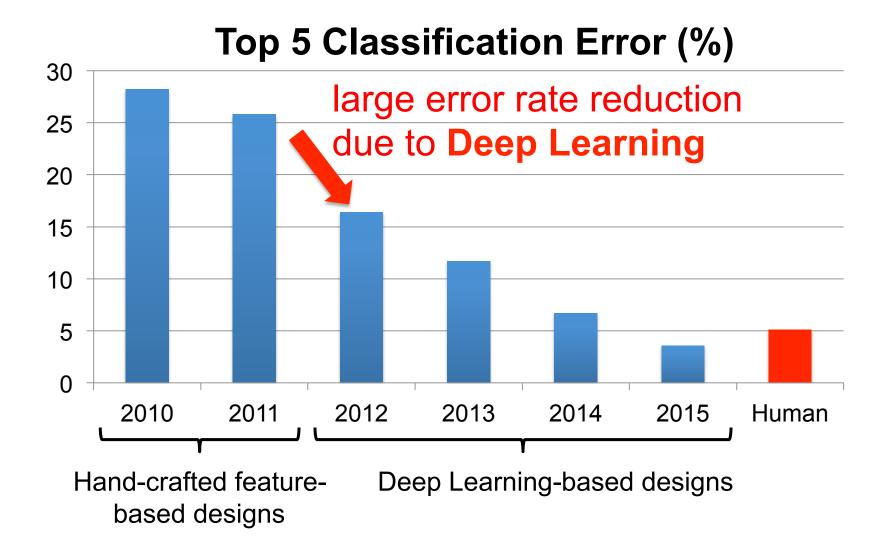


Image Source: Stanford

Why is Deep Learning Hot Now?



ImageNet: Image Classification Task

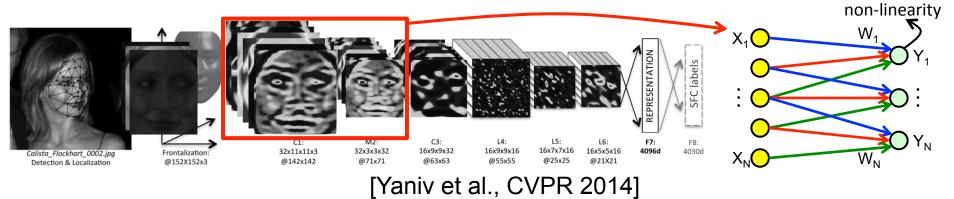


[Russakovsky et al., IJCV 2015]

Human or Superhuman Accuracy Level

Face recognition

– Deep learning accuracy (97.25%) vs. Human accuracy (97.53%)



- Fine grained category recognition (e.g. dogs, monkeys, snakes, birds)
 - Deep learning errors: 7 vs. Human errors: 28

120 species of dogs

[O. Russakovsky et al., IJCV 2015]

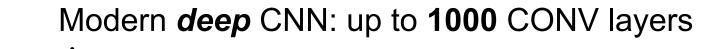
Deep Learning on Games

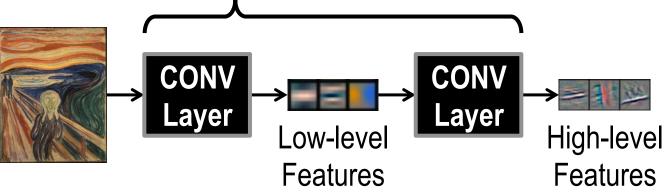
Google DeepMind AlphaGo

Go is exponentially more complex than chess (10¹⁷⁰ legal positions)

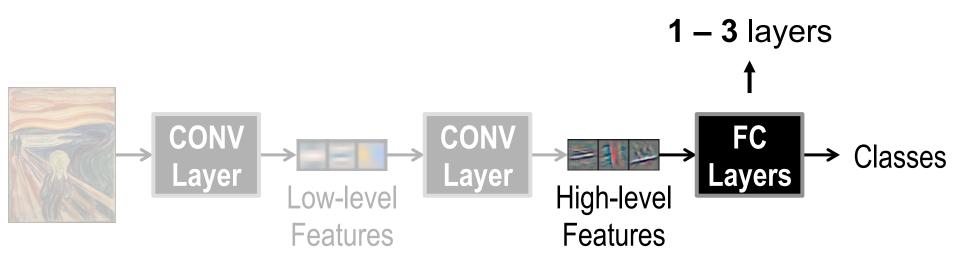


Deep Convolutional Neural Networks

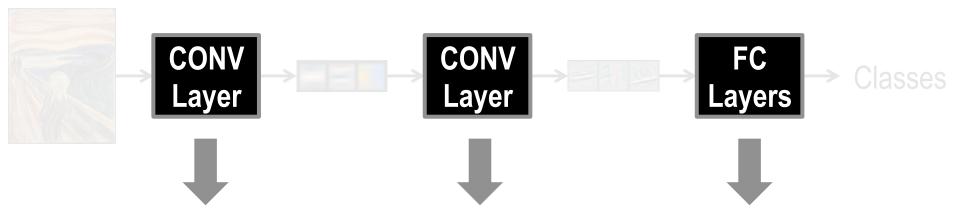


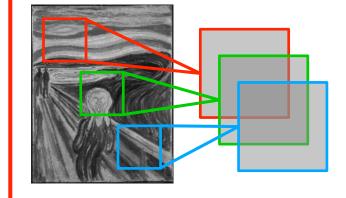


Deep Convolutional Neural Networks



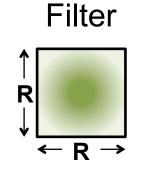
Deep Convolutional Neural Networks

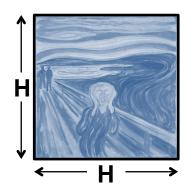




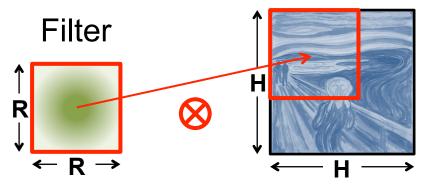
Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

Input Image (Feature Map)

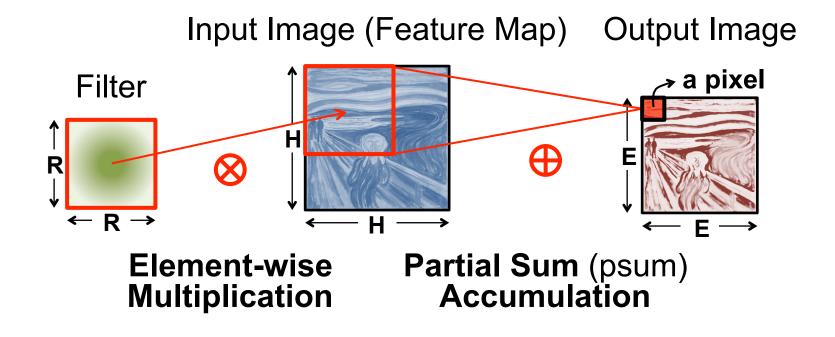


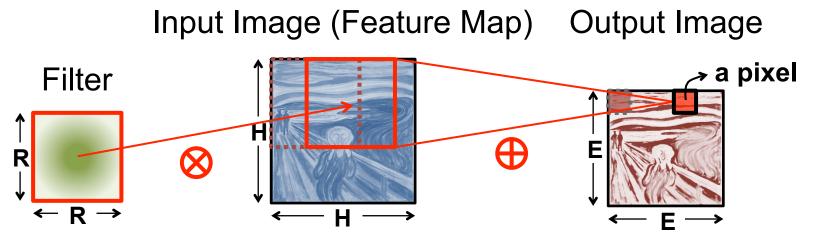


Input Image (Feature Map)

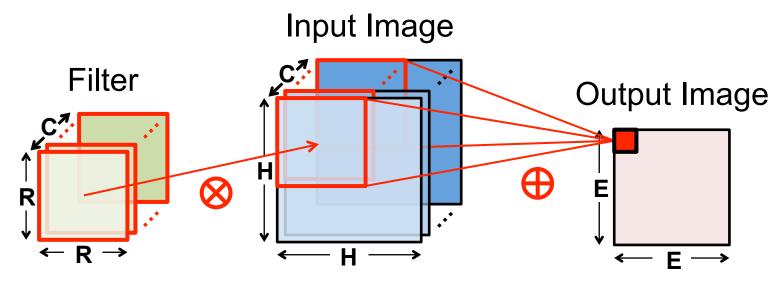


Element-wise Multiplication

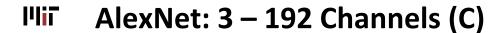


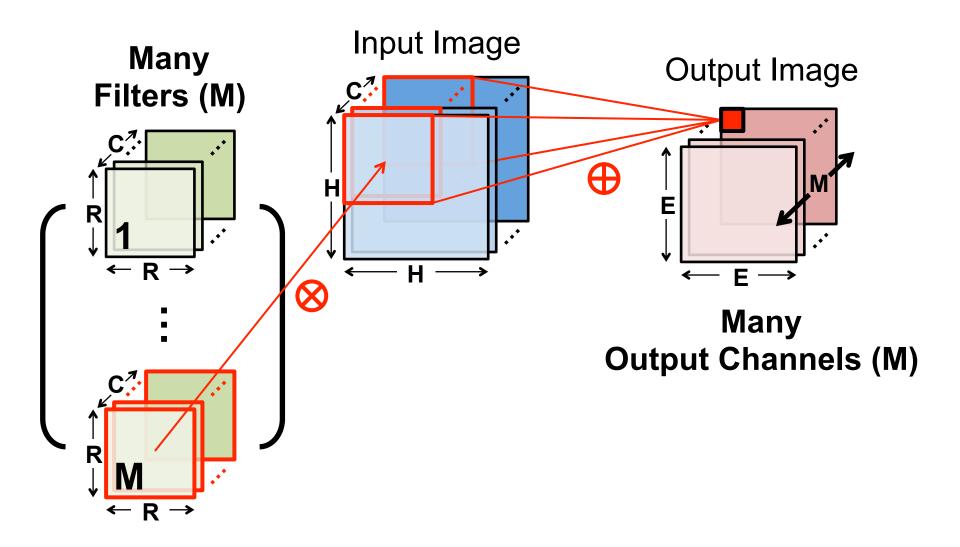


Sliding Window Processing



Many Input Channels (C)





