Hardware Architectures for Deep Neural Networks

ISCA Tutorial

June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

Massachusetts Institute of Technology

Speakers and Contributors



Joel Emer

Senior Distinguished Research Scientist

NVIDIA

Professor

ΜΙΤ

Vivienne Sze Professor

MIT

Yu-Hsin Chen PhD Candidate MIT Tien-Ju Yang PhD Candidate MIT

Outline

- Overview of Deep Neural Networks
- DNN Development Resources
- Survey of DNN Hardware
- DNN Accelerators
- DNN Model and Hardware Co-Design

Participant Takeaways

- Understand the key design considerations for DNNs
- Be able to evaluate different implementations of DNN with benchmarks and comparison metrics
- Understand the tradeoffs between various architectures and platforms
- Assess the utility of various optimization approaches
- Understand recent implementation trends and opportunities

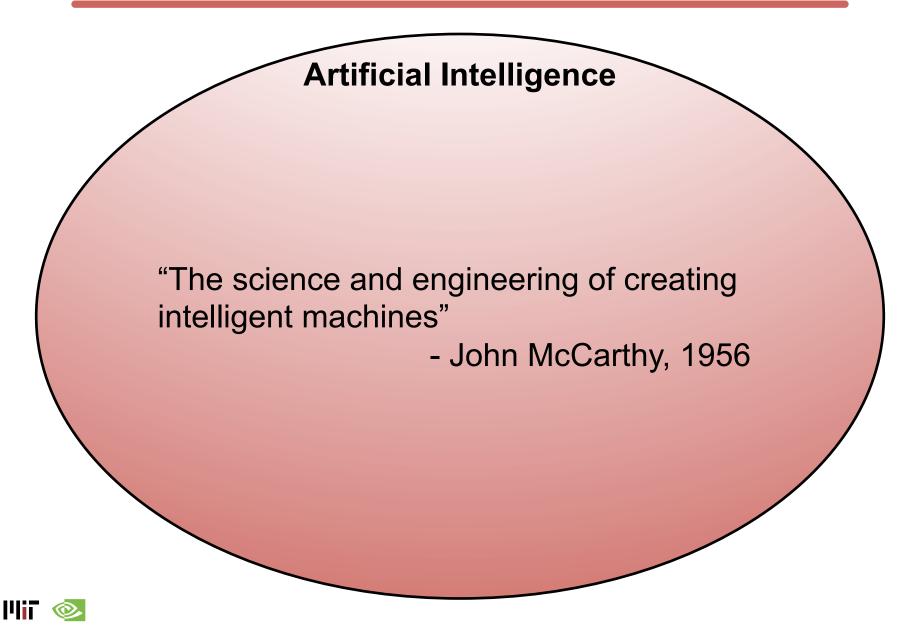
Resources

Eyeriss Project: <u>http://eyeriss.mit.edu</u>

- Tutorial Slides
- Benchmarking
- Energy modeling
- Mailing List for updates Follow @eems_mit
 - <u>http://mailman.mit.edu/mailman/listinfo/eems-news</u>
- Paper based on today's tutorial:
 - V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing* of Deep Neural Networks: A Tutorial and Survey", arXiv, 2017

Background of Deep Neural Networks

Artificial Intelligence



AI and Machine Learning

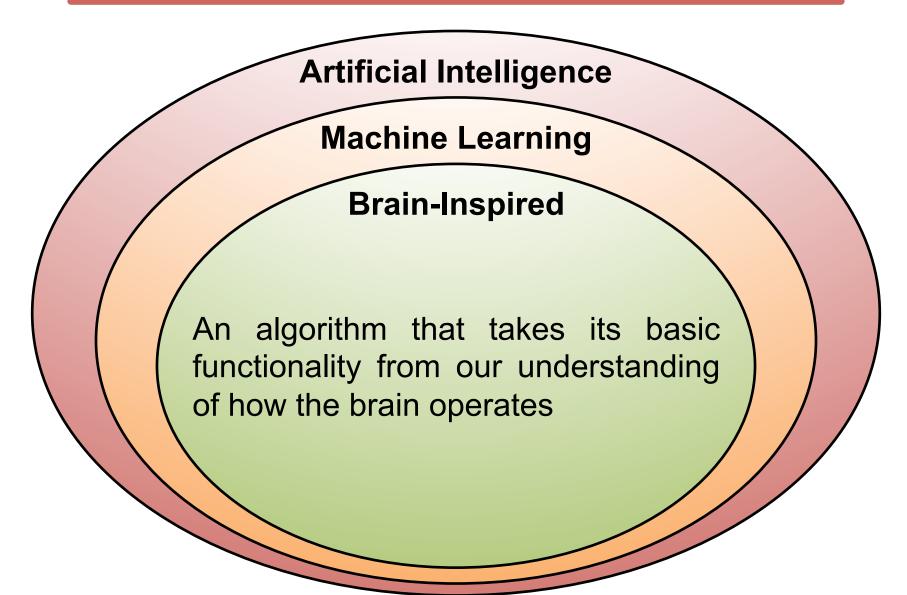
Artificial Intelligence

Machine Learning

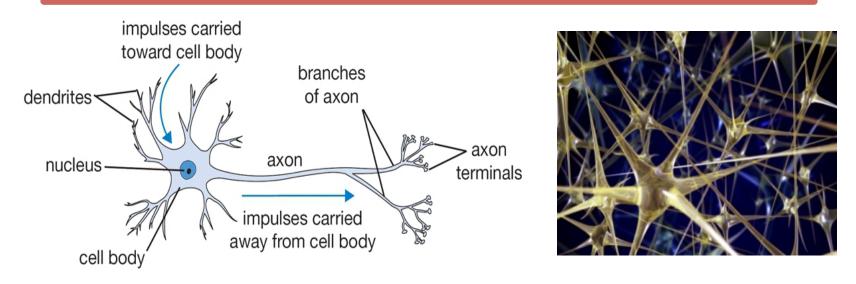
"Field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Brain-Inspired Machine Learning

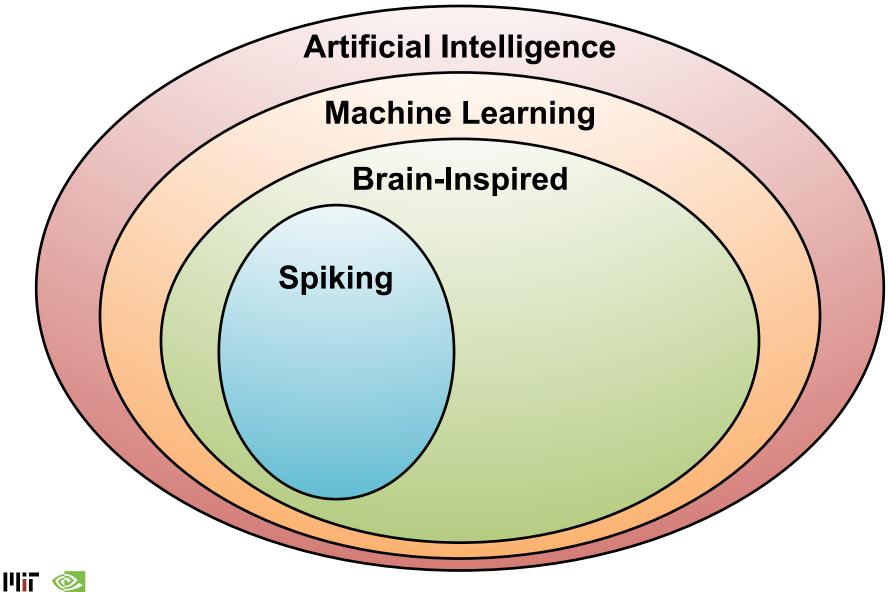


How Does the Brain Work?



