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USING DATAFLOW TO OPTIMIZE
ENERGY EFFICIENCY OF DEEP NEURAL

NETWORK ACCELERATORS
.................................................................................................................................................................................................................

THE AUTHORS DEMONSTRATE THE KEY ROLE DATAFLOWS PLAY IN OPTIMIZING ENERGY

EFFICIENCY FOR DEEP NEURAL NETWORK (DNN) ACCELERATORS. THEY INTRODUCE BOTH A

SYSTEMATIC APPROACH TO ANALYZE THE PROBLEM AND A NEW DATAFLOW, CALLED

ROW-STATIONARY, THAT IS UP TO 2.5 TIMES MORE ENERGY EFFICIENT THAN EXISTING

DATAFLOWS IN PROCESSING A STATE-OF-THE-ART DNN. THIS ARTICLE PROVIDES

GUIDELINES FOR FUTURE DNN ACCELERATOR DESIGNS.

......Recent breakthroughs in deep
neural networks (DNNs) are leading to an
industrial revolution based on AI. The super-
ior accuracy of DNNs, however, comes at
the cost of high computational complexity.
General-purpose processors no longer deliver
sufficient processing throughput and energy
efficiency for DNNs. As a result, demands
for dedicated DNN accelerators are increas-
ing in order to support the rapidly growing
use of AI.

The processing of a DNN mainly com-
prises multiply-and-accumulate (MAC) oper-
ations (see Figure 1). Most of these MACs are
performed in the DNN’s convolutional
layers, in which multichannel filters are con-
volved with multichannel input feature maps
(ifmaps, such as images). This generates par-
tial sums (psums) that are further accumu-
lated into multichannel output feature maps
(ofmaps). Because the MAC operations have
few data dependencies, DNN accelerators can

use high parallelism to achieve high process-
ing throughput. However, this processing
also requires a significant amount of data
movement: each MAC performs three reads
and one write of data access. Because moving
data can consume more energy than the
computation itself,1 optimizing data move-
ment becomes key to achieving high energy
efficiency.

Data movement can be optimized by
exploiting data reuse in a multilevel storage
hierarchy. By maximizing the reuse of data in
the lower-energy-cost storage levels (such as
local scratchpads), thus reducing data accesses
to the higher-energy-cost levels (such as
DRAM), the overall data movement energy
consumption is minimized.

In fact, DNNs present many data reuse
opportunities. First, there are three types
of input data reuse: filter reuse, wherein
each filter weight is reused across multiple
ifmaps; ifmap reuse, wherein each ifmap
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pixel is reused across multiple filters; and
convolutional reuse, wherein both ifmap pix-
els and filter weights are reused due to the
sliding-window processing in convolutions.
Second, the intermediate psums are reused
through the accumulation of ofmaps. If not
accumulated and reduced as soon as possi-
ble, the psums can pose additional storage
pressure.

A design can exploit these data reuse
opportunities by finding the optimal MAC
operation mapping, which determines both
the temporal and spatial scheduling of the
MACs on a highly parallel architecture.
Ideally, data in the lower-cost storage levels is
reused by as many MACs as possible before
replacement. However, due to the limited
amount of local storage, input data reuse
(ifmaps and filters) and psum reuse cannot
be fully exploited simultaneously. For exam-
ple, reusing the same input data for multiple
MACs generates psums that cannot be accu-
mulated together and, as a result, consume
extra storage space. Therefore, the system
energy efficiency is maximized only when the
mapping balances all types of data reuse in a
multilevel storage hierarchy.

The search for the mapping that maxi-
mizes system energy efficiency thus becomes
an optimization process. This optimization
must consider the following factors: the data
reuse opportunities available for a given
DNN shape and size (for example, the num-
ber of filters, number of channels, size of fil-
ters, and feature map size), the energy cost of
data access at each level of the storage hier-
archy, and the available processing parallelism
and storage capacity. The first factor is a func-
tion of workload, whereas the second and
third factors are a function of the specific
accelerator implementation.

Because of implementation tradeoffs, pre-
vious proposals for DNN accelerators have
made choices on the subset of mappings that
can be supported. Therefore, for a specific
DNN accelerator design, the optimal map-
ping can be selected only from the subset of
supported mappings instead of the entire
mapping space. The subset of supported
mappings is usually determined by a set of
mapping rules, which also characterizes the
hardware implementation. Such a set of map-
ping rules defines a dataflow.

Because state-of-the-art DNNs come in a
wide range of shapes and sizes, the corre-
sponding optimal mappings also vary. The
question is, can we find a dataflow that accom-
modates the mappings that optimize data
movement for various DNN shapes and sizes?

