
Hardware	for	Machine	Learning:		
Challenges	and	Opportuni9es	

Contact	Info	
email:	sze@mit.edu	
website:	www.rle.mit.edu/eems	

Vivienne	Sze,	Yu-Hsin	Chen,	Joel	Emer,	
Amr	Suleiman,	Zhengdong	Zhang	

MassachuseFs	Ins9tute	of	Technology	



Video	is	the	Biggest	Big	Data		

Need	energy-efficient	pixel	processing!	

Over	70%	of	today’s	Internet	traffic	is	video	
Over	300	hours	of	video	uploaded	to	YouTube	every	minute	

Over	500	million	hours	of	video	surveillance	collected	every	day	

Energy	limited	due	
to	ba1ery	capacity	

Power	limited	due	
to	heat	dissipa8on	
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Processing	at	“Edge”	instead	of	the	“Cloud”	3 

Privacy 



Processing	at	“Edge”	instead	of	the	“Cloud”	4 

Privacy 
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Actuator 
Image source: ericsson.com 
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Processing	at	“Edge”	instead	of	the	“Cloud”	5 

Privacy 

Latency 

Actuator 
Image source: ericsson.com 

Sensor 

Cloud 

Communication 

Image source: 
www.theregister.co.uk 



6 Example	Applica9ons	of	Machine	Learning	
Computer Vision Speech Recognition 

Game Play Medical 



Machine	Learning	Pipeline	(Inference)	

Main Computation: Dot Product of Features (x) and Weights (w) 

Score = Σn xi wi 

Feature 
Extraction 

Classification 
(wTx) 

Handcrafted Features  
(e.g. HOG) 

Learned Features  
(e.g. DNN) 

pixels Features (x) 

Trained weights (w) 
Image 

Scores 

Scores per class 
(select class based 

on max or threshold) 
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What	is	Deep	Learning?	8 

Image 
“Volvo 
XC90” 

Image Source: [Lee et al., Comm. ACM 2011] 



Weighted	Sums	

Image Source: Stanford 
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Why	is	Deep	Learning	Hot	Now?	10 

350M images 
uploaded per 
day 

2.5 Petabytes 
of customer 
data hourly 

300 hours of 
video uploaded 
every minute 

Big Data 
Availability 

GPU 
Acceleration 

New ML 
Techniques 



ImageNet:	Image	Classifica9on	Task	11 
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large error rate reduction 
due to Deep Learning 

[Russakovsky et al., IJCV 2015] 

Deep Learning-based designs Hand-crafted feature- 
based designs 



•  Face	recogniMon		
–  Deep	learning	accuracy	(97.25%)	vs.	Human	accuracy	(97.53%)	

Human	or	Superhuman	Accuracy	Level	

W1 

WN 

X1 

XN 

Y1 

YN 

…
 

…
 

non-linearity	

120 species of dogs 

•  Fine	grained	category	recogniMon	(e.g.	dogs,	monkeys,	snakes,	birds)		
–  Deep	learning	errors:	7	vs.	Human	errors:	28	

[Yaniv et al., CVPR 2014] 

[O.	Russakovsky	et	al.,	IJCV	2015]	
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Deep	Learning	on	Games	13 

Google DeepMind AlphaGo 
Go	is	exponen8ally	more	complex	than	chess	(10170	legal	posi8ons)	



Deep	Convolu9onal	Neural	Networks	14 

Classes FC 
Layers 

Modern deep CNN: up to 1000 CONV layers 

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 



Deep	Convolu9onal	Neural	Networks	15 

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 

Classes FC 
Layers 

1 – 3 layers 



Deep	Convolu9onal	Neural	Networks	16 

Classes CONV 
Layer 

CONV 
Layer 

FC 
Layers 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 

  
  

  
  

  
  



High-Dimensional	CNN	Convolu9on	

R 

R 

H 

Input Image (Feature Map) 

Filter 

H 
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R 

Filter 

High-Dimensional	CNN	Convolu9on	

Input Image (Feature Map) 

R 

Element-wise 
Multiplication 

H 

H 
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R 

Filter 

R 

High-Dimensional	CNN	Convolu9on	

E 

E 
Partial Sum (psum) 