²³ High-Dimensional CNN Convolution

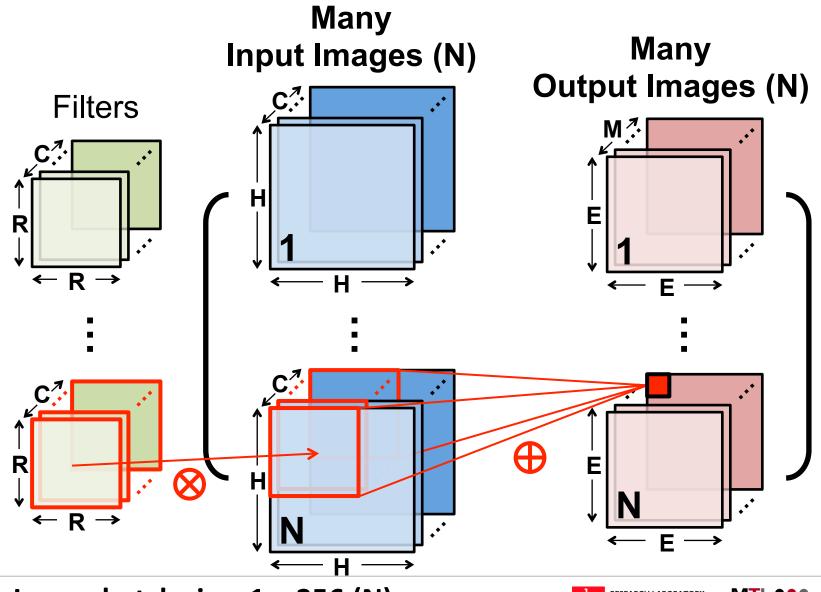


Image batch size: 1 – 256 (N)

l'liī

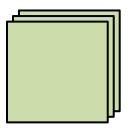
ns technology laboratories

Large Sizes with Varying Shapes

AlexNet¹ Convolutional Layer Configurations

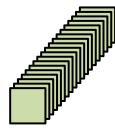
Layer	Filter Size (R)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1



34k Params 105M MACs Layer 2

307k Params 224M MACs

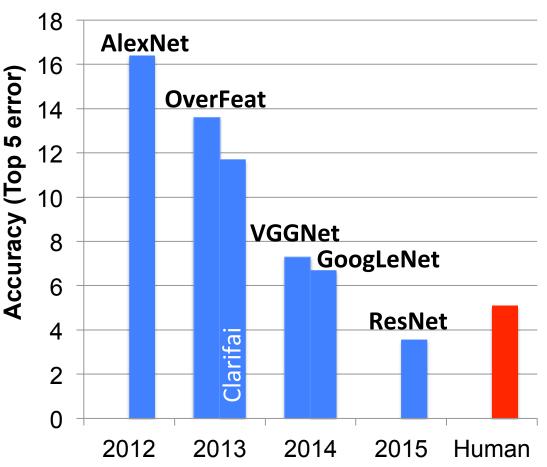


885k Params 150M MACs

Popular DNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

ImageNet: Large Scale Visual Recognition Challenge (ILSVRC)



[O. Russakovsky et al., IJCV 2015]

25

Summary of Popular DNNs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G
ī	CONV Layers increasingly important!				

stems technology laboratories massachusetts institute of technology

26

²⁷ Complexity versus Difficulty of Task

- Evaluate hardware using the appropriate DNN model and dataset
 - Difficult tasks typically require larger models
 - Different datasets for different tasks

MNIST

3681796691 6757863485 2179712845

7618641560 7592658197 2222234480 0238073857 0146460243 7128969861

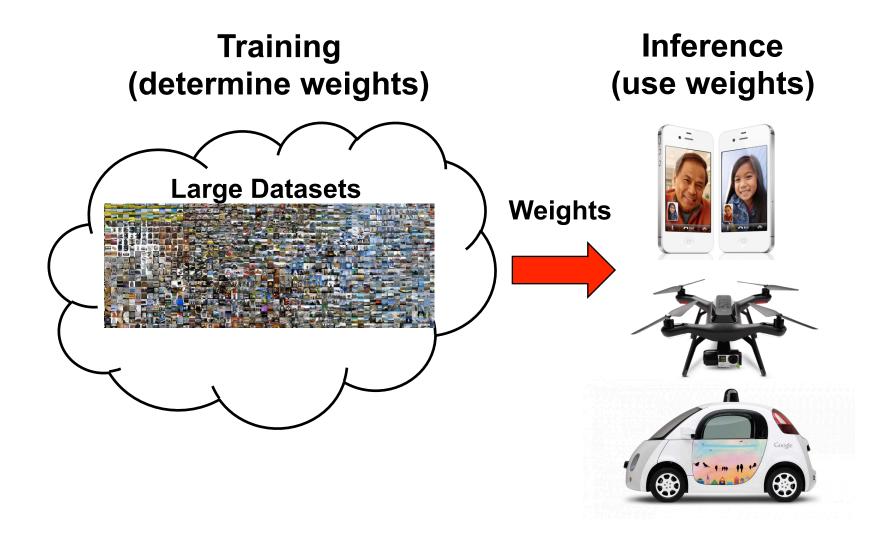
9018894

l'liī

481

ImageNet

²⁸ Training vs. Inference

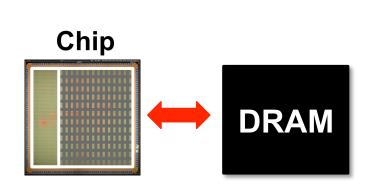


Challenges

|4**1**17

Key Metrics

- Accuracy
 - Measured on a publicly available dataset
 - Popular DNN Models
- Programmability
 - Support multiple applications
 - Different weights
- Energy/Power
 - Energy per operation
 - DRAM Bandwidth
- Throughput/Latency
 - GOPS, frame rate, delay
- Cost
- I'lii Area (memory and logic size)



Website to Summarize DNN Results

- <u>http://eyeriss.mit.edu/benchmarking.html</u>
- Send results or feedback to: <u>eyeriss@mit.edu</u>

		Metric	Units	Input
ASIC Specs	Input	Name of CNN	Text	AlexNet
Process Technology	65nm LP TSMC (1.0V)	# of Images Tested	#	100
Core area (mm ²) /	0.073	Bits per operand	#	16
multiplier		Batch Size	#	4
On-Chip memory	1.14	# of Non Zero MACs	#	409M
(kB) / multiplier		Runtime	ms	115.3
Measured or Simulated	Measured	Power	mW	278
If Simulated, Syn or PnR? Which	n/a	Energy/non-zero MACs	pJ/MAC	21.7
corner?		DRAM access/non- zero MACs	operands /MAC	0.005

Opportunities in Architecture

14i7

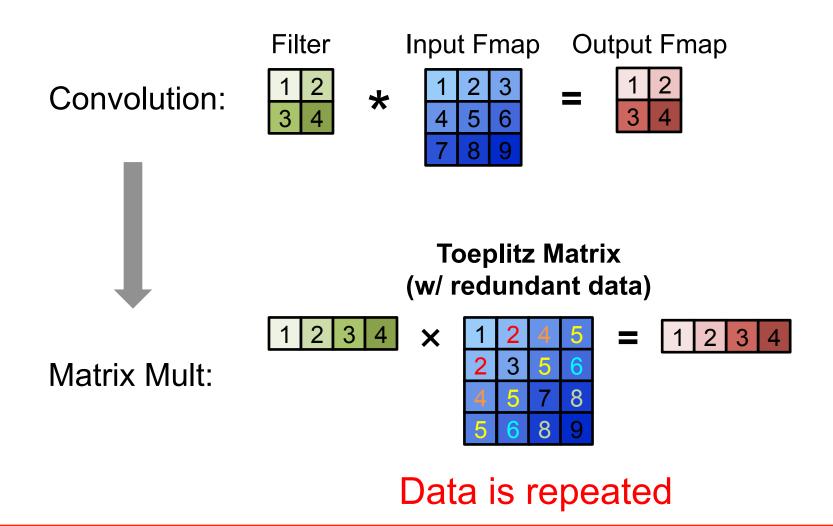
33 GPUs and CPUs Targeting Deep Learning

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Use matrix multiplication libraries on CPUs and GPUs

Map DNN to a Matrix Multiplication



Goal: Reduced number of operations to increase throughput

34

35 Reduce Operations in Matrix Multiplication

- Fast Fourier Transform [Mathieu, ICLR 2014]
 - **Pro:** Direct convolution $O(N_o^2 N_f^2)$ to $O(N_o^2 \log_2 N_o)$
 - Con: Increase storage requirements
- Strassen [Cong, ICANN 2014]
 - Pro: O(N³) to (N^{2.807})
 - Con: Numerical stability
- Winograd [Lavin, CVPR 2016]
 - Pro: 2.25x speed up for 3x3 filter
 - Con: Specialized processing depending on filter size

Analogy: Gauss's Multiplication Algorithm

$$(a+bi)(c+di) = (ac-bd) + (bc+ad)i.$$

4 multiplications + 3 additions

$$k_{1} = c \cdot (a + b)$$

$$k_{2} = a \cdot (d - c)$$

$$k_{3} = b \cdot (c + d)$$
Real part = $k_{1} - k_{3}$
Imaginary part = $k_{1} + k_{2}$.

