DNN Model and Hardware Co-Design

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Approaches

- Reduce size of operands for storage/compute
 - Floating point → Fixed point
 - Bit-width reduction
 - Non-linear quantization
- Reduce number of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

Cost of Operations

[Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC 2014]

Number Representation

Floating Point -> Fixed Point

Floating Point

Fixed Point

N-bit Precision

For no loss in precision, **M** is determined based on largest filter size (in the range of 10 to 16 bits for popular DNNs)

Dynamic Fixed Point

Floating Point

Fixed Point

Allow *f* to vary based on data type and layer

Impact on Accuracy

Top-1 accuracy on of CaffeNet on ImageNet

	Layer outputs	CONV parameters	FC parameters	32-bit floating point baseline	Fixed point accuracy
LeNet (Exp 1)	4-bit	4-bit	4-bit	99.1%	99.0% (98.7%)
LeNet (Exp 2)	4-bit	2-bit	2-bit	99.1%	98.8% (98.0%)
Full CIFAR-10	8-bit	8-bit	8-bit	81.7%	81.4% (80.6%)
SqueezeNet top-1	8-bit	8-bit	8-bit	57.7%	57.1% (55.2%)
CaffeNet top-1	8-bit	8-bit	8-bit	56.9%	56.0% (55.8%)
GoogLeNet top-1	8-bit	8-bit	8-bit	68.9%	66.6% (66.1%)

Avoiding Dynamic Fixed Point

Batch normalization 'centers' dynamic range

'Centered' dynamic ranges might reduce need for dynamic fixed point

Nvidia PASCAL

"New half-precision, 16-bit floating point instructions deliver over 21 TeraFLOPS for unprecedented training performance. With 47 TOPS (tera-operations per second) of performance, new 8-bit integer instructions in Pascal allow AI algorithms to deliver real-time responsiveness for deep learning inference."

– Nvidia.com (April 2016)

Google's Tensor Processing Unit (TPU)

"With its TPU Google has seemingly focused on delivering the data really quickly by cutting down on precision. Specifically, it doesn't rely on floating point precision like a GPU

. . . .

Instead the chip uses integer math...TPU used 8-bit integer."

- Next Platform (May 19, 2016)

Precision Varies from Layer to Layer

Tolerance	Bits per layer (I+F)				
AlexNet (F=0)					
1%	10-8-8-8-8-6-4				
2%	10-8-8-8-8-5-4				
5%	10-8-8-8-7-7-5-3				
10%	9-8-8-8-7-7-5-3				

Bitwidth Scaling (Speed)

Bit-Serial Processing: Reduce Bit-width → Skip Cycles Speed up of 2.24x vs. 16-bit fixed

$$\sum_{i=0}^{N_i-1} s_i \times n_i = \sum_{i=0}^{N_i-1} s_i \times \sum_{b=0}^{P-1} n_i^b \times 2^b = \sum_{b=0}^{P-1} 2^b \times \sum_{i=0}^{N_i-1} n_i^b \times S_i$$

Bitwidth Scaling (Power)

Reduce Bit-width → Shorter Critical Path → Reduce Voltage

Root-Mean-Square Error [-]

Power reduction of 2.56x vs. 16-bit fixed On AlexNet Layer 2

Binary Nets

Binary Connect (BC)

- Weights {-1,1}, Activations 32-bit float
- MAC → addition/subtraction
- Accuracy loss: 19% on AlexNet[Courbariaux, NIPS 2015]

Lrab

Binarized Neural Networks (BNN)

- Weights {-1,1}, Activations {-1,1}
- MAC → XNOR
- Accuracy loss: 29.8% on AlexNet[Courbariaux, arXiv 2016]

Scale the Weights and Activations

Binary Weight Nets (BWN)

- − Weights $\{-\alpha, \alpha\}$ → except first and last layers are 32-bit float
- Activations: 32-bit float
- α determined by the l₁-norm of all weights in a layer
- Accuracy loss: 0.8% on AlexNet

XNOR-Net

- Weights $\{-\alpha, \alpha\}$
- Activations $\{-\beta_i, \beta_i\} \rightarrow$ except first and last layers are 32-bit float
- β_i determined by the I₁-norm of all activations across channels
 for given position i of the input feature map
- Accuracy loss: 11% on AlexNet

Scale factors (α, β_i) can change per layer or position in filter

Hardware needs to support both activation precisions

XNOR-Net

Ternary Nets

- Allow for weights to be zero
 - Increase sparsity, but also increase number of bits (2-bits)
- Ternary Weight Nets (TWN) [Li et al., arXiv 2016]
 - Weights {-w, 0, w} → except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 3.7% on AlexNet
- Trained Ternary Quantization (TTQ) [Zhu et al., ICLR 2017]
 - Weights $\{-w_1, 0, w_2\} \rightarrow$ except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 0.6% on AlexNet

Non-Linear Quantization

- Precision refers to the number of levels
 - Number of bits = log₂ (number of levels)
- Quantization: mapping data to a smaller set of levels
 - Linear, e.g., fixed-point
 - Non-linear
 - Computed
 - Table lookup

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Computed Non-linear Quantization

Log Domain Quantization

Product = X * W

Product = X << W

Log Domain Computation

max, bitshifts, adds/subs

Log Domain Quantization

- Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
- Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016], [Lee et al., LogNet, ICASSP 2017]

Reduce Precision Overview

 Learned mapping of data to quantization levels (e.g., k-means)

Implement with look up table

[Han et al., ICLR 2016]

- Additional Properties
 - Fixed or Variable (across data types, layers, channels, etc.)

Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering to reduce number of unique weights *per layer* (weight sharing)

Example: AlexNet (no accuracy loss)256 unique weights for CONV layer16 unique weights for FC layer

Consequences: Narrow weight memory and second access from (small) table

Summary of Reduce Precision

Category	Method	Weights (# of bits)	Activations (# of bits)	Accuracy Loss vs. 32-bit float (%)
Dynamic Fixed Point	w/o fine-tuning	8	10	0.4
	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2*	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Linear	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0

^{*} first and last layers are 32-bit float

Reduce Number of Ops and Weights

- Exploit Activation Statistics
- Network Pruning
- Compact Network Architectures
- Knowledge Distillation

Sparsity in Fmaps

Many zeros in output fmaps after ReLU

I/O Compression in Eyeriss

Compression Reduces DRAM BW

Simple RLC within 5% - 10% of theoretical entropy limit

Data Gating / Zero Skipping in Eyeriss

Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

Pruning Activations

Remove small activation values

Speed up 11% (ImageNet)

google ● ● nin ● ● vqq19 0.70 Cnvlutin 0.65 Accuracy 0.60 0.55 0.50 1.0 1.2 1.4 1.8 2.0 2.2 2.4 1.6 Speedup

Reduce power 2x (MNIST)

Pruning – Make Weights Sparse

Optimal Brain Damage

- 1. Choose a reasonable network architecture
- 2. Train network until reasonable solution obtained
- 3. Compute the second derivative for each weight
- 4. Compute saliencies (i.e. impact on training error) for each weight
- 5. Sort weights by saliency and delete low-saliency weights
- 6. Iterate to step 2

Pruning – Make Weights Sparse

Prune based on *magnitude* of weights

Example: AlexNet

Weight Reduction: CONV layers 2.7x, FC layers 9.9x

(Most reduction on fully connected layers)

Overall: 9x weight reduction, 3x MAC reduction

Speed up of Weight Pruning on CPU/GPU

On Fully Connected Layers Only

Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

Key Metrics for Embedded DNN

- Accuracy → Measured on Dataset
- Speed → Number of MACs
- Storage Footprint → Number of Weights
- Energy → ?

Energy-Aware Pruning

- # of Weights alone is not a good metric for energy
 - Example (AlexNet):
 - # of Weights (FC Layer) > # of Weights (CONV layer)
 - Energy (FC Layer) < Energy (CONV layer)
- Use energy evaluation method to estimate DNN energy
 - Account for data movement

Energy-Evaluation Methodology

Key Observations

- Number of weights alone is not a good metric for energy
- All data types should be considered

Energy Consumption of GoogLeNet

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Magnitude-based Weight Pruning

Reduce number of weights by removing small magnitude weights

Energy-Aware Pruning

Remove weights from layers in order of highest to lowest energy 3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

Energy Estimation Tool

Website: https://energyestimation.mit.edu/

Deep Neural Network Energy Estimation Tool

Overview

This Deep Neural Network Energy Estimation Tool is used for evaluating and designing energy-efficient deep neural networks that are critical for embedded deep learning processing. Energy estimation was used in the development of the energy-aware pruning method (Yang et al., CVPR 2017), which reduced the energy consumption of AlexNet and GoogLeNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified version of the energy estimation tool for shorter runtime (around 10 seconds).

Input

To support the variety of toolboxes, this tool takes a single network configuration file. The network configuration file is a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is:

- . Layer Index: the index of the layer, from 1 to the number of layers. It should be the same as the line number.
- <u>Conf IfMap, Conf Filt, Conf OfMap:</u> the configuration of the input feature maps, the filters and the output feature maps. The configuration of each of the three data types is in the format of "height width number_of_channels number_of_maps_or_filts number_of_zero_entries bitwidth_in_bits".
- . Stride: the stride of this layer. It is in the format of "stride_y stride_x".
- Pad: the amount of input padding. It is in the format of "pad_top pad_bottom pad_left pad_right".

Therefore, there will be 25 entries separated by commas in each line.

Running the Estimation Model

After creating your text file, follow these steps to upload your text file and run the estimation model:

- Check the "I am not a robot" checkbox and complete the Google reCAPTCHA challenge. Help us prevent spam.
- 2. Click the "Choose File" button below to choose your text file from your computer.
- 3. Click the "Run Estimation Model" button below to upload your text file and run the estimation model.