Accumulation 

Input Image (Feature Map) Output Image 

Element-wise 
Multiplication 

H 

a pixel 

H 
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H 
R 

Filter 

R 

High-Dimensional	CNN	Convolu9on	

E 

Sliding Window Processing 

Input Image (Feature Map) 
a pixel 

Output Image 

H E 
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H 

High-Dimensional	CNN	Convolu9on	

R 

R 

C 

Input Image 

Output Image 
C Filter 

Many Input Channels (C) 

E 

H E 
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AlexNet:	3	–	192	Channels	(C)		



High-Dimensional	CNN	Convolu9on	

E 

Output Image Many 
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Output Channels (M) 
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AlexNet:	96	–	384	Filters	(M)		



High-Dimensional	CNN	Convolu9on	
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Image	batch	size:	1	–	256	(N)	



Large	Sizes	with	Varying	Shapes	

Layer	 Filter	Size	(R)	 #	Filters	(M)	 #	Channels	(C)	 Stride	
1	 11x11	 96	 3	 4	
2	 5x5	 256	 48	 1	
3	 3x3	 384	 256	 1	
4	 3x3	 384	 192	 1	
5	 3x3	 256	 192	 1	

AlexNet1	Convolu9onal	Layer	Configura9ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

1.	[Krizhevsky,	NIPS	2012]	

105M	MACs	 224M	MACs	 150M	MACs	
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•  LeNet	(1998)	
•  AlexNet	(2012)	
•  OverFeat	(2013)	
•  VGGNet	(2014)	
•  GoogleNet	(2014)	
•  ResNet	(2015)	

Popular	DNNs	
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[O. Russakovsky et al., IJCV 2015] 

AlexNet	

OverFeat	

GoogLeNet	

ResNet	

Cl
ar
ifa

i	

VGGNet	

ImageNet: Large Scale Visual 
Recognition Challenge (ILSVRC) 
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Metrics LeNet-5 AlexNet VGG-16 GoogLeNet  
(v1) 

ResNet-50 

Top-5 error n/a 16.4 7.4 6.7 5.3 

Input Size 28x28 227x227 224x224 224x224 224x224 
# of CONV Layers  2 5 16 21 (depth) 49 
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048 
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048 
Stride 1 1, 4 1 1, 2 1, 2 
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 
# of MACs 283k 666M 15.3G 1.43G 3.86G 
# of FC layers 2 3 3 1 1 
# of Weights 58k 58.6M 124M 1M 2M 
# of MACs 58k 58.6M 124M 1M 2M 
Total Weights 60k 61M 138M 7M 25.5M 
Total MACs 341k 724M 15.5G 1.43G 3.9G 

Summary	of	Popular	DNNs	

CONV Layers increasingly important! 
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•  Evaluate	hardware	using	the	appropriate	DNN	
model	and	dataset	
– Difficult	tasks	typically	require	larger	models	
– Different	datasets	for	different	tasks	

	

Complexity	versus	Difficulty	of	Task	27 

MNIST	 ImageNet	



Training	vs.	Inference	28 

Training 
(determine weights) 

Weights 
Large Datasets 

Inference 
(use weights) 



Challenges 
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• Accuracy	
–  Measured	on	a	publicly	available	dataset	
–  Popular	DNN	Models	

•  Programmability	
–  Support	mul9ple	applica9ons		
–  Different	weights	

•  Energy/Power	
–  Energy	per	opera9on	
–  DRAM	Bandwidth	

•  Throughput/Latency		
–  GOPS,	frame	rate,	delay	

•  Cost		
–  Area	(memory	and	logic	size)	

Key	Metrics	30 
ImageNet 

DRAM 

Chip 

Computer  
Vision 

Speech  
Recognition 
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Website to Summarize DNN Results 

•  http://eyeriss.mit.edu/benchmarking.html  
•  Send results or feedback to: eyeriss@mit.edu  

Metric Units Input 
Name of CNN Text AlexNet 
# of Images Tested # 100 
Bits per operand # 16 
Batch Size # 4 
# of Non Zero MACs # 409M 
Runtime  ms 115.3 
Power mW 278 
Energy/non-zero  
MACs 

pJ/MAC 21.7 

DRAM access/non-
zero MACs 

operands
/MAC 

0.005 

ASIC Specs Input 
Process 
Technology 

65nm LP TSMC 
(1.0V) 