- The basic computational unit of the brain is a neuron
 → 86B neurons in the brain
- Neurons are connected with nearly **10¹⁴ 10¹⁵ synapses**
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

Spiking-based Machine Learning

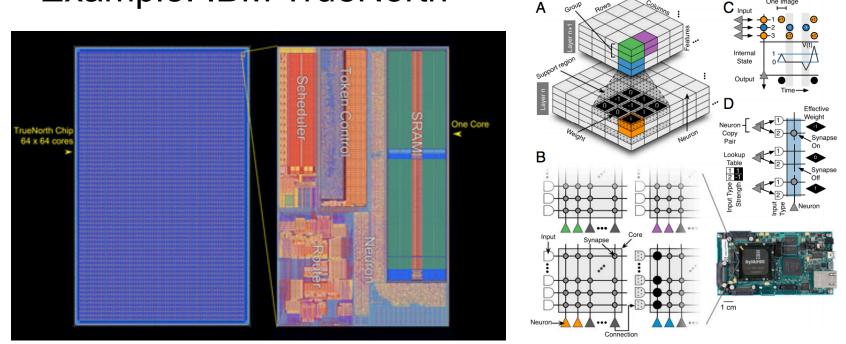


Spiking Architecture

Brain-inspired

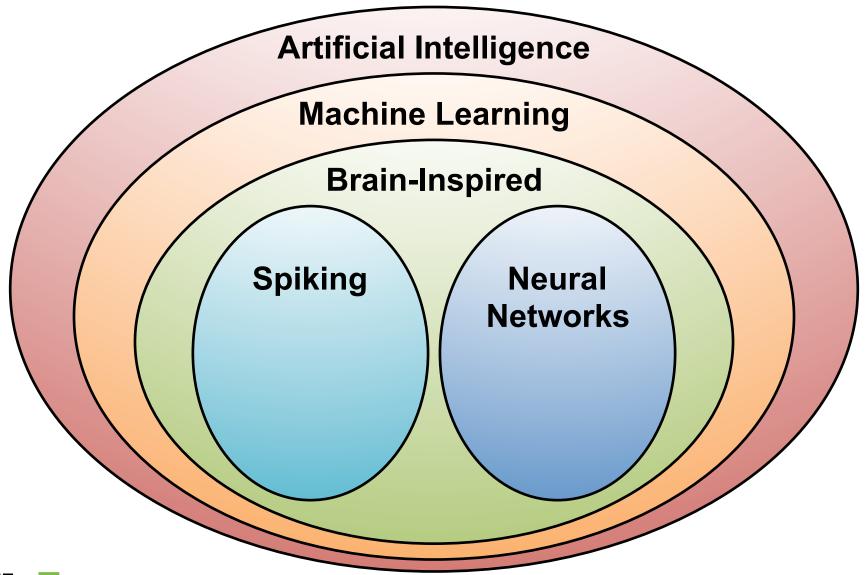
11117

- Integrate and fire
- Example: IBM TrueNorth

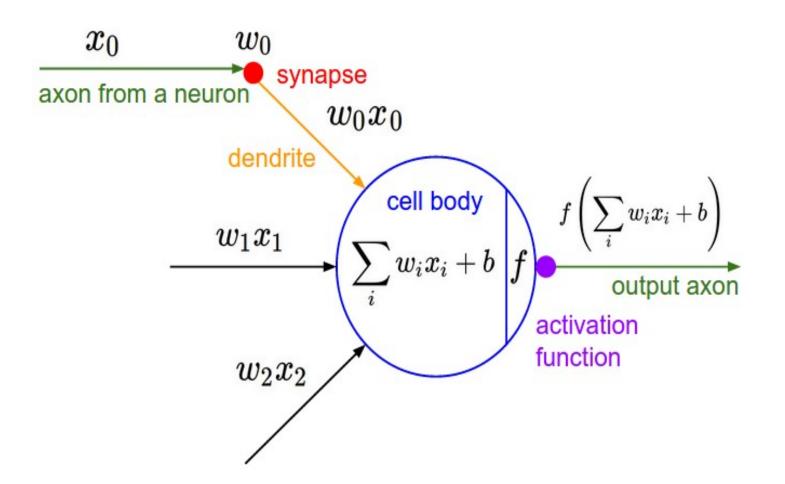


[Merolla et al., Science 2014; Esser et al., PNAS 2016] http://www.research.ibm.com/articles/brain-chip.shtml