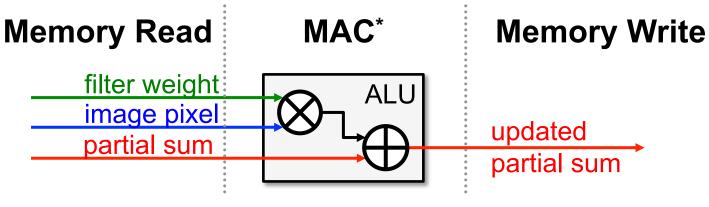
3 multiplications + 5 additions

Reduce number of multiplications, but **increase** number of additions

Accelerators

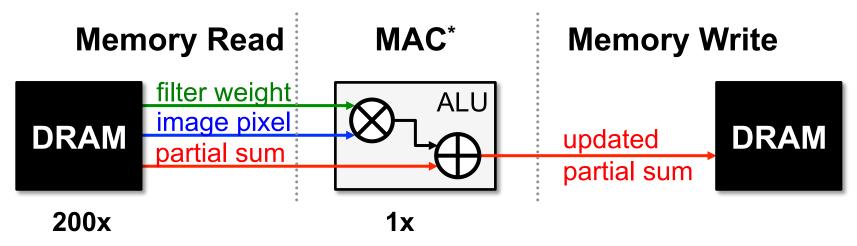
- Operations exhibit high parallelism
 - → high throughput possible

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck



* multiply-and-accumulate

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

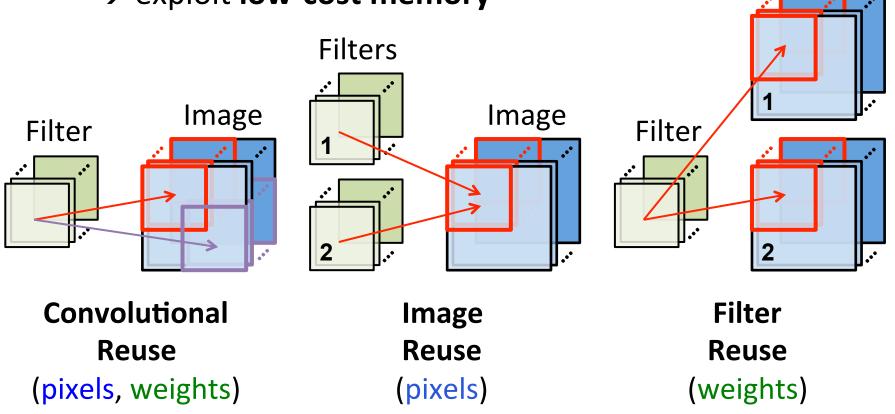


Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NIPS 2012] has 724M MACs
 → 2896M DRAM accesses required

- Operations exhibit high parallelism
 → high throughput possible
- Input data reuse opportunities (up to 500x)

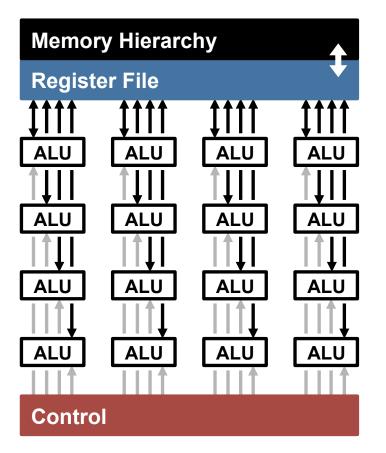
→ exploit **low-cost memory**



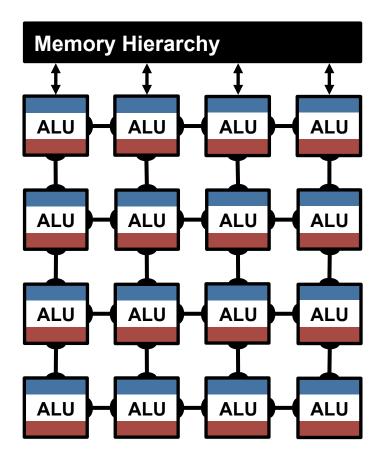
Images

42 Highly-Parallel Compute Paradigms

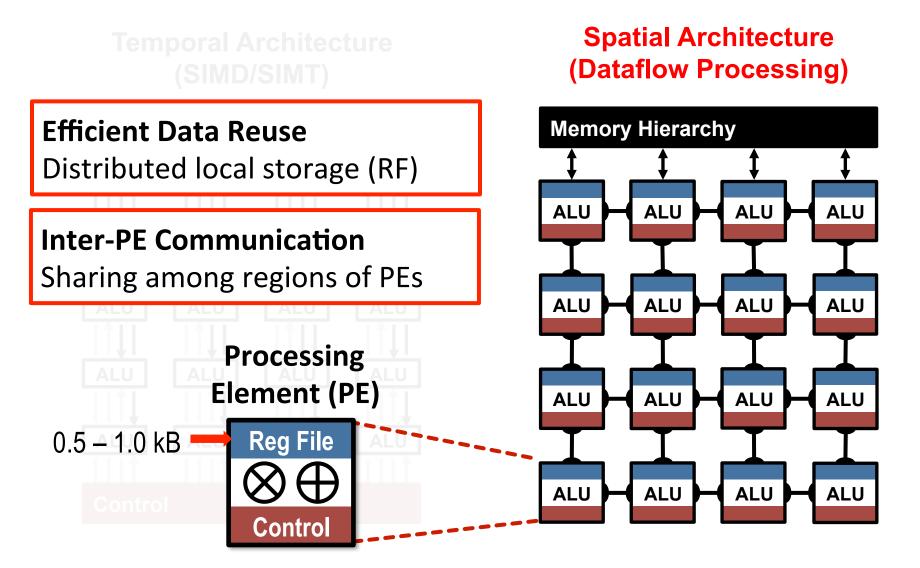
Temporal Architecture (SIMD/SIMT)



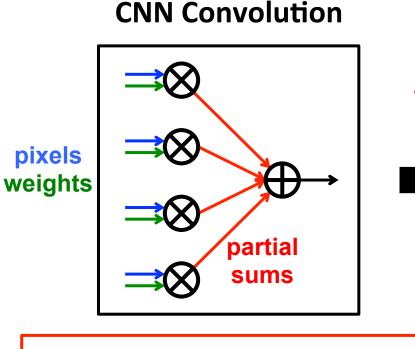
Spatial Architecture (Dataflow Processing)



Advantages of Spatial Architecture

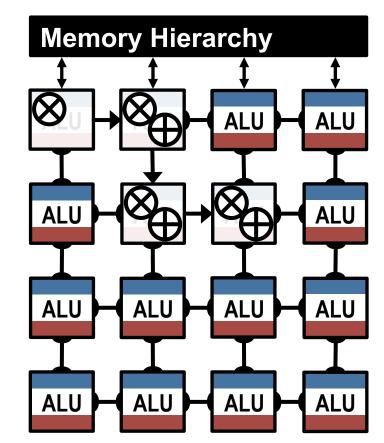


44 How to Map the Dataflow?



Goal: Increase reuse of input data (weights and pixels) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)



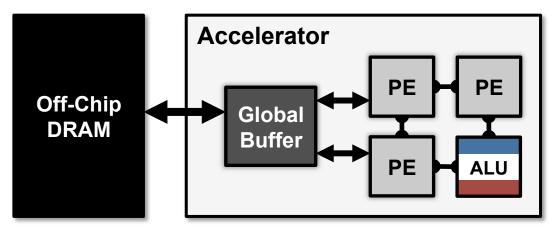
45

Energy-Efficient Dataflow

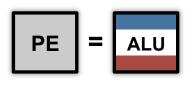
Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016