Core area (mm2) /
multiplier 

0.073 

On-Chip memory 
(kB) / multiplier 

1.14 

Measured or 
Simulated 

Measured 

If Simulated, Syn 
or PnR? Which 
corner? 

n/a 



Opportunities in 
Architecture 

32 



GPUs	and	CPUs	Targe9ng	Deep	Learning	

Knights Mill: next gen Xeon 
Phi “optimized for deep 

learning”  

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016) 
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Use matrix multiplication libraries on CPUs and GPUs 



Map	DNN	to	a	Matrix	Mul9plica9on		34 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 

Data is repeated 
Goal: Reduced number of operations to increase throughput 



•  Fast	Fourier	Transform	[Mathieu,	ICLR	2014]	

– Pro:	Direct	convoluMon	O(No
2Nf

2)	to	O(No
2log2No)	

– Con:	Increase	storage	requirements	

•  Strassen	[Cong,	ICANN	2014]		
– Pro:	O(N3)	to	(N2.807)	
– Con:	Numerical	stability	

• Winograd	[Lavin,	CVPR	2016]		
– Pro:	2.25x	speed	up	for	3x3	filter	
– Con:	Specialized	processing	depending	on	filter	size	

Reduce	Opera9ons	in	Matrix	Mul9plica9on	35 



Analogy:	Gauss’s	Mul9plica9on	Algorithm	

4 multiplications + 3 additions 

3 multiplications + 5 additions 

36 

Reduce number of multiplications, 
but increase number of additions 
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Accelerators 



Proper9es	We	Can	Leverage	

•  OperaMons	exhibit	high	parallelism	
	à	high	throughput	possible	

38 



Proper9es	We	Can	Leverage	

•  OperaMons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Boileneck	

39 

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

* multiply-and-accumulate 

filter weight 
image pixel 
partial sum updated 

partial sum 



Proper9es	We	Can	Leverage	

•  OperaMons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Boileneck	

40 

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

DRAM DRAM 

•  Example:  AlexNet [NIPS 2012]  has 724M MACs  
  à 2896M DRAM accesses required 

Worst Case: all memory R/W are DRAM accesses 

filter weight 
image pixel 
partial sum updated 

partial sum 

200x 1x 



Proper9es	We	Can	Leverage	

•  OperaMons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniMes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu9onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	

	

2 

1 

Filters	

Image	

Filter	
Reuse	

(weights)	
	

Filter	

Images	

2 

1 
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Highly-Parallel	Compute	Paradigms	42 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

Spatial Architecture 
(Dataflow Processing) 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 



Advantages	of	Spa9al	Architecture	43 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica9on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  



How	to	Map	the	Dataflow?	

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

CNN	Convolu9on	

? 

44 

pixels 
weights 

partial 
sums 

Goal:	Increase	reuse	of	input	data	
(weights	and	pixels)	and	local	
par9al	sums	accumulaMon	
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Energy-Efficient Dataflow 
Yu-Hsin	Chen,	Joel	Emer,	Vivienne	Sze,	ISCA	2016	

Maximize	data	reuse	and	accumula9on	at	RF	



Data	Movement	is	Expensive	46 

DRAM ALU 

Buffer ALU 

PE ALU 

RF ALU 

ALU 

Data Movement Energy Cost 

200× 

6× 

2× 

1× 

1× (Reference) 

Off-Chip 
DRAM ALU = PE 

Processing Engine 

Accelerator 

Global
Buffer 

PE 

PE PE 

ALU 

Maximize	data	reuse	at	lower	levels	of	hierarchy	



Weight	Sta9onary	(WS)	

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Examples:  
  [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 

[Park, ISSCC 2015] [Origami, GLSVLSI 2015] 

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Pixel 

PE 
Weight 

47 



•  Minimize partial sum R/W energy consumption 
−  maximize local accumulation 

•  Examples:  
  

Output	Sta9onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015] 
[Peemen, ICCD 2013] 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Pixel Weight 

PE 
Psum 
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•  Use a large global buffer as shared storage 
−  Reduce DRAM access energy consumption 

•  Examples:  
  

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] 
[Zhang, FPGA 2015] 

PE 
        Pixel 

Psum 

Global Buffer 
Weight 

49 



Row	Sta9onary:	Energy-efficient	Dataflow	

* = 
Filter Output Image 

Input Image 

50 

[Chen, ISCA 2016] 