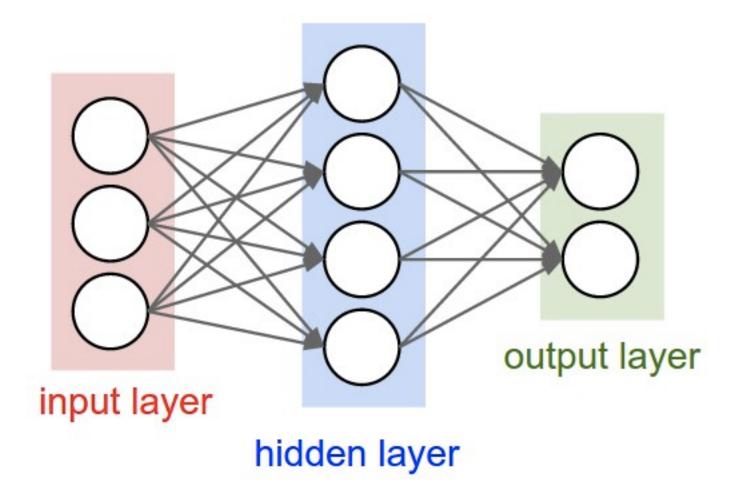
Machine Learning with Neural Networks



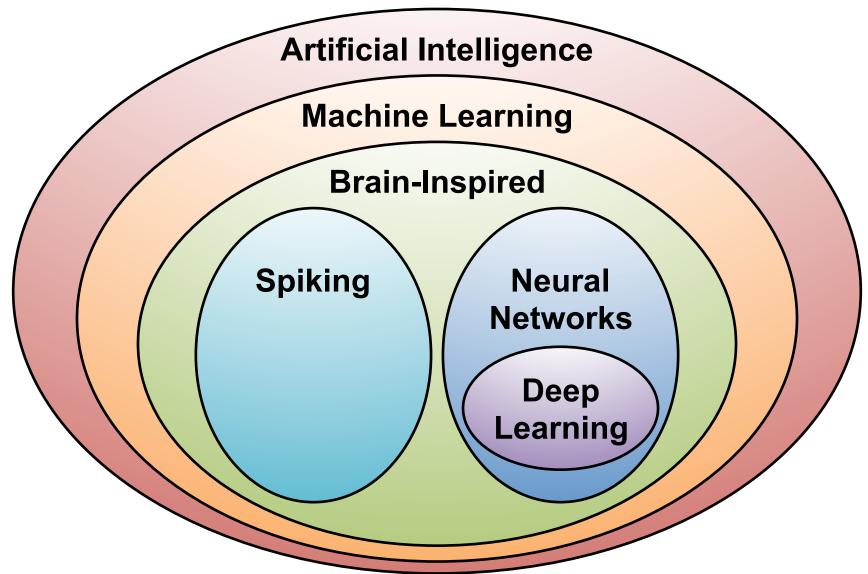
Neural Networks: Weighted Sum



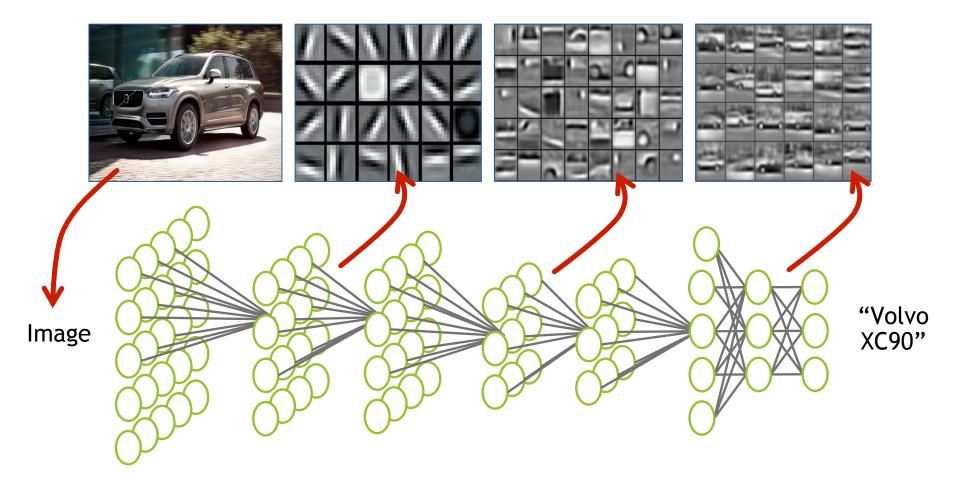
Many Weighted Sums



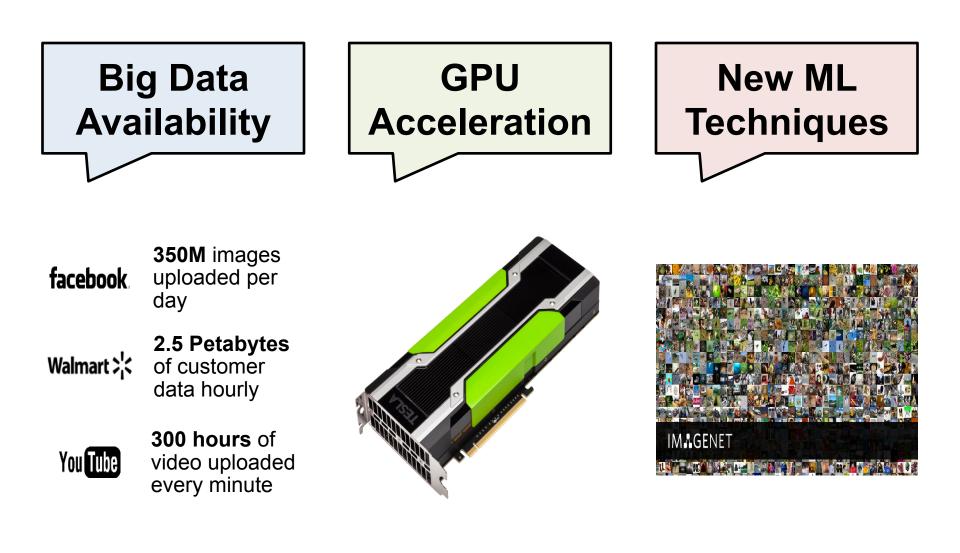
Deep Learning



What is Deep Learning?



Why is Deep Learning Hot Now?



ImageNet Challenge

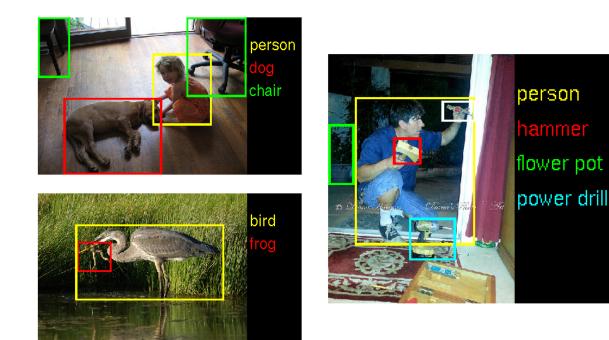
IM GENET

Image Classification Task:

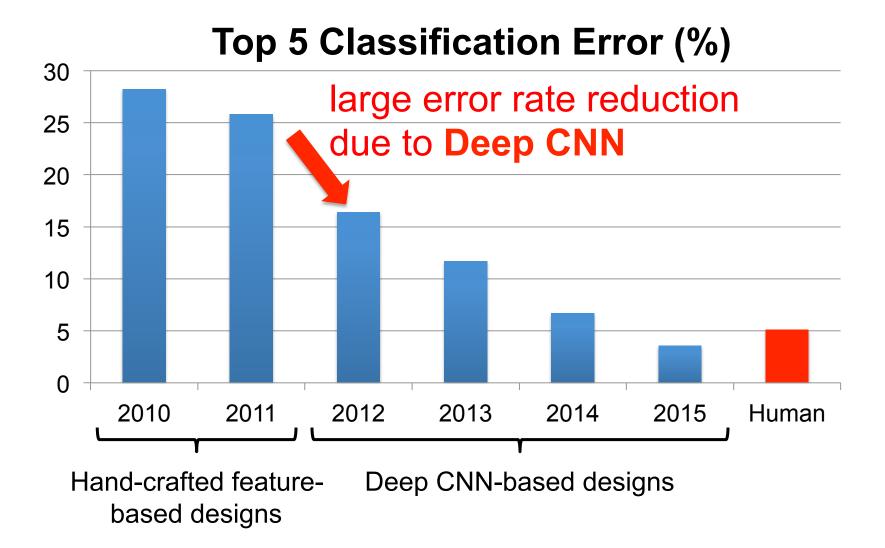
1.2M training images • 1000 object categories

Object Detection Task:

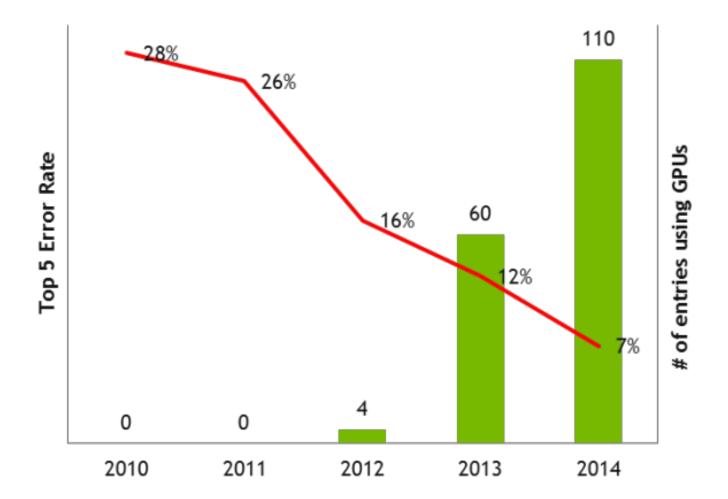
456k training images • 200 object categories



ImageNet: Image Classification Task



GPU Usage for ImageNet Challenge



Established Applications

Image

- Classification: image to object class
- Recognition: same as classification (except for faces)
- Detection: assigning bounding boxes to objects
- Segmentation: assigning object class to every pixel

Speech & Language

- Speech Recognition: audio to text
- Translation
- Natural Language Processing: text to meaning
- Audio Generation: text to audio
- Games

Deep Learning on Games

Google DeepMind AlphaGo

Emerging Applications

• **Medical** (Cancer Detection, Pre-Natal)

• Finance (Trading, Energy Forecasting, Risk)

• Infrastructure (Structure Safety and Traffic)

Weather Forecasting and Event Detection

Deep Learning for Self-driving Cars

Opportunities

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

- Greg Diamos, Senior Researcher, SVAIL, Baidu

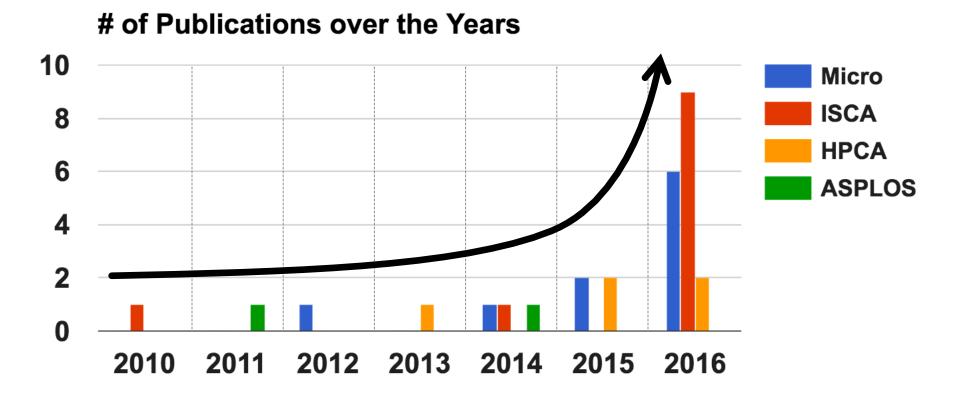
Overview of Deep Neural Networks

DNN Timeline

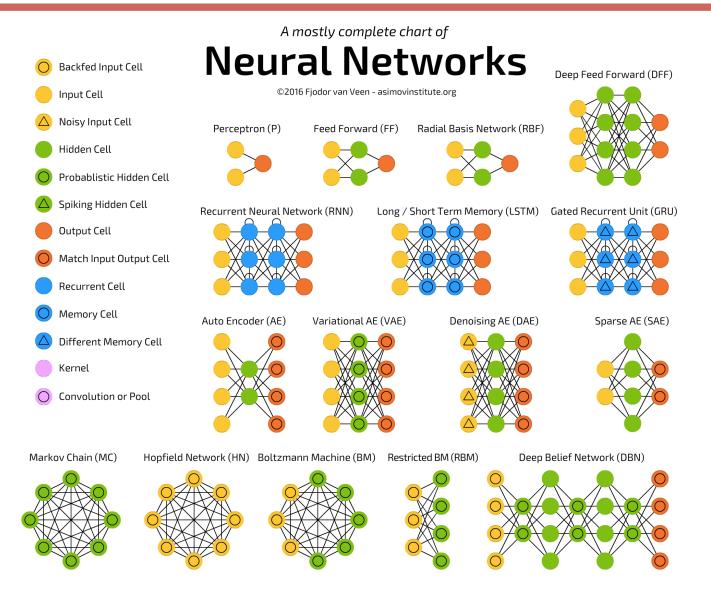
- 1940s: Neural networks were proposed
- 1960s: Deep neural networks were proposed
- 1989: Neural network for recognizing digits (LeNet)
- 1990s: Hardware for shallow neural nets
 - Example: Intel ETANN (1992)
- 2011: Breakthrough DNN-based speech recognition
 - Microsoft real-time speech translation
- 2012: DNNs for vision supplanting traditional ML
 - AlexNet for image classification
- 2014+: Rise of DNN accelerator research
 - Examples: Neuflow, DianNao, etc.