Maximize data reuse and accumulation at RF

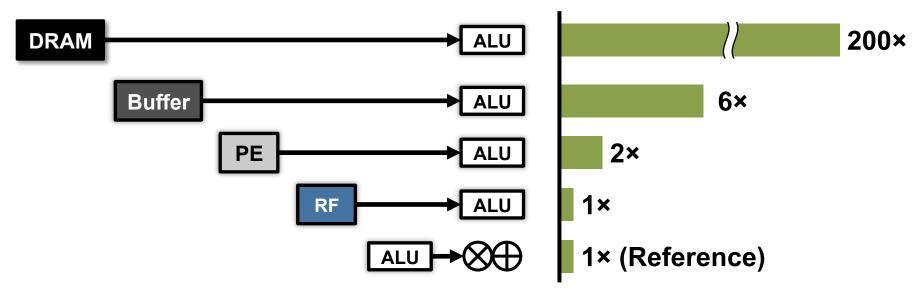
Data Movement is Expensive



Processing Engine

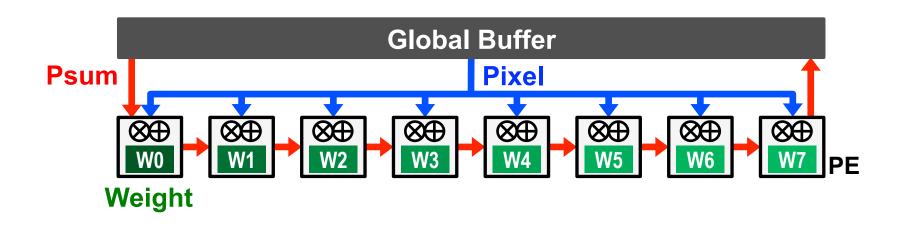


Data Movement Energy Cost



Maximize data reuse at lower levels of hierarchy

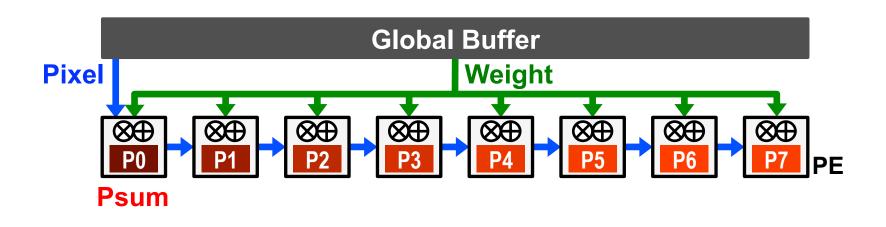
Weight Stationary (WS)



- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

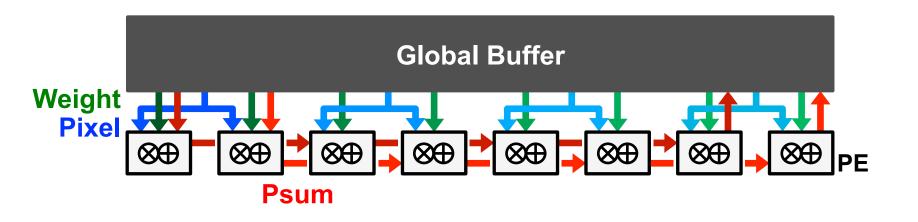
Output Stationary (OS)



- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

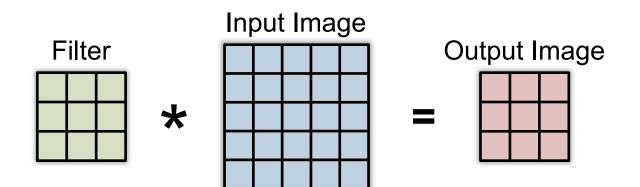
49 No Local Reuse (NLR)

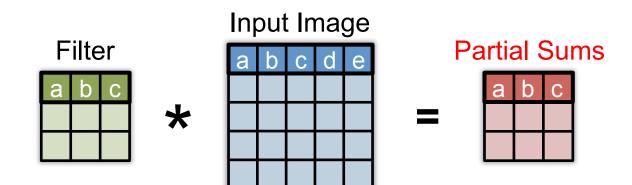


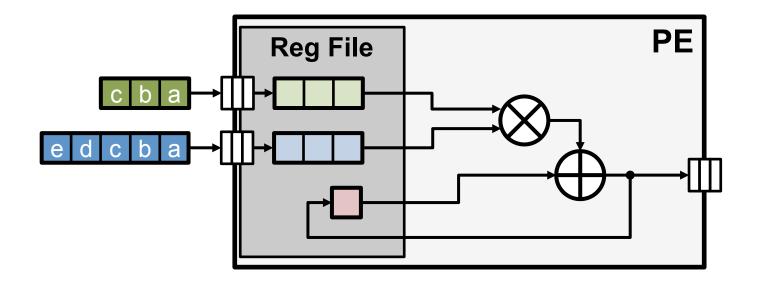
- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

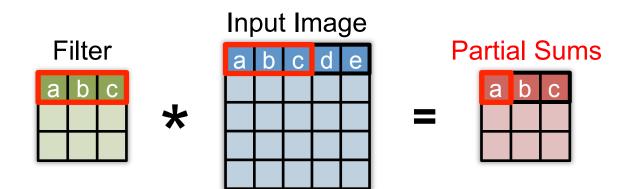
[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

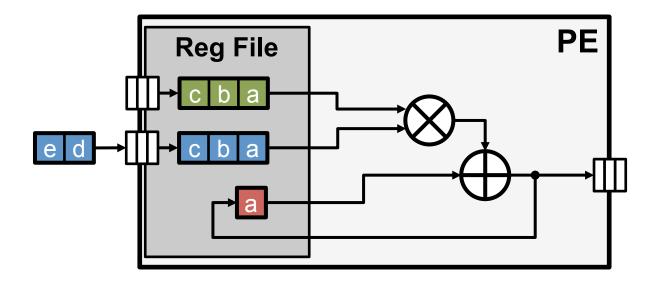
Row Stationary: Energy-efficient Dataflow

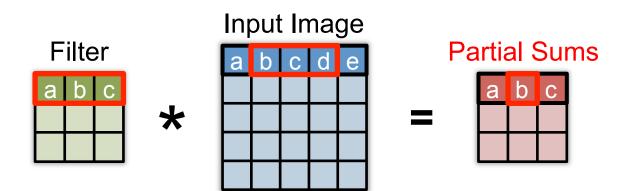


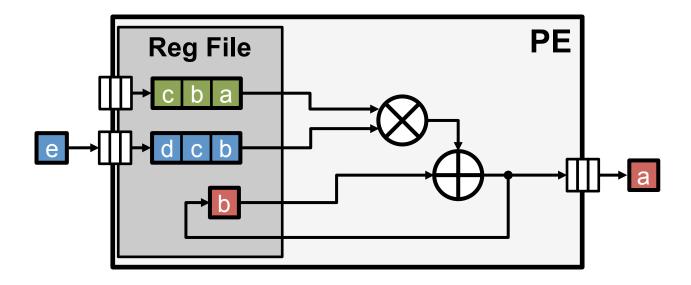


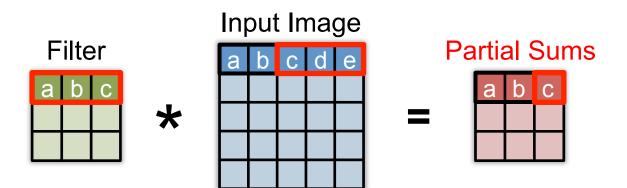


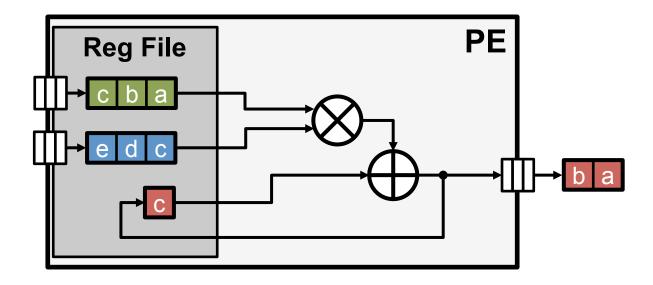




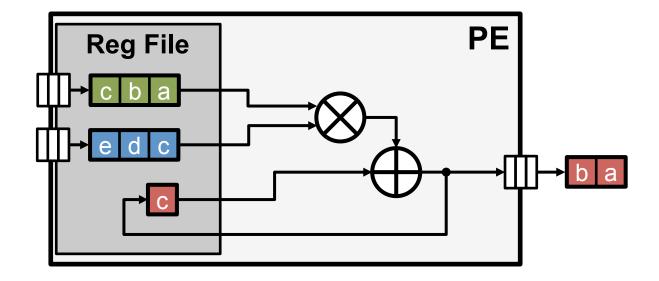




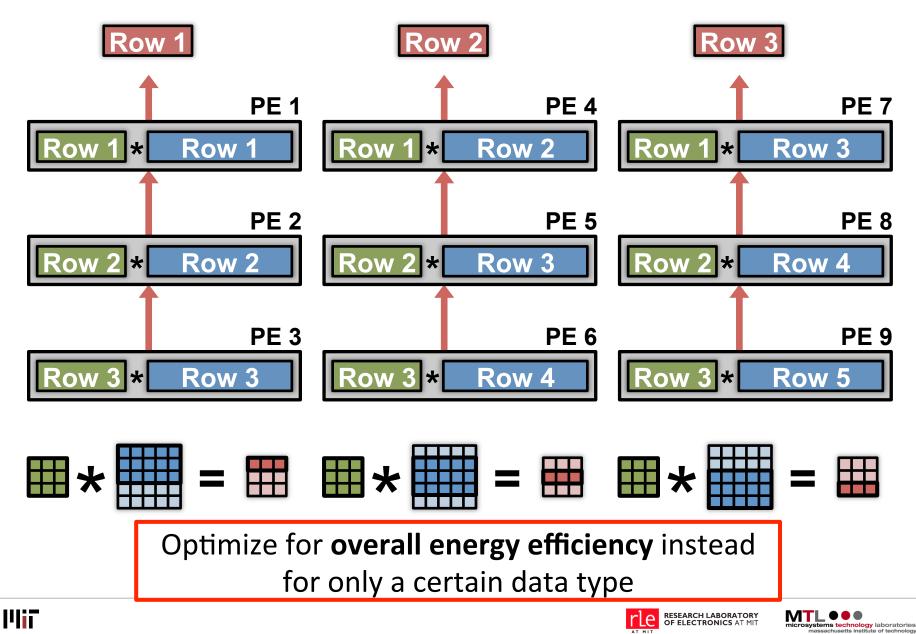




- Maximize row convolutional reuse in RF
 - Keep a filter row and image sliding window in RF
- Maximize row psum accumulation in RF