1D	Row	Convolu9on	in	PE	

* = 
Filter Partial Sums 
a b c a b c 

a b c d e 

PE Reg File 

  
  

  

b a c 

d c e a b 

Input Image 
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1D	Row	Convolu9on	in	PE	

* = 
Filter 
a b c a b c 

a b c d e 

e d 

PE 
b a c 

Reg File 

b a c 

a 

  
  

  

Partial Sums 
Input Image 
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1D	Row	Convolu9on	in	PE	

* = 
a b c 

a b c d e Partial Sums 
Input Image 

PE 
b a c 

Reg File 

c b d 

b 

  
  

  e 
a 

Filter 
a b c 
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1D	Row	Convolu9on	in	PE	

* = 
a b c 

a b c d e Partial Sums 
Input Image 

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

Filter 
a b c 
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1D	Row	Convolu9on	in	PE	

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

•  Maximize row convolutional reuse in RF 
−  Keep a filter row and image sliding window in RF 

•  Maximize row psum accumulation in RF 

55 



Row	Sta9onary	Dataflow	

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 

56 

OpMmize	for	overall	energy	efficiency	instead	
for	only	a	certain	data	type	



• Weight	Sta9onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta9onary	
–  Minimize	movement	of	parMal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta9onary	
	

Evaluate	Reuse	in	Different	Dataflows	57 



• Weight	Sta9onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta9onary	
–  Minimize	movement	of	parMal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta9onary	
	

Evaluate	Reuse	in	Different	Dataflows	58 

Evalua9on	Setup	
•  Same	Total	Area	
•  AlexNet	
•  256	PEs	
•  Batch	size	=	16	

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 
6× 

PE ALU 2× 
1× 
1× (Reference) 

DRAM ALU 



Dataflow	Comparison:	CONV	Layers	

RS uses 1.4× – 2.5× lower energy than other dataflows 

Normalized 
Energy/MAC 

ALU 

RF 

NoC 

buffer 

DRAM 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS 

CNN Dataflows 
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[Chen, ISCA 2016] 



Dataflow	Comparison:	CONV	Layers	

0

0.5

1

1.5

2

Normalized 
Energy/MAC 

WS OSA OSB OSC NLR RS 

psums 

weights 

pixels 

RS optimizes for the best overall energy efficiency 

CNN Dataflows 

60 

[Chen, ISCA 2016] 



Opportunities in Joint 
Algorithm Hardware Design 

61 



Cost	of	Opera9ons	
Operation: Energy 

(pJ) 
8b Add 0.03 
16b Add 0.05 
32b Add 0.1 
16b FP Add 0.4 
32b FP Add 0.9 
8b Mult 0.2 
32b Mult 3.1 
16b FP Mult 1.1 
32b FP Mult 3.7 
32b SRAM Read (8KB) 5 
32b DRAM Read 640 

Area 
(µm2) 

36 
67 

137 
1360 
4184 
282 

3495 
1640 
7700 
N/A 
N/A 

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]  

Relative Energy Cost 

1 10 102 103 104 

Relative Area Cost 

1 10 102 103 
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Commercial	Products	using	8-bit	Integer	

Nvidia’s Pascal (2016) Google’s TPU (2016) 
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•  Reduce	number	of	bits		
–  Binary	Nets	[Courbariaux,	NIPS	2015]		

•  Reduce	number	of	unique	weights	
–  Ternary	Weight	Nets	[Li,	arXiv	2016]	
–  XNOR-Net	[Rategari,	ECCV	2016]	

•  Non-Linear	Quan9za9on	
–  LogNet	[Lee,	ICASSP	2017]	

Reduced	Precision	in	Research	64 

Binary Filters 

Log Domain Quantization 



Sparsity	in	Data	

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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Zero	Data	Processing	Ga9ng	

•  Skip	PE	local	memory	access	

•  Skip	MAC	computa9on	

•  Save	PE	processing	power	by	45%	

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register	File	

No	R/W	 No	Switching	

66 

[Chen	et	al.,	ISSCC	2016]	



Compression	Reduces	DRAM	BW	

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5 
AlexNet Conv Layer 

DRAM  
Access  

(MB)  

0 

2 

4 

6 
1.2× 

1.4× 
1.7× 

1.8× 
1.9× 

Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

[Chen et al., ISSCC 2016] 