Publications at Architecture Conferences

• MICRO, ISCA, HPCA, ASPLOS



So Many Neural Networks!



|||iT 🔞

http://www.asimovinstitute.org/neural-network-zoo/

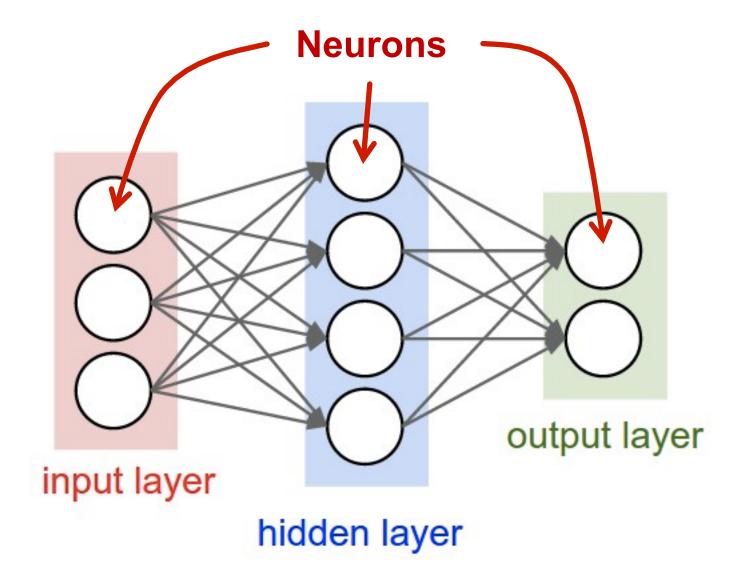


Image Source: Stanford

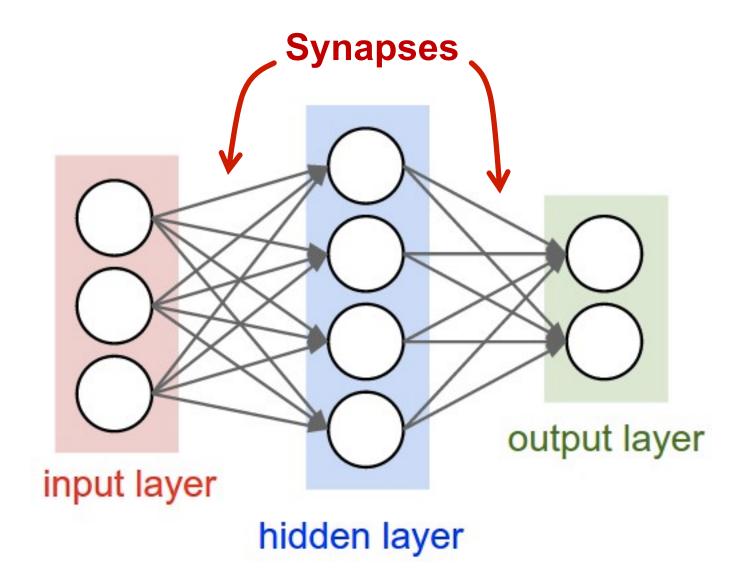
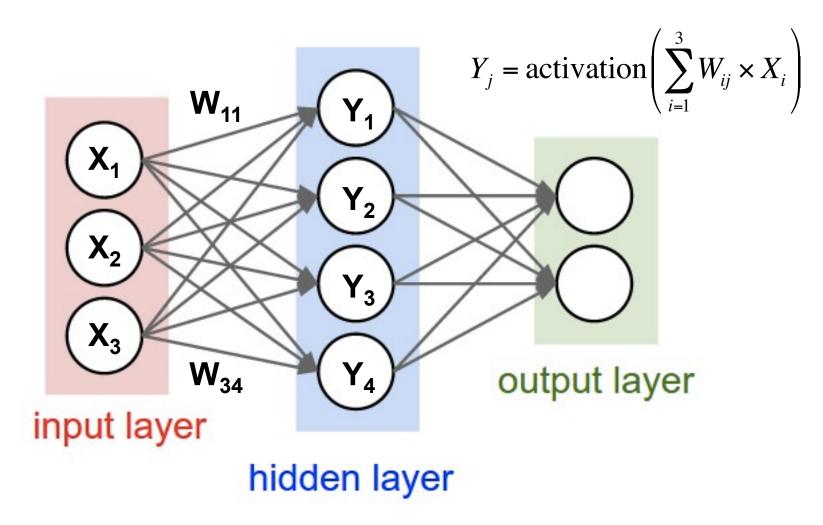


Image Source: Stanford

Each synapse has a weight for neuron activation



Weight Sharing: multiple synapses use the same weight value

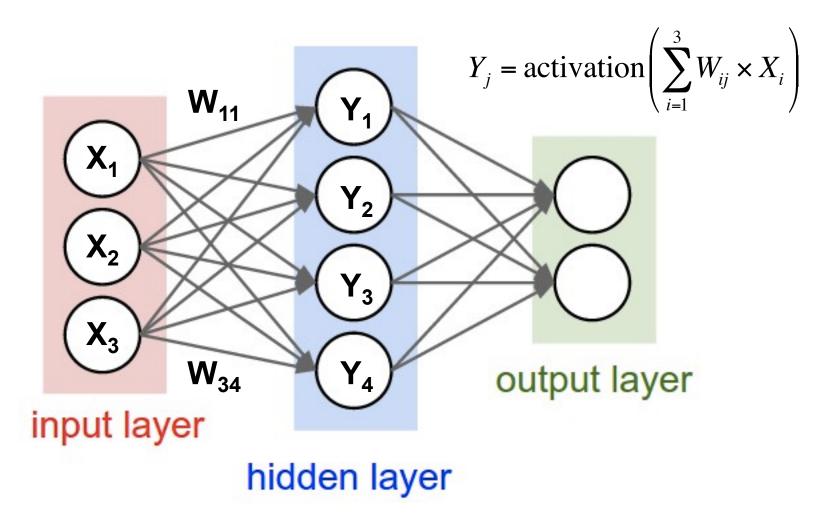
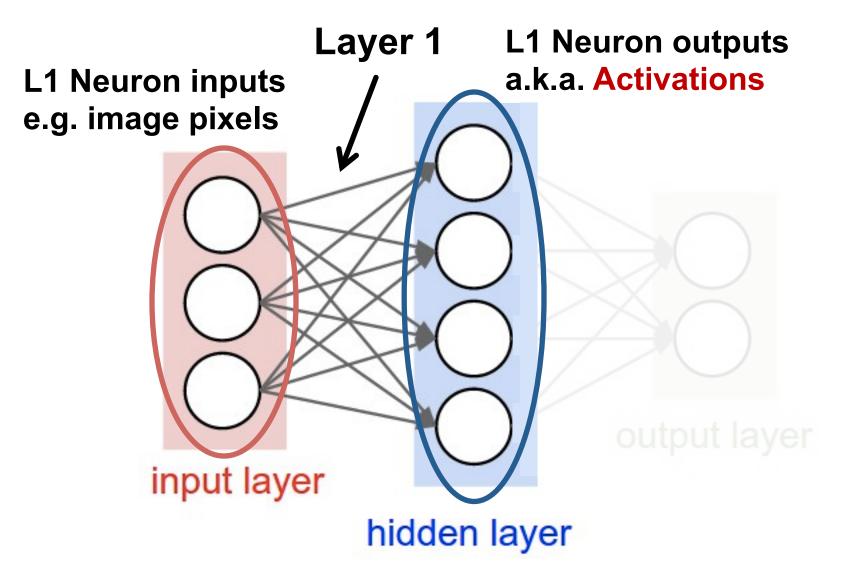
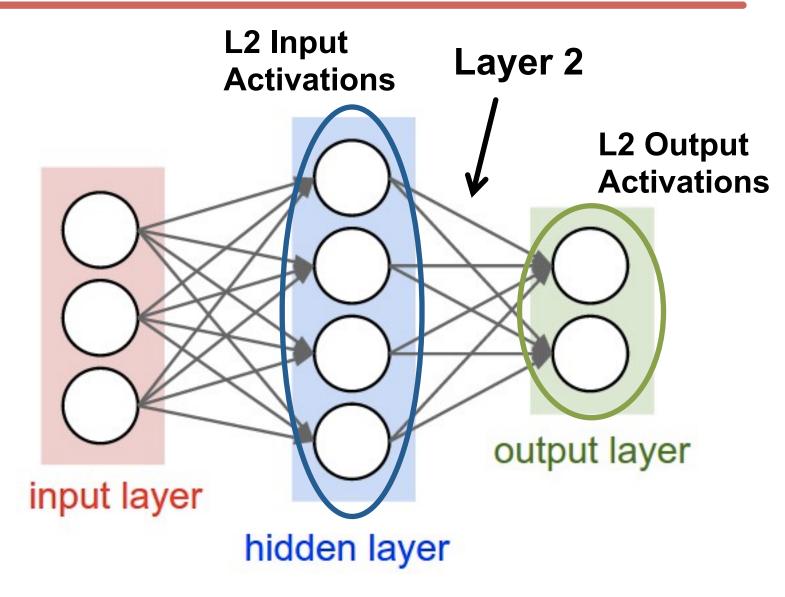