Input DNN Configuration File

Layer_Index,Input_Feature_Map,Output_Feature_Map,Weight,Computation
1,161226686.785535,323273662,88858340.625,58290651
2,63540403.7543396,19104256.6840292,4770357.50868125,3263307.50868125
3,26787638.0555562,39583335.5555542,3272222.77777708,2285942.77777708
4,26018817.2746958,48841502.8019458,15927826.1926396,7847418.06763958
5,62285050.8236438,49433953.294575,4188476.6472875,3227376.6472875
6,27267689.7685187,45381705.7407417,3740581.20370417,2666586.20370417
7,26787131.0480146,48586492.3413917,16216779.2956958,8136371.17069583

Output DNN energy breakdown across layers

Compression of Weights & Activations

- Compress weights and activations between DRAM and accelerator
- Variable Length / Huffman Coding

Example:

Value: 16'b0 → Compressed Code: {1'b0}

Value: 16'bx → Compressed Code: {1'b1, 16'bx}

Tested on AlexNet → 2× overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffIO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)
General CNN	16 (0%) / 16 (0%)	1.0x		1.1	_	288	0.3
AlexNet 11	7 (21%) / 4 (29%)	1.17x / 1.3x	1 / 0.77	0.85	105	85	0.96
AlexNet 12	7 (19%) / 7 (89%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11%) / 9 (82%)	1.05x / 4.1x	6.5 / 2.8	0.92	150	77	0.7
AlexNet 14	9 (04%) / 8 (72%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04%) / 8 (72%)	1.00x / 2.9x	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	_	_	19.8 / 10	_	_	76	0.94
LeNet-5 11	3 (35%) / 1 (87%)	1.40x / 5.2x	0.003 / 0.001	0.7	0.3	25	1.07
LeNet-5 12	4 (26%) / 6 (55%)	1.25x / 1.9x	0.050 / 0.042	0.8	1.6	35	1.75
Total / avg.	_	_	0.053 / 0.043	_	_	33	1.6

Sparse Matrix-Vector DSP

Use CSC rather than CSR for SpMxV

Reduce memory bandwidth (when not M >> N) For DNN, M = # of filters, N = # of weights per filter

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format
- Read relative column when input is non-zero

Supports Fully Connected Layers Only

Sparse CNN (SCNN)

Supports Convolutional Layers

PE frontend

PE backend

Input Stationary Dataflow

[Parashar et al., ISCA 2017]

Structured/Coarse-Grained Pruning

Scalpel

Prune to match the underlying data-parallel hardware organization for speed up

Example: 2-way SIMD

_	_	_	_	_	_	1
0	5	2	5	0	0	
0	0	1	7	0	0	
2	3	0	0	4	2	4
8	4	0	0	0	0	5
0	0	1	1	8	3	
3	2	0	0	0	0	

Sparse weights

Compact Network Architectures

- Break large convolutional layers into a series of smaller convolutional layers
 - Fewer weights, but same effective receptive field

Before Training: Network Architecture Design

After Training: Decompose Trained Filters

Build Network with series of Small Filters

GoogleNet/Inception v3

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Reduce size and computation with 1x1 Filter (bottleneck)

Used in Network In Network(NiN) and GoogLeNet

[Lin et al., ArXiV 2013 / ICLR 2014] [Szegedy et al., ArXiV 2014 / CVPR 2015]

Bottleneck in Popular DNN models

SqueezeNet

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Decompose Trained Filters

After training, perform low-rank approximation by applying tensor decomposition to weight kernel; then fine-tune weights for accuracy

Decompose Trained Filters

Visualization of Filters

Original Approx.

- Speed up by 1.6 2.7x on CPU/GPU for CONV1, CONV2 layers
- Reduce size by 5 13x for FC layer
- < 1% drop in accuracy

Decompose Trained Filters on Phone

Model	Top-5	Weights	FLOPs	S	6	Titan X
AlexNet	80.03	61M	725M	117ms	245mJ	0.54ms
AlexNet*	78.33	11 M	272M	43ms	72mJ	0.30ms
(imp.)	(-1.70)	$(\times 5.46)$	$(\times 2.67)$	$(\times 2.72)$	$(\times 3.41)$	$(\times 1.81)$
VGG-S	84.60	103M	2640M	357ms	825mJ	1.86ms
VGG-S*	84.05	14 M	549M	97ms	193mJ	0.92ms
(imp.)	(-0.55)	$(\times 7.40)$	$(\times 4.80)$	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9M	1566M	273ms	473mJ	1.83ms
GoogLeNet*	88.66	4.7M	760M	192ms	296mJ	1.48ms
(imp.)	(-0.24)	$(\times 1.28)$	$(\times 2.06)$	$(\times 1.42)$	$(\times 1.60)$	$(\times 1.23)$
VGG-16	89.90	138M	15484M	1926ms	4757mJ	10.67ms
<i>VGG-16</i> *	89.40	127M	3139M	576ms	1346mJ	4.58ms
(imp.)	(-0.50)	$(\times 1.09)$	$(\times 4.93)$	$(\times 3.34)$	$(\times 3.53)$	$(\times 2.33)$

Knowledge Distillation