Simple RLC within 5% - 10% of theoretical entropy limit 
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Sparsity	with	Basis	Projec9on	
Reduce	the	number	of	mulMplicaMons	by	projecMng	onto	a	

basis	that	increases	sparsity	(>1.8x	power	reducMon)	

Projected	Weights	(αd)	

56%	zeros	

Weights	(W)	

7%	zeros	

H,W = H, Sdαd
d
∑ = H,Sd αd =

d
∑ Pd

d
∑ αd

Features	 Weights	 Projected		
Features	

Projected		
Weights	

Histogram	of	Weights	

Basis	Projec9on	Equa9on	

Basis	

68 

[Suleiman et al., VLSI 2016] 



Pruning	–	Make	Weights	Sparse	

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune based on magnitude of weights 

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Example: AlexNet 
Weight Reduction: CONV layers 2.7x, FC layers 9.9x 
(Most reduction on fully connected layers) 
Overall: 9x weight reduction, 3x MAC reduction 

[Han et al., NIPS 2015] 
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• Accuracy	à	Measured	on	Dataset	

•  Speed	à	Number	of	MACs	

•  Storage	Footprint	à	Number	of	Weights	

•  Energy	à	?	

Key	Metrics	for	Embedded	DNN	70 



Energy-Evalua9on	Methodology	71 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Energy estimation tool available at http://eyeriss.mit.edu    

[Yang et al., CVPR 2017] 



[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
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Normalized	Energy	Consump9on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

Remove	weights	from	layers	in	order	of	highest	to	lowest	energy	
3.7x	reduc9on	in	AlexNet	/	1.6x	reduc9on	in	GoogLeNet	

Energy-Aware	Pruning	

1.74x 



Opportunities in Mixed 
Signal Circuits 
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Reduce	data	movement	by	embedding	computa9on	into	
memory	and	sensor	



•  Primarily	target	dot	product	
– Reduced	precision	(e.g.,	binary	weights)	

•  Challenges	
– Need	ADC	and	DAC	conversion	

•  Weights	trained	in	digital	domain	

– More	sensi9ve	to	varia9ons	and	nonlinearity	

• Reduce	data	movement	from	memory	and	sensor	

Mixed-Signal	Circuit	Processing	74 



Binary	Weight	Classifier	in	SRAM	

Weak because: 
1. Weights restricted to be +/-1 
2. Bit-cell discharge subject to variation, nonlinearity 

WLn

VDD_SRAMBL BLB
WL0

IBC,0

IBC,1

1 0

10

-1

+1

VDD_SRAM

[Zhang et al., VLSI 2016] 
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Switched	Cap	MAC	for	Classifica9on	

Reduce	ADC	conversions	by	21x	
Input:	32x32x3	(6b)	à	Output:	4x4x9	(6b);	Weight	3b	

[Lee et al., ISSCC 2016] 
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Embedded	Feature	Extrac9on	in	Sensor	

[Choi et al., ISSCC 2013] 

Compute	the	HOG	feature	in	Image	Sensor	
•  Reduce	bandwidth	by	96.5%	(vs.	8b	output)	
•  Mixed-signal	computaMon	of	gradient	angle	

77 



Opportunities in Advanced 
Technologies 

78 

Reduce	data	movement	by	embedding	computa9on	into	
memory	and	sensor	



Advanced	Memory	Technologies	
Many new memories and devices explored to reduce data movement 

V1 
G1 

I1 = V1×G1 
V2 

G2 

I2 = V2×G2 

I = I1 + I2  
= V1×G1 + V2×G2 

Stacked DRAM 

eDRAM  
[Chen et al., DaDianNao, MICRO 2014] 

[Kim et al., NeuroCube, ISCA 2016] 
[Gao et al., Tetris, ASPLOS 2017] 

Non-Volatile 
Resistive Memories 

[Shafiee et al., ISCA 2016] 
[Chi et al., PRIME, ISCA 2016] 

WS  
dataflow 

Eyeriss 
design 
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ASP:	Angle	Sensi9ve	Pixels	

Extract	gradients	directly	in	the	sensor	
•  Reduces	read	bandwidth	by	10x		
•  Reduces	ADC	conversion	by	10x	

[Chen et al., CICC 2012] 
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Hand-Crafted vs. Learned 
Features 