Image Source: Stanford





DNN Terminology 101

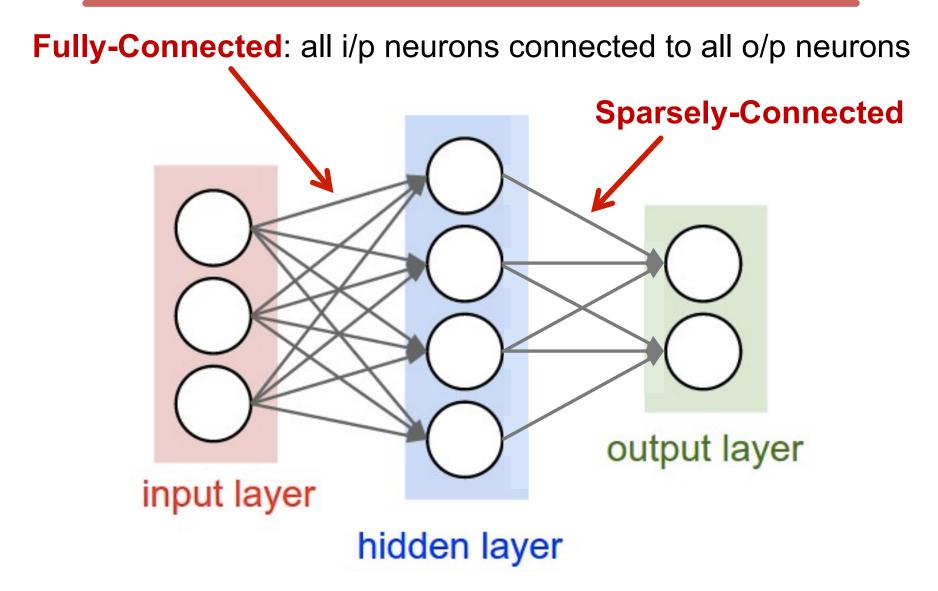


Image Source: Stanford

DNN Terminology 101

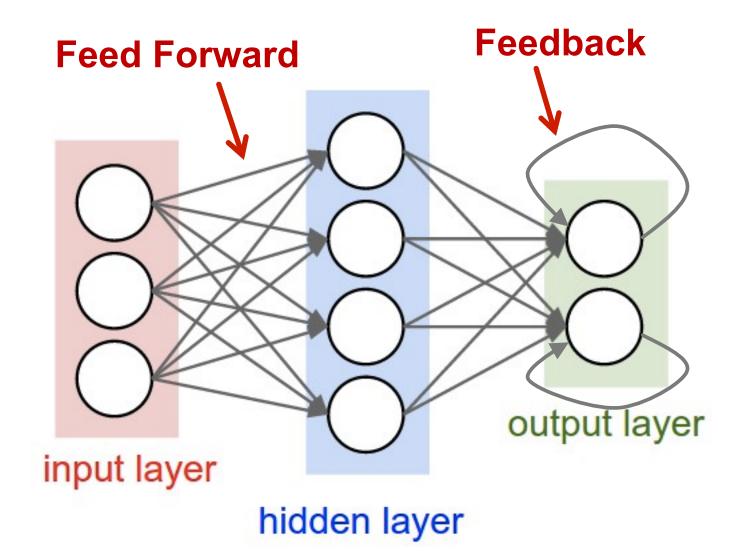


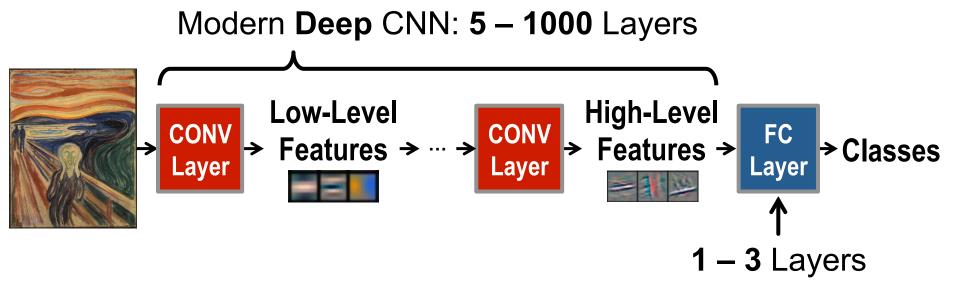
Image Source: Stanford

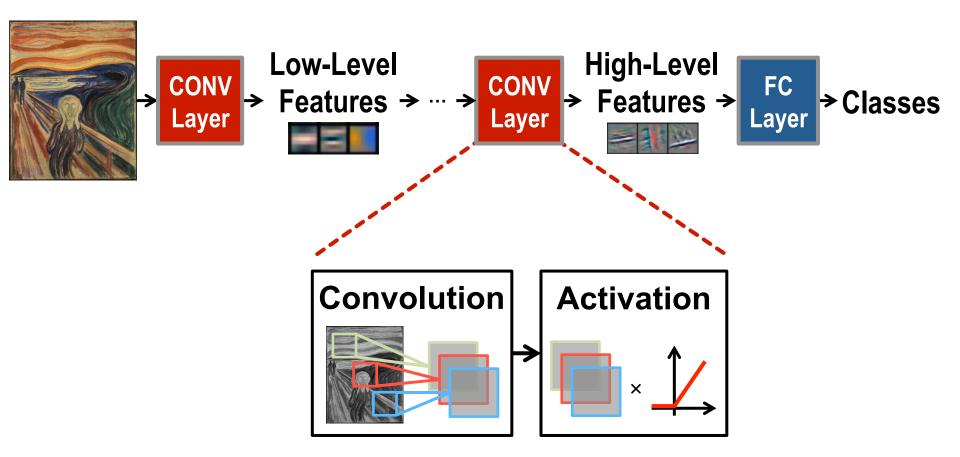
Popular Types of DNNs

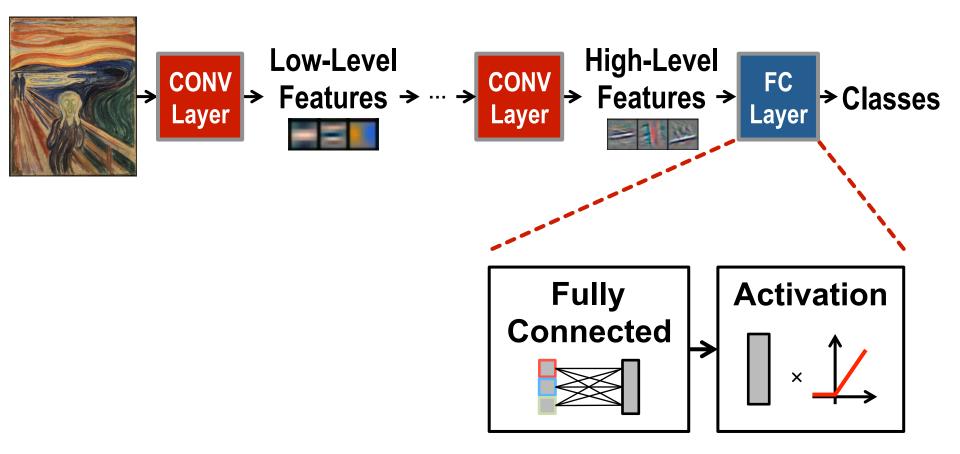
- Fully-Connected NN
 - feed forward, a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
 - feed forward, sparsely-connected w/ weight sharing
- Recurrent NN (RNN)
 - feedback
- Long Short-Term Memory (LSTM)
 - feedback + storage