56 Row Stationary Dataflow



Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

• Row Stationary

Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

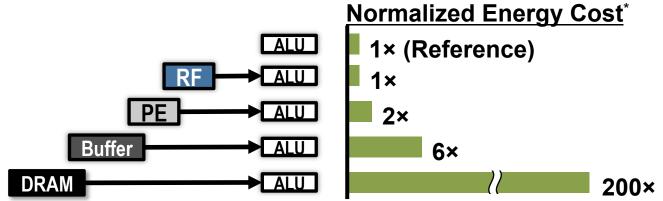
No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

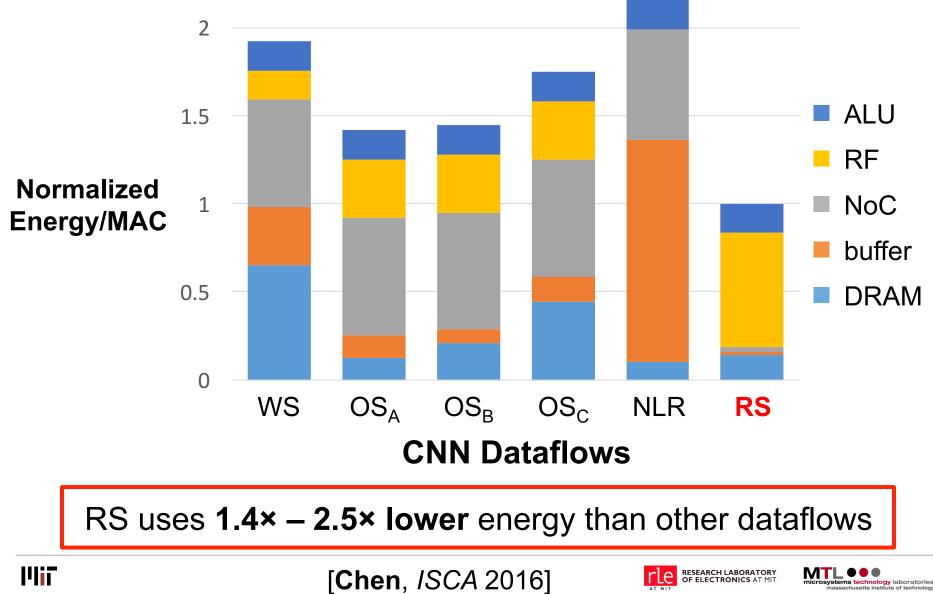
Row Stationary

Evaluation Setup

- Same Total Area
- AlexNet
- 256 PEs
- Batch size = 16



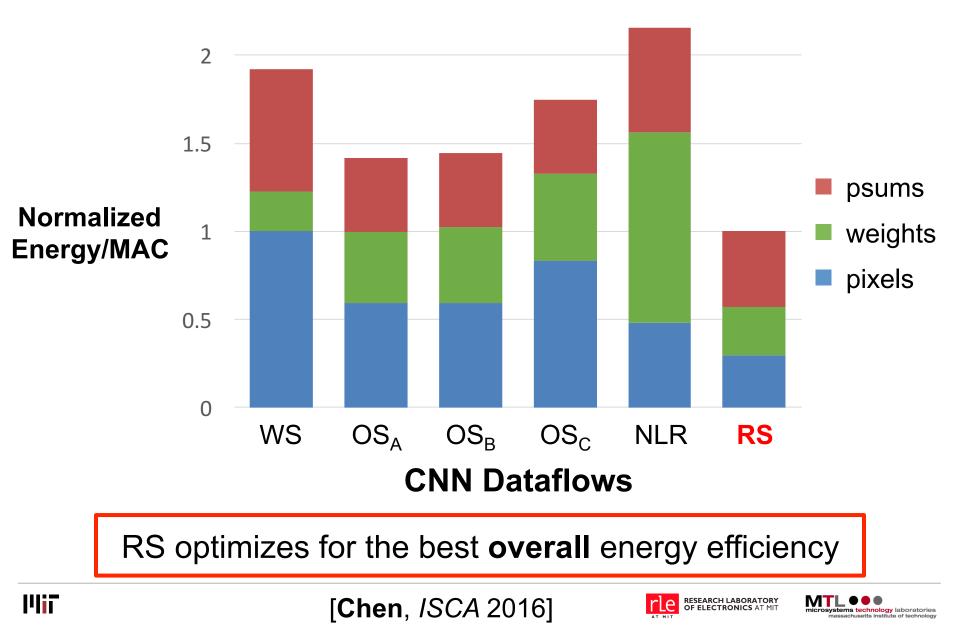
Dataflow Comparison: CONV Layers 59



tems technology laboratories

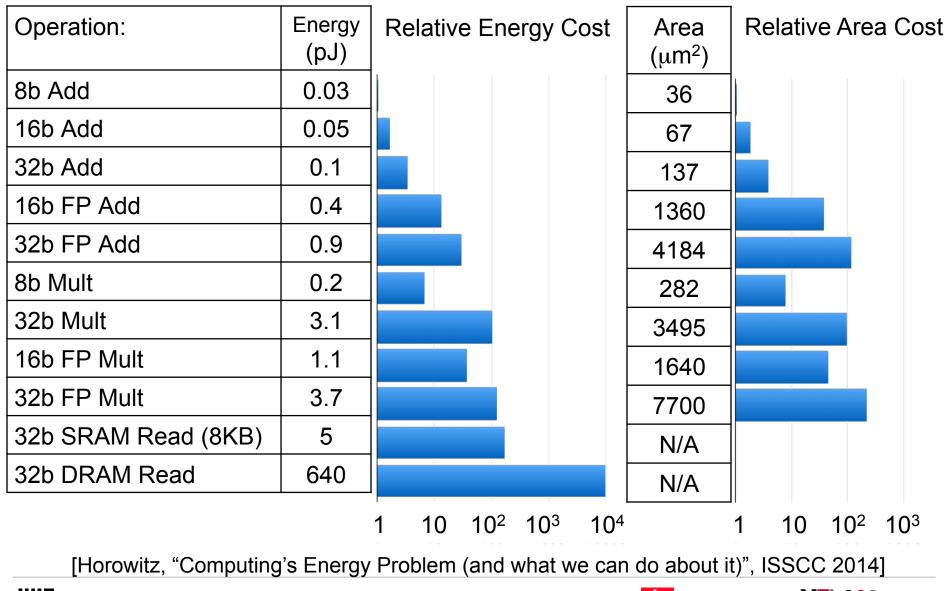
Plii

Dataflow Comparison: CONV Layers



Opportunities in Joint Algorithm Hardware Design

62 Cost of Operations



tems technology laboratories

Commercial Products using 8-bit Integer



Nvidia's Pascal (2016)

Google's TPU (2016)

Reduced Precision in Research

Reduce number of bits

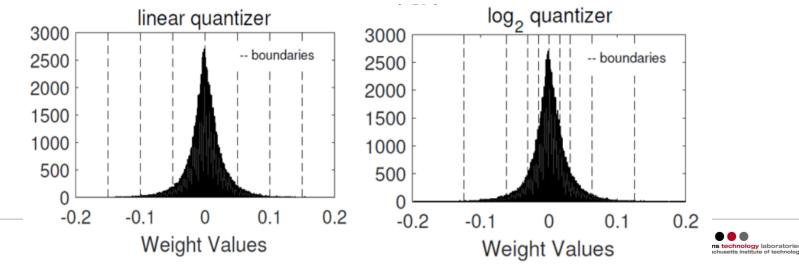
- Binary Nets [Courbariaux, NIPS 2015]

Reduce number of unique weights

- Ternary Weight Nets [Li, arXiv 2016]
- XNOR-Net [Rategari, ECCV 2016]

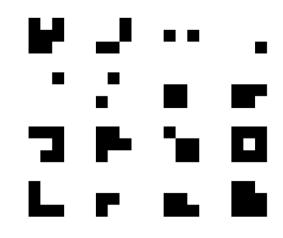
Non-Linear Quantization

- LogNet [Lee, ICASSP 2017]