In this article, we explore different DNN
dataflows to answer this question in the con-
text of a spatial architecture.2 In particular, we
will present the following key contributions:3

� An analogy between DNN accelera-
tors and general-purpose processors
that clearly identifies the distinct
aspects of operation of a DNN accel-
erator, which provides insights into
opportunities for innovation.

� A framework that quantitatively eval-
uates the energy consumption of dif-
ferent mappings for different DNN
shapes and sizes, which is an essential
tool for finding the optimal mapping.

� A taxonomy that classifies existing
dataflows from previous DNN accel-
erator projects, which helps to under-
stand a large body of work despite
differences in the lower-level details.

� A new dataflow, called Row-Stationary
(RS), which is the first dataflow to
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Figure 1. In the processing of a deep neural network (DNN), multichannel

filters are convolved with the multichannel input feature maps, which then

generate the output feature maps. The processing of a DNN comprises

many multiply-and-accumulate (MAC) operations.
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optimize data movement for superior
system energy efficiency. It has also
been verified in a fabricated DNN
accelerator chip, Eyeriss.4

We evaluate the energy efficiency of the
RS dataflow and compare it to other data-
flows from the taxonomy. The comparison
uses a popular state-of-the-art DNN model,
AlexNet,5 with a fixed amount of hardware
resources. Simulation results show that the
RS dataflow is 1.4 to 2.5 times more energy
efficient than other dataflows in the convolu-
tional layers. It is also at least 1.3 times more
energy efficient in the fully connected layers
for batch sizes of at least 16. These results
will provide guidance for future DNN accel-
erator designs.

An Analogy to General-Purpose Processors
Figure 2 shows an analogy between the oper-
ation of DNN accelerators and general-
purpose processors. In conventional computer
systems, the compiler translates a program
into machine-readable binary codes for exe-
cution; in the processing of DNNs, the map-
per translates the DNN shape and size into a
hardware-compatible mapping for execu-
tion. While the compiler usually optimizes
for performance, the mapper especially opti-
mizes for energy efficiency.

The dataflow is a key attribute of a DNN
accelerator and is analogous to one of the
parts of a general-purpose processor’s archi-

tecture. Similar to the role of an ISA or
memory consistency model, the dataflow
defines the mapping rules that the mapper
must follow in order to generate hardware-
compatible mappings. Later in this article,
we will introduce several previously pro-
posed dataflows.

Other attributes of a DNN accelerator,
such as the storage organization, also are
analogous to parts of the general-purpose
processor architecture, such as scratchpads or
virtual memory. We consider these attributes
part of the architecture, instead of microarch-
itecture, because they may largely remain
invariant across implementations. Although,
similar to GPUs, the distinction between
architecture and microarchitecture is likely to
blur for DNN accelerators.

Implementation details, such as those that
determine access energy cost at each level of
the storage hierarchy and latency between
processing elements (PEs), are analogous to
the microarchitecture of processors, because a
mapping will be valid despite changes in
these characteristics. However, they play a
vital part in determining a mapping’s energy
efficiency.

The mapper’s goal is to search in the map-
ping space for the mapping that best opti-
mizes data movement. The size of the entire
mapping space is determined by the total
number of MACs, which can be calculated
from the DNN shape and size. However,
only a subset of the space is valid given the
mapping rules defined by a dataflow. For
example, the dataflow can enforce the follow-
ing mapping rule: all MACs that use the
same filter weight must be mapped on the
same PE in the accelerator. Then, it is the
mapper’s job to find out the exact ordering of
these MACs on each PE by evaluating and
comparing the energy efficiency of different
valid ordering options.

As in conventional compilers, performing
evaluation is an integral part of the mapper.
The evaluation process takes a certain map-
ping as input and gives an energy consump-
tion estimation based on the available
hardware resources (microarchitecture) and
data reuse opportunities extracted from the
DNN shape and size (program). In the next
section, we will introduce a framework that
can perform this evaluation.
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Figure 2. An analogy between the operation of DNN accelerators (roman

text) and that of general-purpose processors (italicized text).
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Evaluating Energy Consumption
Finding the optimal mapping requires evalu-
ation of the energy consumption for various
mapping options. In this article, we evaluate
energy consumption based on a spatial archi-
tecture,2 because many of the previous
designs can be thought of as instances of such
an architecture. The spatial architecture (see
Figure 3) consists of an array of PEs and a
multilevel storage hierarchy. The PE array
provides high parallelism for high through-
put, whereas the storage hierarchy can be
used to exploit data reuse in a four-level setup
(in decreasing energy-cost order): DRAM,
global buffer, network-on-chip (NoC, for
inter-PE communication), and register file
(RF) in the PE as local scratchpads.