Inference vs. Training

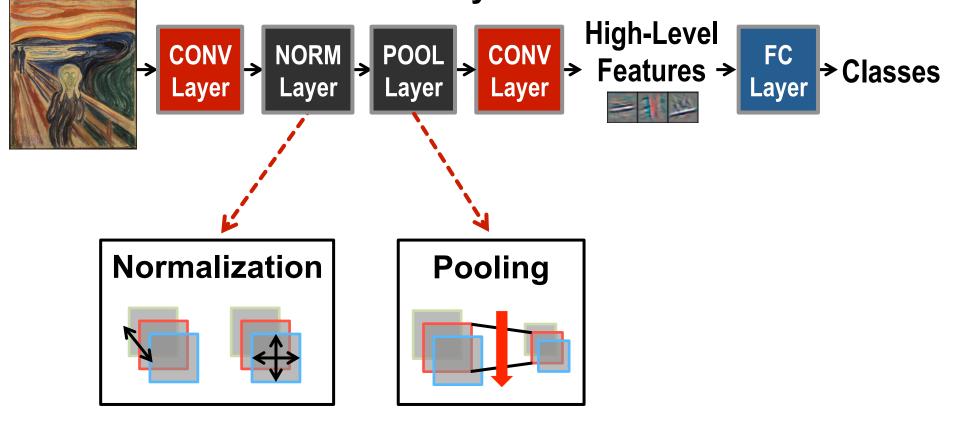
- Training: Determine weights
 - Supervised:
 - Training set has inputs and outputs, i.e., labeled
 - Unsupervised:
 - Training set is unlabeled
 - Semi-supervised:
 - Training set is partially labeled
 - Reinforcement:
 - Output assessed via rewards and punishments
- Inference: Apply weights to determine output

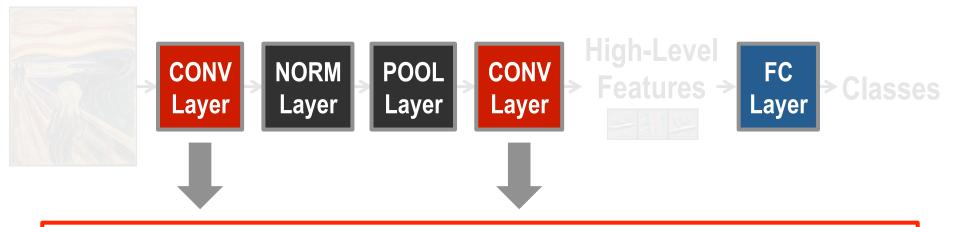


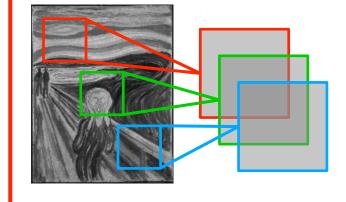




Optional layers in between CONV and/or FC layers

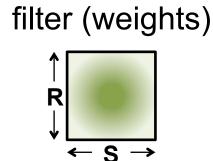


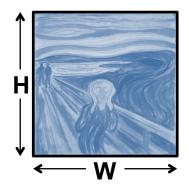


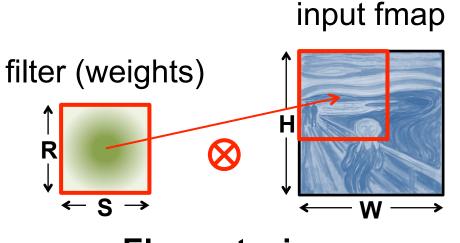


Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

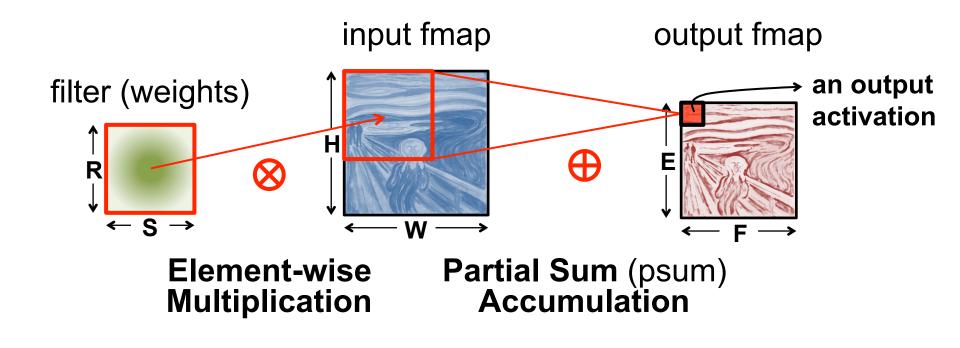
a plane of input activations a.k.a. **input feature map (fmap)**