Log Domain Quantization

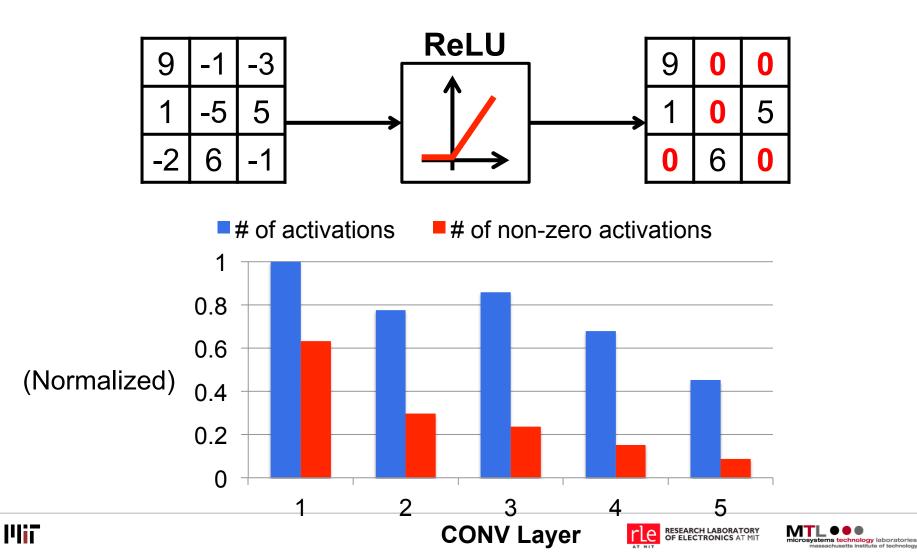
Binary Filters



Plii

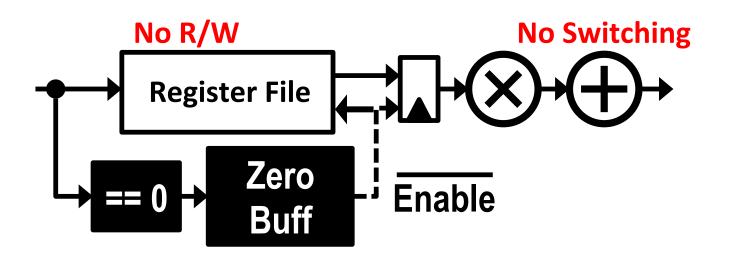
Sparsity in Data

Many zeros in output fmaps after ReLU

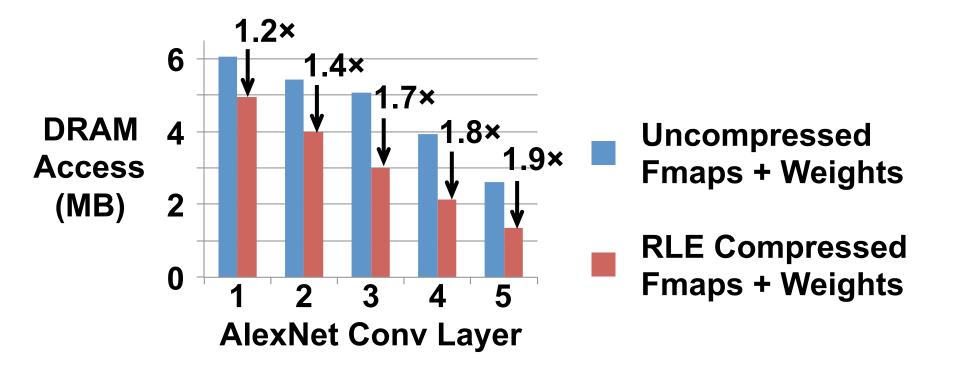


Sero Data Processing Gating

- Skip PE local memory access
- Skip MAC computation
- Save PE processing power by 45%



⁶⁷ Compression Reduces DRAM BW

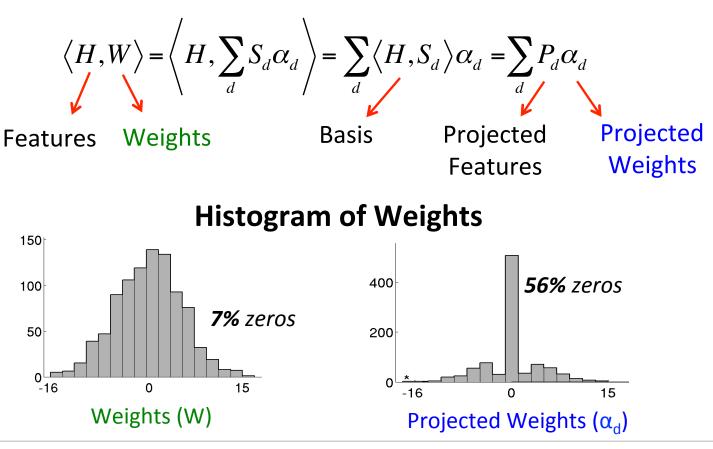


Simple RLC within 5% - 10% of theoretical entropy limit

Sparsity with Basis Projection

Reduce the number of multiplications by projecting onto a basis that increases sparsity (>1.8x power reduction)

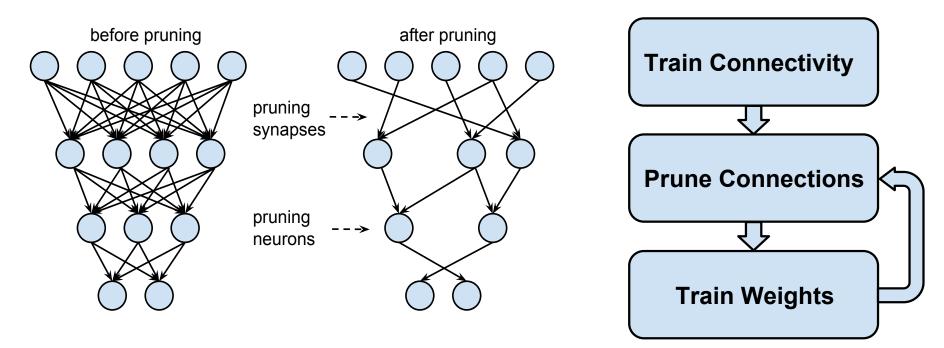
Basis Projection Equation



[Suleiman et al., VLSI 2016]

Pruning – Make Weights Sparse

Prune based on *magnitude* of weights



Example: AlexNet **Weight Reduction:** CONV layers 2.7x, FC layers 9.9x (Most reduction on fully connected layers) **Overall:** 9x weight reduction, 3x MAC reduction

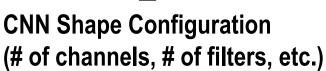
[Han et al., NIPS 2015]

69

70 Key Metrics for Embedded DNN

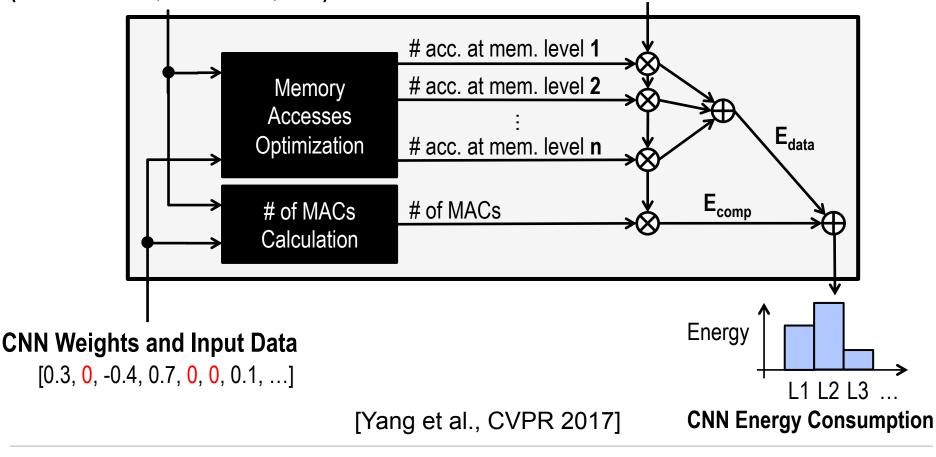
- Accuracy → Measured on Dataset
- Speed \rightarrow Number of MACs
- Storage Footprint → Number of Weights
- Energy \rightarrow ?

Intergy-Evaluation Methodology



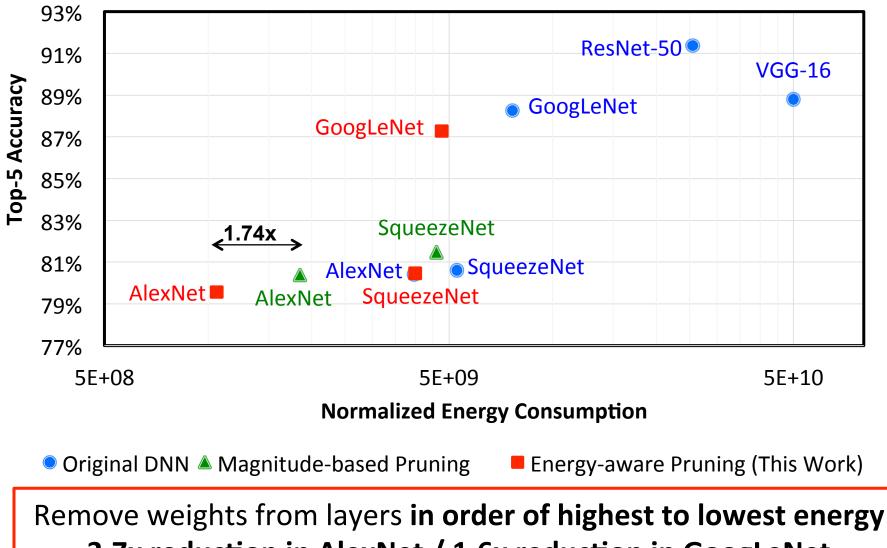
Hardware Energy Costs of each MAC and Memory Access

T MIT



Illi Energy estimation tool available at http://eyeriss.mit.edu

72 Energy-Aware Pruning



3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

[Yang et al., CVPR 2017]