In this architecture, we assume all data
types can be stored and accessed at any level
of the storage hierarchy. Input data for the
MAC operations—that is, filter weights and
ifmap pixels—are moved from the most
expensive level (DRAM) to the lower-cost
levels. Ultimately, they are usually delivered
from the least expensive level (RF) to the
arithmetic logic unit (ALU) for computation.
The results from the ALU—that is, psums—
generally move in the opposite direction.
The orchestration of this movement is deter-
mined by the mappings for a specific DNN
shape and size under the mapping rule con-
straints of a specific dataflow architecture.

Given a specific mapping, the system
energy consumption is estimated by account-
ing for the number of times each data value
from all data types (ifmaps, filters, psums) is
reused at each level of the four-level memory
hierarchy, and weighing it with the energy
cost of accessing that specific storage level.
Figure 4 shows the normalized energy con-
sumption of accessing data from each storage
level relative to the computation of a MAC at
the ALU. We extracted these numbers from a
commercial 65-nm process and used them in
our final experiments.

Figure 5 uses a toy example to show how a
mapping determines the data reuse at each
storage level, and thus the energy consump-
tion, in a three-PE setup. In this example, we
have the following assumptions: each ifmap
pixel is used by 24 MACs, all ifmap pixels
can fit into the global buffer, and the RF of

each PE can hold only one ifmap pixel at a
time. The mapping first reads an ifmap pixel
from DRAM to the global buffer, then from
the global buffer to the RF of each PE
through the NoC, and reuses it from the RF
for four MACs consecutively in each PE. The
mapping then switches to MACs that use
other ifmap pixels, so the original one in the
RF is replaced by new ones, due to limited
capacity. Therefore, the original ifmap pixel
must be fetched from the global buffer again
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when the mapping switches back to the
MACs that use it. In this case, the same
ifmap pixel is reused at the DRAM, global
buffer, NoC, and RF for 1, 2, 6, and 24
times, respectively. The corresponding nor-
malized energy consumption of moving this
ifmap pixel is obtained by weighing these
numbers with the normalized energy num-
bers in Figure 4 and then adding them
together (that is, 1 � 200 þ 2 � 6 þ 6 � 2
þ 24 � 1 ¼ 248). For other data types, the
same approach can be applied.

This analysis framework can be used not
only to find the optimal mapping for a spe-
cific dataflow, but also to evaluate and com-
pare the energy consumption of different
dataflows. In the next section, we will
describe various existing dataflows.

A Taxonomy of Existing DNN Dataflows
Numerous previous efforts have proposed
solutions for DNN acceleration. These
designs reflect a variety of trade-offs between
performance and implementation complex-
ity. Despite their differences in low-level
implementation details, we find that many of
them can be described as embodying a set of
rules—that is, a dataflow—that defines the

valid mapping space based on how they han-
dle data. As a result, we can classify them into
a taxonomy.

� The Weight-Stationary (WS) data-
flow keeps filter weights stationary in
each PE’s RF by enforcing the follow-
ing mapping rule: all MACs that use
the same filter weight must be
mapped on the same PE for process-
ing serially. This maximizes the con-
volutional and filter reuse of weights
in the RF, thus minimizing the
energy consumption of accessing
weights (for example, work by Srimat
Chakradhar and colleagues6 and
Vinayak Gokhale and colleagues7).
Figure 6a shows the data movement
of a common WS dataflow imple-
mentation. While each weight stays
in the RF of each PE, the ifmap pixels
are broadcast to all PEs, and the gen-
erated psums are then accumulated
spatially across PEs.

� The Output-Stationary (OS) data-
flow keeps psums stationary by accu-
mulating them locally in the RF. The
mapping rule is that all MACs that
generate psums for the same ofmap
pixel must be mapped on the same
PE serially. This maximizes psum
reuse in the RF, thus minimizing
energy consumption of psum move-
ment (for example, work by Zidong
Du and colleagues,8 Suyog Gupta
and colleagues,9 and Maurice Pee-
men and colleagues10). The data
movement of a common OS dataflow
implementation is to broadcast filter
weights while passing ifmap pixels
spatially across the PE array (see
Figure 6b).