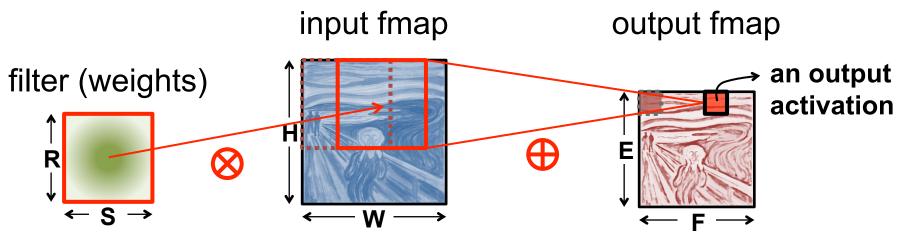




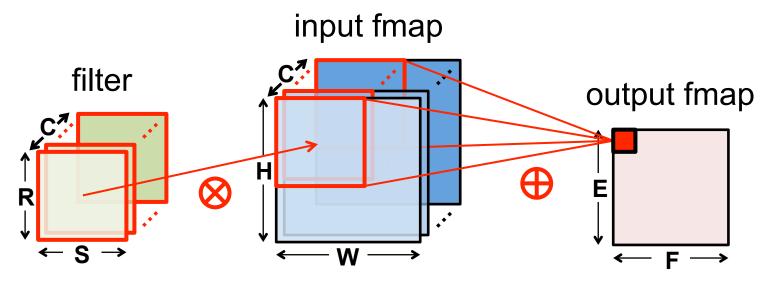


Element-wise Multiplication

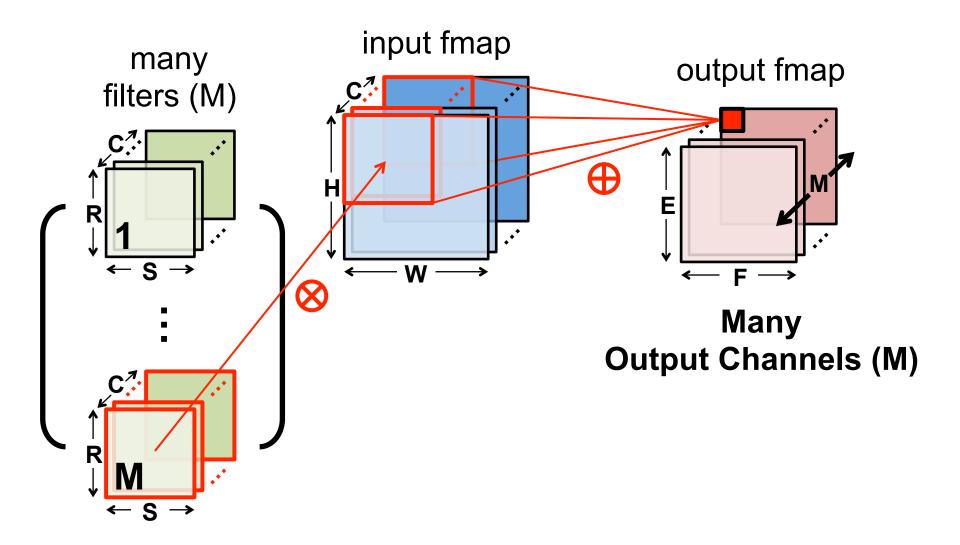


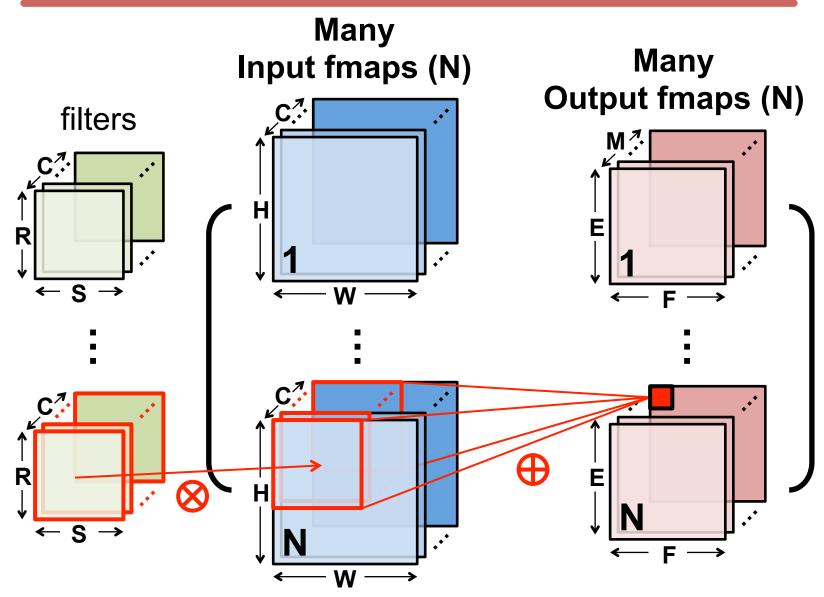


Sliding Window Processing



Many Input Channels (C)

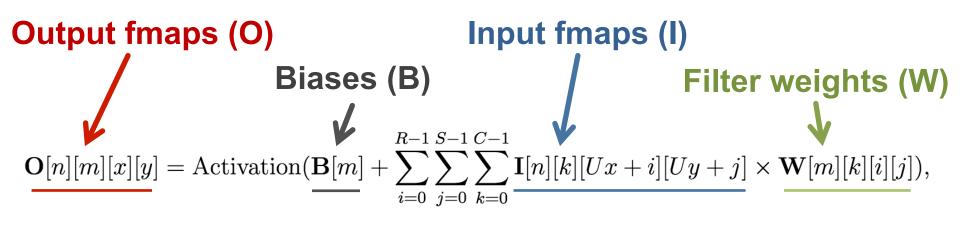




CNN Decoder Ring

- N Number of input fmaps/output fmaps (batch size)
- C Number of 2-D input fmaps /filters (channels)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of 2-D filter (weights)
- S Width of 2-D filter (weights)
- M Number of 2-D output fmaps (channels)
- E Height of output fmap (activations)
- F Width of output fmap (activations)

CONV Layer Tensor Computation



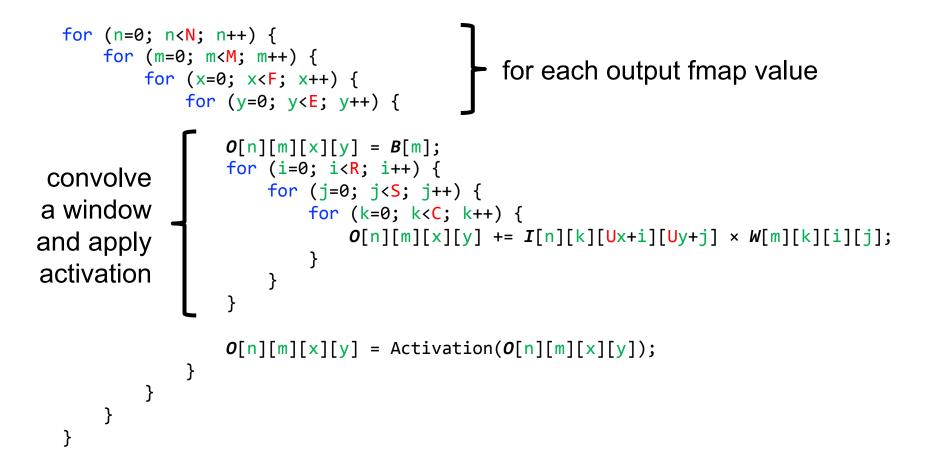
$$0 \le n < N, 0 \le m < M, 0 \le y < E, 0 \le x < F,$$

$$E = (H - R + U)/U, F = (W - S + U)/U.$$

Shape Parameter	Description
N	fmap batch size
M	# of filters / # of output fmap channels
C	# of input fmap/filter channels
H/W	input fmap height/width
R/S	filter height/width
E/F	output fmap height/width
	convolution stride

CONV Layer Implementation

Naïve 7-layer for-loop implementation:



Traditional Activation Functions

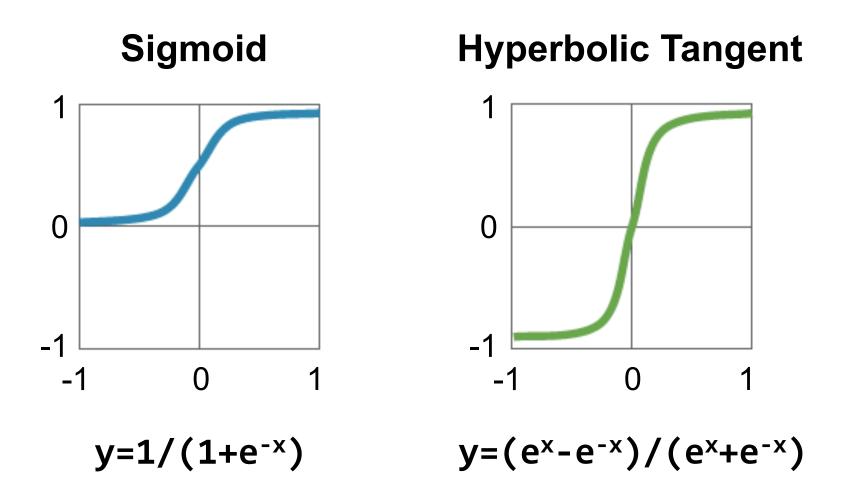


 Image Source: Caffe Tutorial

Modern Activation Functions

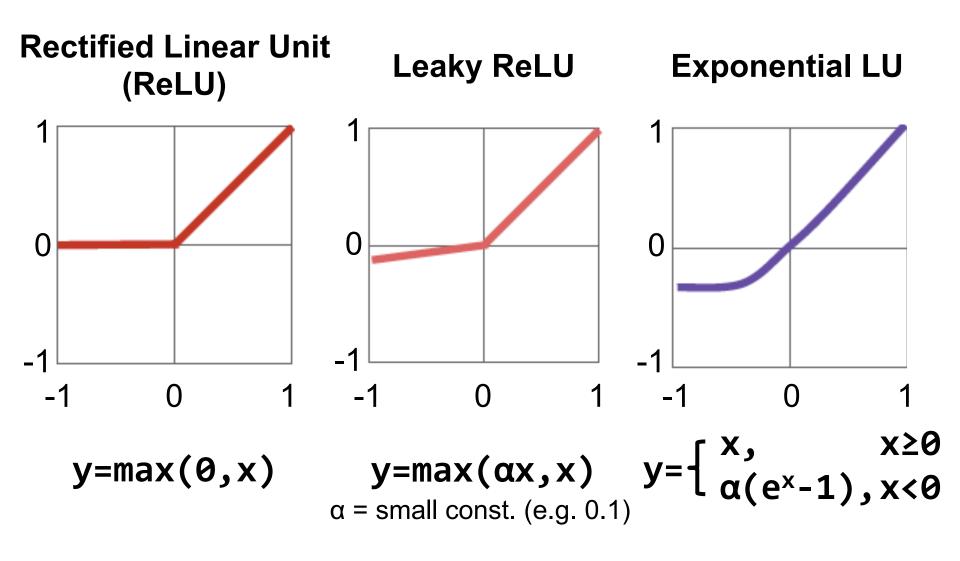
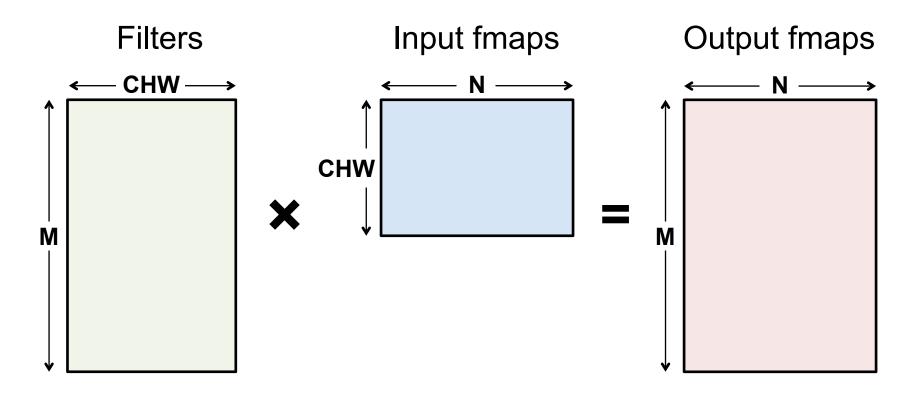