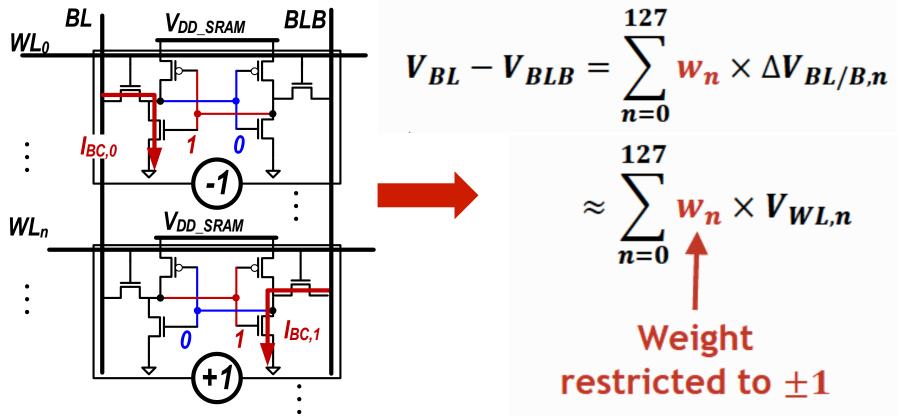
Opportunities in Mixed Signal Circuits

Reduce data movement by embedding computation into memory and sensor

⁷⁴ Mixed-Signal Circuit Processing

- Primarily target dot product
 - Reduced precision (e.g., binary weights)
- Challenges
 - Need ADC and DAC conversion
 - Weights trained in digital domain
 - More sensitive to variations and nonlinearity
- Reduce data movement from memory and sensor

Binary Weight Classifier in SRAM



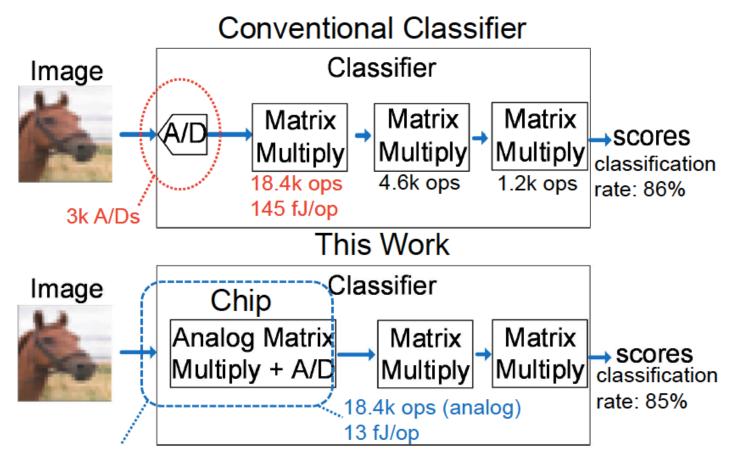
Weak because:

- 1. Weights restricted to be +/-1
- 2. Bit-cell discharge subject to variation, nonlinearity

[Zhang et al., VLSI 2016]

Switched Cap MAC for Classification

Reduce ADC conversions by 21x Input: 32x32x3 (6b) \rightarrow Output: 4x4x9 (6b); Weight 3b



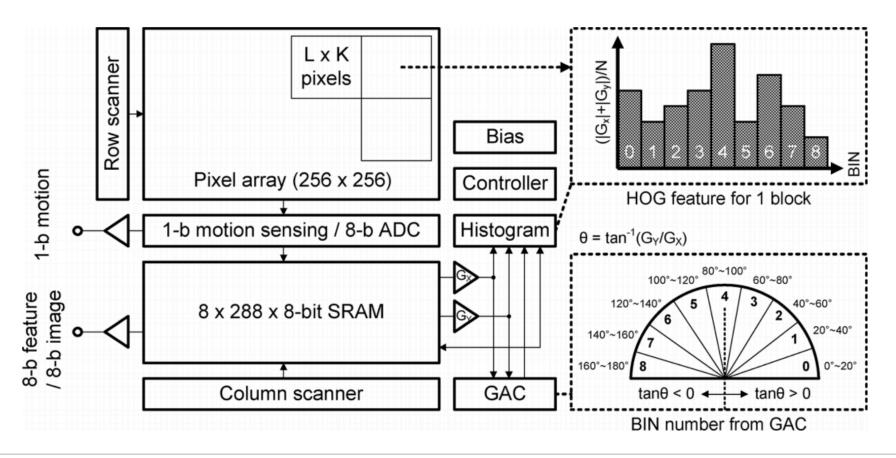
76

[Lee et al., ISSCC 2016]

TEXT Embedded Feature Extraction in Sensor

Compute the HOG feature in Image Sensor

- Reduce bandwidth by 96.5% (vs. 8b output)
- Mixed-signal computation of gradient angle



[Choi et al., ISSCC 2013]

RESEARCH LABORATORY OF ELECTRONICS AT MIT

s technology laboratories

l'liiT

Opportunities in Advanced Technologies

Reduce data movement by embedding computation into memory and sensor

I Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

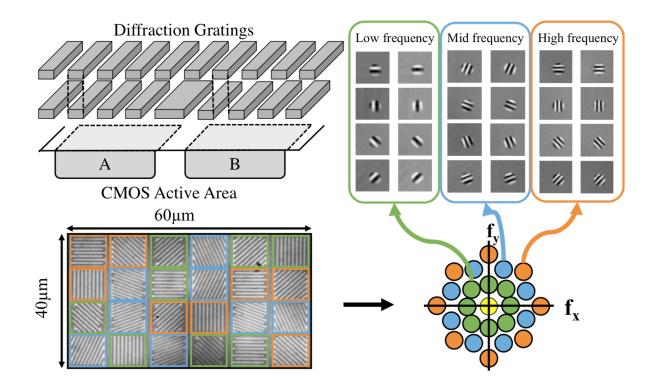
Non-Volatile Stacked DRAM **Resistive Memories** Global dataline Ir/Cn V₁ Bank Row Bank Bank WS **TSVs** Col dec Col de dataflow $I_1 = V_1 \times G_1$ **Global SA** Inter-bank data bus ٧, G_2 To local Global DRAM Die vault Eyeriss Logic Die Buffei To remote design $I_2 = V_2 \times G_2$ vault Vault (Channel) Engine [Gao et al., Tetris, ASPLOS 2017] $| = |_1 + |_2$ [Kim et al., NeuroCube, ISCA 2016] $= V_1 \times G_1 + V_2 \times G_2$

eDRAM [Chen et al., DaDianNao, MICRO 2014]

ASP: Angle Sensitive Pixels

Extract gradients directly in the sensor

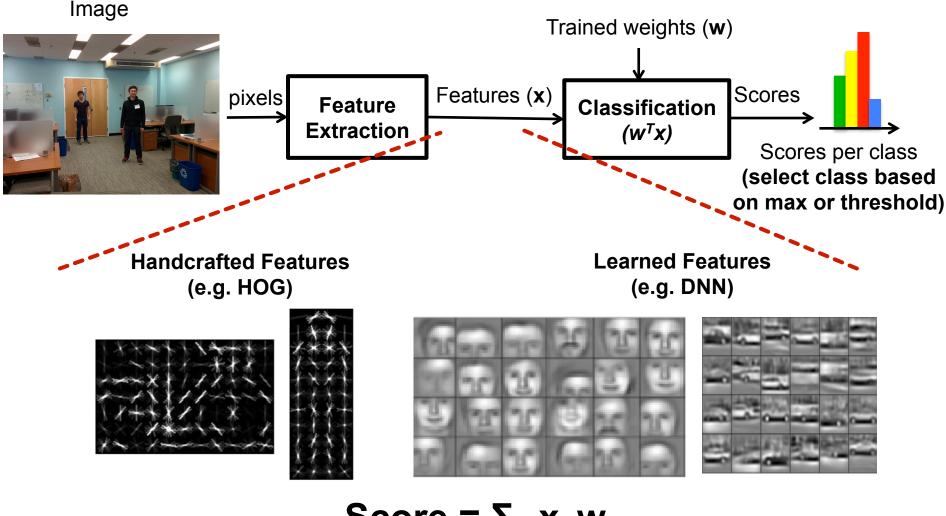
- Reduces read bandwidth by 10x
- Reduces ADC conversion by 10x

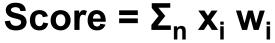


[Chen et al., CICC 2012]

Hand-Crafted vs. Learned Features

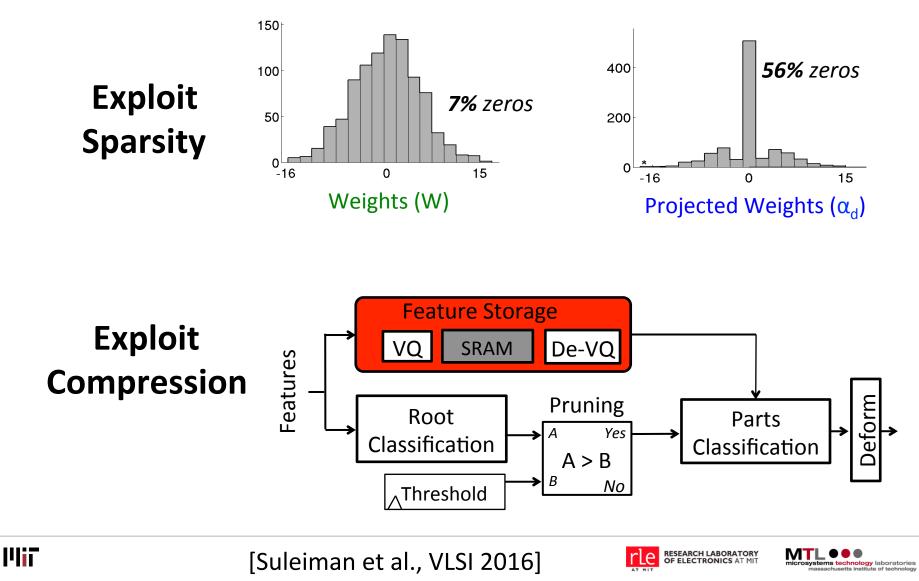
Machine Learning Pipeline (Inference)



