http://eyeriss.mit.edu/energy.html

- energy rather than number of weights

- (energy model from hardware measurements*)
- and **feature maps**)

MAC and Memory Access

		Example	Exam		
	Layer	# Weights	Energy	Network	# We
	CONV	4%	73%	AlexNet	61
Output Feature Map 43%	FC	96%	27%	GoogLeNet	7
GoogLeNet Energy		AlexNet		AlexNet	vs. G

Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning Tien-Ju Yang, Yu-Hsin Chen, Vivienne Sze **Massachusetts Institute of Technology**

Pruning Results for AlexNet and GoogLeNet

- 3.7x and 1.6x energy reduction
- **10.6x** and **3.0x** number of non-zero weights reduction
- 6.6x and 3.4x number of non-skipped MACs reduction

Model	Top-5 Accuracy	# of Non-zero Weights (×10 ⁶)		# of Non-skipped MACs (×10 ⁸)		Normalized Energy (×10 ⁹)	
AlexNet (Original)	80.43%	60.95	(100%)	3.71	(100%)	3.97	(100%)
AlexNet (DC)	80.37%	6.79	(11%)	1.79	(48%)	1.85	(47%)
AlexNet (This Work)	79.56%	5.73	(9%)	0.56	(15%)	1.06	(27%)
GoogLeNet (Original)	88.26%	6.99	(100%)	7.41	(100%)	7.63	(100%)
GoogLeNet (This Work)	87.28%	2.37	(34%)	2.16	(29%)	4.76	(62%)

- Trained Quantization and Huffman Coding," in ICLR, 2016
- Energy-aware pruned models available for download from the website

Network Comparison (Energy vs. Accuracy)

- Our pruned networks achieve better accuracy-energy trade-off
- Feature maps need to be factored in when estimating energy

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

• DC = S. Han et al., "Deep Compression: Compressing Deep Neural Networks with Pruning,

Normalized Energy Consumption

 \bigcirc Original CNN \triangle DC \Rightarrow Energy-aware Pruning (This Work)