� Unlike the previous two dataflows,
which keep a certain data type sta-
tionary, the No-Local-Reuse (NLR)
dataflow keeps no data stationary
locally so it can trade the RF off for a
larger global buffer. This is to mini-
mize DRAM access energy consump-
tion by storing more data on-chip
(for example, work by Tianshi Chen
and colleagues11 and Chen Zhang
and colleagues12). The corresponding
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mapping rule is that at each process-
ing cycle, all parallel MACs must
come from a unique pair of filter and
channel. The data movement of the
NLR dataflow is to single-cast weights,
multicast ifmap pixels, and spatially
accumulate psums across the PE array
(see Figure 6c).

The three dataflows show distinct data
movement patterns, which imply different
tradeoffs. First, as Figures 6a and 6b show,
the cost for keeping a specific data type sta-
tionary is to move the other types of data
more. Second, the timing of data accesses
also matters. For example, in the WS data-
flow, each ifmap pixel read from the global
buffer is broadcast to all PEs with properly
mapped MACs on the PE array. This is more
efficient than reading the same value multiple
times from the global buffer and single-cast-
ing it to the PEs, which is the case for filter
weights in the NLR dataflow (see Figure 6c).
Other dataflows can make other tradeoffs. In
the next section, we present a new dataflow
that takes these factors into account for opti-
mizing energy efficiency.

An Energy-Efficient Dataflow
Although the dataflows in the taxonomy
describe the design of many DNN accelera-
tors, they optimize data movement only for a
specific data type (for example, WS for
weights) or storage level (NLR for DRAM).
In this section, we introduce a new dataflow,
called Row-Stationary (RS), which aims to
optimize data movement for all data types in
all levels of the storage hierarchy of a spatial
architecture.

The RS dataflow divides the MACs into
mapping primitives, each of which comprises
a subset of MACs that run on the same PE in
a fixed order. Specifically, each mapping
primitive performs a 1D row convolution, so
we call it a row primitive, and intrinsically
optimizes data reuse per MAC for all data
types combined. Each row primitive is
formed with the following rules:

� The MACs for applying a row of fil-
ter weights on a row of ifmap pixels,
which generate a row of psums, must
be mapped on the same PE.

� The ordering of these MACs enables
the use of a sliding window for ifmaps,
as shown in Figure 7.

Convolutional and psum reuse opportu-
nities within a row primitive are fully
exploited in the RF, given sufficient RF stor-
age capacity.

Even with the RS dataflow, as defined by
the row primitives, there are still a large num-
ber of valid mapping choices. These mapping
choices arise both in the spatial and temporal
assignment of primitives to PEs:

1. One spatial mapping option is to
assign primitives with data rows
from the same 2D plane on the PE
array, to lay out a 2D convolution
(see Figure 8). This mapping fully
exploits convolutional and psum
reuse opportunities across primitives
in the NoC: the same rows of filter
weights and ifmap pixels are reused
across PEs horizontally and diago-
nally, respectively; psum rows are
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further accumulated across PEs
vertically.

2. Another spatial mapping option
arises when the size of the PE array is
large, and the pattern shown in
Figure 8 can be spatially duplicated
across the PE array for various 2D
convolutions. This not only increases
utilization of PEs, but also further
exploits filter, ifmap, and psum reuse
opportunities in the NoC.

3. One temporal mapping option arises
when row primitives from different
2D planes can be concatenated or
interleaved on the same PE. As Figure
9 shows, primitives with different
ifmaps, filters, and channels have filter
reuse, ifmap reuse, and psum reuse
opportunities, respectively. By concat-
enating or interleaving their computa-
tion together in a PE, it virtually

becomes a larger 1D row convolution,
which exploits these cross-primitive
data reuse opportunities in the RF.

4. Another temporal mapping choice
arises when the PE array size is too
small, and the originally spatially
mapped row primitives must be tem-
porally folded into multiple process-
ing passes (that is, the computation is
serialized). In this case, the data reuse
opportunities that are originally spa-
tially exploited in the NoC can be
temporally exploited by the global
buffer to avoid DRAM accesses,
given sufficient storage capacity.

As evident from the preceding list, the RS
dataflow provides a high degree of mapping
flexibility, such as using concatenation, inter-
leaving, duplicating, and folding of the row
primitives. The mapper searches for the exact
amount to apply each technique in the opti-
mal mapping—for example, how many fil-
ters are interleaved on the same PE to exploit
ifmap reuse—to minimize overall system
energy consumption.