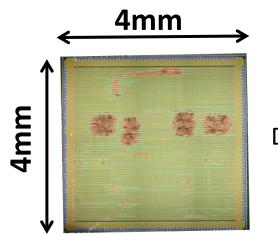


Joint Algorithm Hardware Optimizations

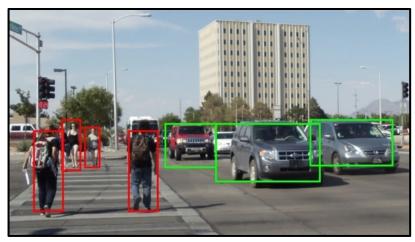
Histogram of Weights

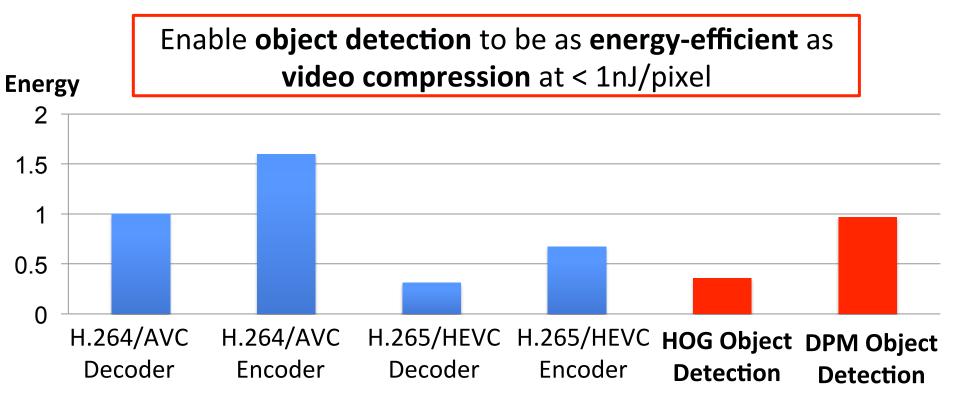


Energy-Efficient Object Detection

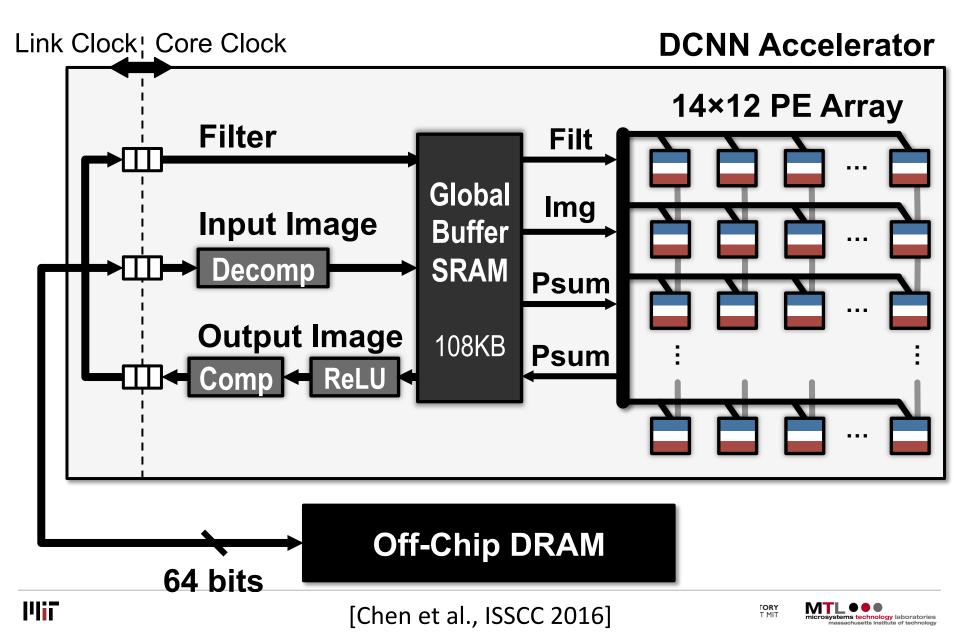


MIT Object Detection Chip [VLSI 2016]



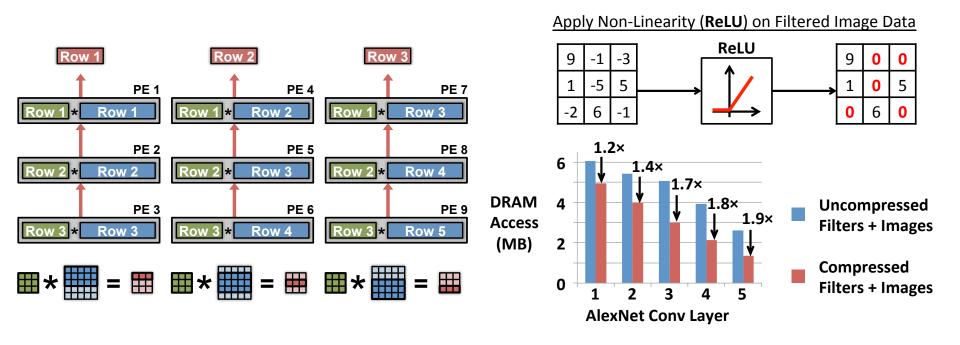


Eyeriss Deep CNN Accelerator



I Optimization to Reduce Data Movement

- Energy-efficient dataflow to reduce data movement
- Exploit data statistics for high energy efficiency

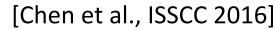


[Chen et al., ISCA 2016, ISSCC 2016]

Eyeriss Chip Spec & Measurement Results

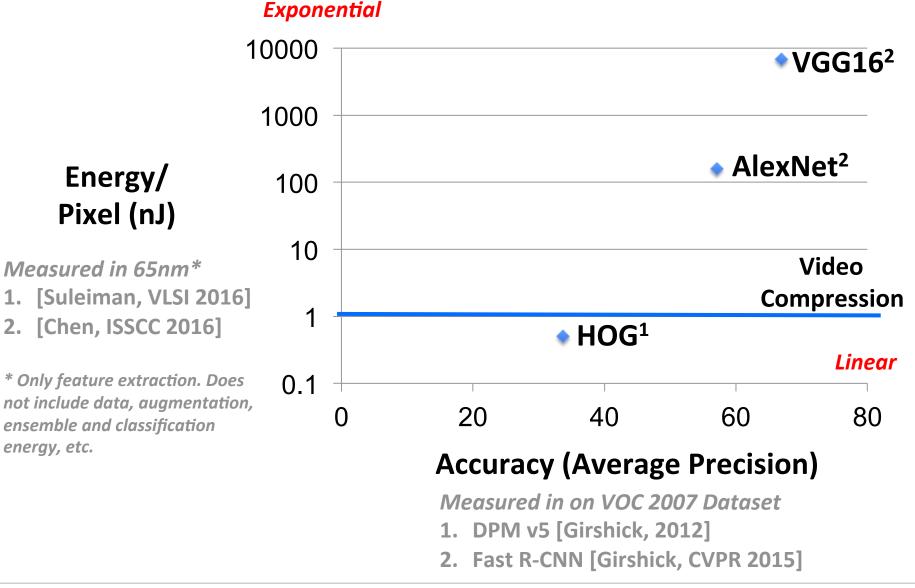
Technology	TSMC 65nm LP 1P9M		_ 4000 µm→	
On-Chip Buffer	108 KB	<	– +υυυ μιτι — →	
# of PEs	168			
Scratch Pad / PE	0.5 KB	Globa	I Spatial Array	
Core Frequency	100 – 250 MHz	Buffe	(168 PEs)	
Peak Performance	33.6 – 84.0 GOPS			4000
Word Bit-width	16-bit Fixed-Point			00
	Filter Width: $1 - 32$ Filter Height: $1 - 12$ Num. Filters: $1 - 1024$ Num. Channels: $1 - 1024$ Horz. Stride: $1-12$ Vert. Stride: 1, 2, 4			µm

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)



ystems technology laboratories

Features: Energy vs. Accuracy



2.

88

[Suleiman et al., ISCAS 2017]

ns technology laboratories

- Machine Learning is an important area of research
 - Wide range of applications
 - Various methods to extract features (hand-crafted and learned)
- Challenge is to balance the key metrics
 - Accuracy, Energy, Throughput, Cost, etc.
- Opportunities at various levels of hardware design
 - Architecture, Joint Algorithm-Hardware, Mixed-Signal Circuits, Advanced Technologies
 - Important to consider interactions between levels to maximize impact

Acknowledgements



Research conducted in the **MIT Energy-Efficient Multimedia Systems Group** would not be possible without the support of the following organizations:

91 References

More info about **Eyeriss** and **Tutorial on DNN Architectures** at

http://eyeriss.mit.edu

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing of Deep Neural Networks: A Tutorial and Survey*", arXiv, 2017

More info about research in the Energy-Efficient Multimedia Systems Group @ MIT

http://www.rle.mit.edu/eems

For updates

JFollow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