Machine	Learning	Pipeline	(Inference)	

Score = Σn xi wi 

Feature 
Extraction 

Classification 
(wTx) 

Handcrafted Features  
(e.g. HOG) 

Learned Features  
(e.g. DNN) 

pixels Features (x) 

Trained weights (w) 
Image 

Scores 

Scores per class 
(select class based 

on max or threshold) 
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Joint	Algorithm	Hardware	Op9miza9ons	

Projected	Weights	(αd)	

56%	zeros	

Weights	(W)	

7%	zeros	

Histogram	of	Weights	
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Exploit		
Sparsity	

VQ	 SRAM	

Fe
at
ur
es
	

Root	
ClassificaMon	

Feature	Storage	

Parts	
ClassificaMon	A	>	B	

Threshold	

Yes	

No	

A	

B	

De
fo
rm

	

Pruning	

De-VQ	Exploit		
Compression	

[Suleiman	et	al.,	VLSI	2016]	



Energy-Efficient	Object	Detec9on	

0 

0.5 

1 

1.5 

2 
Energy	

HOG	Object	
Detec9on	

DPM	Object	
Detec9on	

84 

H.264/AVC	
Decoder	

H.264/AVC	
Encoder	

H.265/HEVC	
Decoder	

H.265/HEVC	
Encoder	

Enable	object	detec9on	to	be	as	energy-efficient	as	
video	compression	at	<	1nJ/pixel	

MIT	Object	
DetecMon	Chip		
[VLSI	2016]	
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Eyeriss	Deep	CNN	Accelerator	85 

Off-Chip DRAM 

… 

… 

… 

… 
…

 

…
 

Decomp 

Comp ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Global 
Buffer 
SRAM 

 
108KB 

64 bits 

DCNN Accelerator 

14×12 PE Array 

  
  

Link Clock  Core Clock  

[Chen	et	al.,	ISSCC	2016]	



•  Energy-efficient	dataflow	to	reduce	data	movement	

•  Exploit	data	sta9s9cs	for	high	energy	efficiency	

	

Op9miza9on	to	Reduce	Data	Movement	86 

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 
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Row 3 Row 3 

Row 1 
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AlexNet	Conv	Layer	

DRAM		
Access		
(MB)		
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4	
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1.2×	

1.4×	
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1.8×	
1.9×	

Uncompressed	
Filters	+	Images	

Compressed	
Filters	+	Images	

[Chen et al., ISCA 2016, ISSCC 2016] 



Eyeriss	Chip	Spec	&	Measurement	Results	87 

Technology TSMC 65nm LP 1P9M 
On-Chip Buffer 108 KB 

# of PEs 168 
Scratch Pad / PE 0.5 KB 
Core Frequency 100 – 250 MHz 

Peak Performance 33.6 – 84.0 GOPS 
Word Bit-width 16-bit Fixed-Point 

Natively Supported 
CNN Shapes 

Filter Width: 1 – 32 
Filter Height: 1 – 12 
Num. Filters: 1 – 1024 
Num. Channels: 1 – 1024 
Horz. Stride: 1–12 
Vert. Stride: 1, 2, 4 

4000 µm 

4000 µm
 

Global 
Buffer 

Spatial Array 
(168 PEs) 

AlexNet:	For	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB	(buffer)	and	15.4MB	(DRAM)			

[Chen	et	al.,	ISSCC	2016]	



Features:	Energy	vs.	Accuracy		88 
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0 20 40 60 80 

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac8on.	Does	
not	include	data,	augmenta8on,	
ensemble	and	classifica8on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen8al	

Linear	

Video		
Compression	

[Suleiman	et	al.,	ISCAS	2017]	



• Machine	Learning	is	an	important	area	of	research	
– Wide	range	of	applicaMons	
– Various	methods	to	extract	features	(hand-craxed	and	
learned)	

•  Challenge	is	to	balance	the	key	metrics	
– Accuracy,	Energy,	Throughput,	Cost,	etc.	

• Opportuni9es	at	various	levels	of	hardware	design	
– Architecture,	Joint	Algorithm-Hardware,	Mixed-Signal	
Circuits,	Advanced	Technologies	

–  Important	to	consider	interacMons	between	levels	to	
maximize	impact	

Summary	89 
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