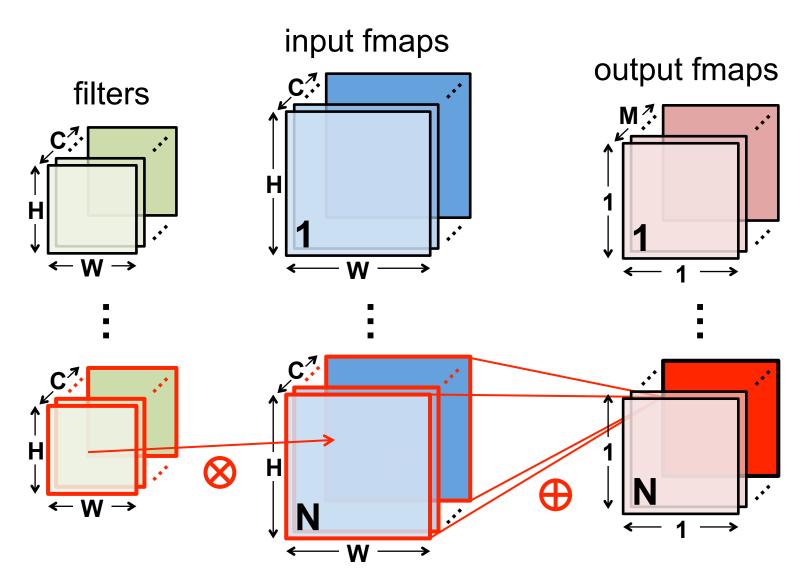
Image Source: Caffe Tutorial

Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 (E = F = 1)
- Filters as large as input fmaps (R = H, S = W)
- Implementation: Matrix Multiplication

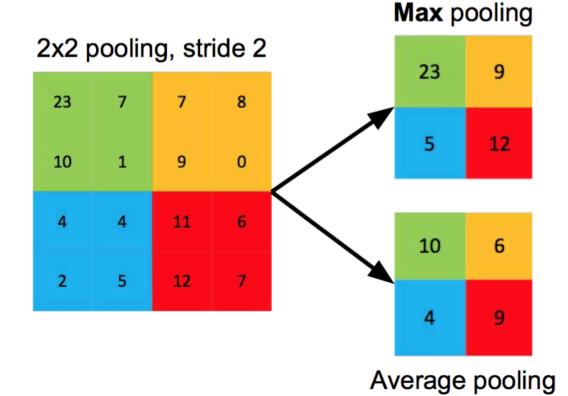


FC Layer – from CONV Layer POV



Pooling (POOL) Layer

- Reduce resolution of each channel independently
- Overlapping or non-overlapping \rightarrow depending on stride

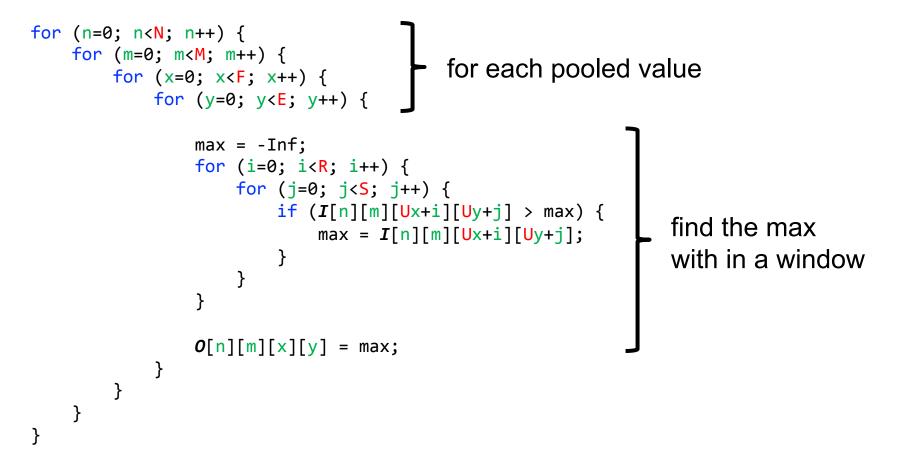


Increases translation-invariance and noise-resilience

Image Source: Caffe Tutorial

POOL Layer Implementation

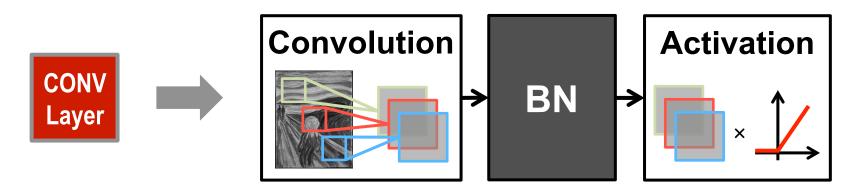
Naïve 6-layer for-loop max-pooling implementation:



III T

Normalization (NORM) Layer

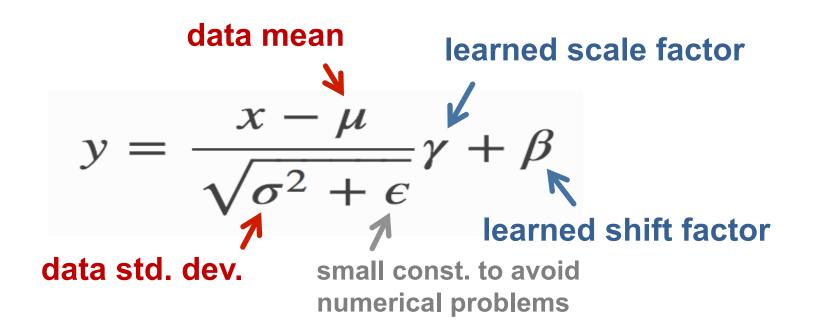
- Batch Normalization (BN)
 - Normalize activations towards mean=0 and std.
 dev.=1 based on the statistics of the training dataset
 - put in between CONV/FC and Activation function



Believed to be key to getting high accuracy and faster training on very deep neural networks.

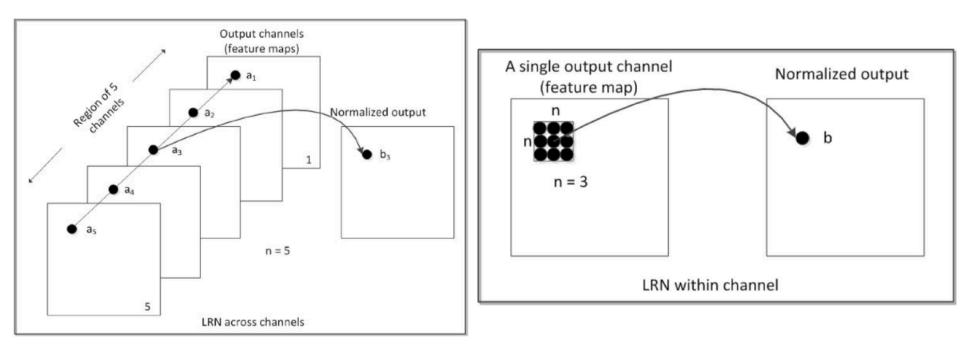
BN Layer Implementation

• The normalized value is further scaled and shifted, the parameters of which are learned from training

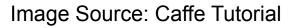


Normalization (NORM) Layer

- Local Response Normalization (LRN)
 - Tries to mimic the inhibition scheme in the brain



Now deprecated!



Relevant Components for Tutorial

- Typical operations that we will discuss:
 - Convolution (CONV)
 - Fully-Connected (FC)
 - Max Pooling
 - ReLU