Dataflow Comparison
In this section, we quantitatively compare the
energy efficiency of different DNN dataflows
in a spatial architecture, including those from
the taxonomy and the proposed RS dataflow.
We use AlexNet5 as the benchmarking DNN
because it is one of the most popular DNNs
available, and it comprises five convolutional
(CONV) layers and three fully connected
(FC) layers with a wide variety of shapes and
sizes, which can more thoroughly evaluate
the optimal mappings from each dataflow.

In order to have a fair comparison, we
apply the following two constraints for all
dataflows. First, the size of the PE array is
fixed at 256 for constant processing through-
put across dataflows. Second, the total hard-
ware area is also fixed. For example, because
the NLR dataflow does not use an RF, it can
allocate more area for the global buffer. The
corresponding hardware resource parameters
are based on the RS dataflow implementation
in Eyeriss, a DNN accelerator chip fabricated
in 65-nm CMOS.4 By applying these con-
straints, we fix the total cost to implement
the microarchitecture of each dataflow.
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Therefore, the differences in energy efficiency
are solely from the dataflows.

Figures 10a and 10b show the comparison
of energy efficiency between dataflows in the
CONV layers of AlexNet with an ifmap batch
size of 16. Figure 10a gives the breakdown in
terms of storage levels and ALU, and Figure
10b gives the breakdown in terms of data
types. First, the ALU energy consumption is
only a small fraction of the total energy con-
sumption, which proves the importance of
data movement optimization. Second, even
though NLR has the lowest energy consump-
tion in DRAM, its total energy consumption
is still high, because most of the data accesses
come from the global buffer, which are more
expensive than those from the NoC or RF.
Third, although WS and OS dataflows clearly
optimize the energy consumption of accessing
weights and psums, respectively, they sacrifice
the energy consumption of moving other data
types, and therefore do not achieve the lowest
overall energy consumption. This shows that

DRAM alone does not dictate energy effi-
ciency, and optimizing the energy consump-
tion for only a certain data type does not lead
to the best system energy efficiency. Overall,
the RS dataflow is 1.4 to 2.5 times more
energy efficient than other dataflows in the
CONV layers of AlexNet.

Figure 11 shows the same experiment
results as in Figure 10b, except that it is for
the FC layers of AlexNet. Compared to the
CONV layers, the FC layers have no convo-
lutional reuse and use much more filter
weights. Still, the RS dataflow is at least 1.3
times more energy efficient than the other
dataflows, which proves that the capability to
optimize data movement for all data types is
the key to achieving the highest overall
energy efficiency. Note that the FC layers
account for less than 20 percent of the total
energy consumption in AlexNet. In recent
DNNs, the number of FC layers have also
been greatly reduced, making their energy
consumption even less significant.
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R esearch on architectures for DNN
accelerators has become very popular

for its promising performance and wide
applicability. This article has demonstrated
the key role of dataflows in DNN accelerator
design, and it shows how to systematically
exploit all types of data reuse in a multilevel
storage hierarchy for optimizing energy effi-
ciency with a new dataflow. It challenges con-
ventional design approaches, which focus
more on optimizing parts of the problem,
and shifts it toward a global optimization
that considers all relevant metrics.

The taxonomy of dataflows lets us compare
high-level design choices irrespective of low-
level implementation details, and thus can be
used to guide future designs. Although these
dataflows are currently implemented on dis-

tinct architectures, it is also possible to come
up with a union architecture that can support
multiple dataflows simultaneously. The ques-
tions are how to choose a combination of
dataflows that maximally benefit the search
for optimal mappings, and how to support
these dataflows with the minimum amount of
hardware implementation overhead.

This article has also pointed out how the
concept of DNN dataflows and the mapping
of a DNN computation onto a dataflow can be
viewed as analogous to a general-purpose pro-
cessor’s architecture and compiling onto that
architecture. We hope this will open up space
for computer architects to approach the design
of DNN accelerators by applying the knowl-
edge and techniques from a well-established
research field in a more systematic manner,
such as methodologies for design abstraction,
modularization, and performance evaluation.

For instance, a recent research trend for
DNNs is to exploit data statistics. Specifically,
different proposals on quantization, pruning,
and data representation have all shown prom-
ising results on improving the performance of
DNNs. Therefore, it is important that new
architectures also take advantage of these find-
ings. As compilers for general-purpose pro-
cessors can take the profile of targeted
workloads to further improve the performance
of the generated binary, the analogy between
general-purpose processors and DNN acceler-
ators suggests that the mapper for DNN accel-
erators might also take the profile of targeted
DNN statistics to further optimize the
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generated mappings. This is an endeavor we
will leave for future work. MICRO

....................................................................
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