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Problem of DNNs

Energy Estimation helps

• Understand the design trade-off

• Guide the DNN design

• Enable DNN mobile applications

DPM

Accuracy 

0.1k – 0.5k OP/Px

DNN
15k – 300k OP/Px

Computation

AISmart DroneRecognition
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Deep Convolutional NN Explanation
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Deep Convolutional NN Explanation
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Convolution Takes 90% – 99% of

Computation
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Why Not Use # of Weights or MACs?

ALUfilter weight
image pixel
partial sum updated partial sum

MAC*

* multiplication-and-accumulation

Reason 1: 

Reason 2:
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Why Not Use # of Weights or MACs?

ALU

Memory Read Memory Write

DRAM DRAM

ALU

Normalized Energy Cost*

200×

1× (Reference)

DRAM ALU

* measured from a commercial 65nm process

MAC*

Reason 1: 

Reason 2:
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Why Not Use # of Weights or MACs?

ALU

Memory Read Memory Write

DRAM DRAM

ALU

Normalized Energy Cost*

200×

1× (Reference)

DRAM ALU

* measured from a commercial 65nm process

MAC*

Reason 1: computation is cheap but data movement is expensive

Reason 2:
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Why Not Use # of Weights or MACs?

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

ALU

Memory Read Memory Write

MemDRAM DRAM

MAC*

Extra levels of local memory hierarchy

Mem

Reason 1: computation is cheap but data movement is expensive

Reason 2:
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Why Not Use # of Weights or MACs?

Reason 1: computation is cheap but data movement is expensive

Reason 2: where data come from/go to is important for energy

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

ALU

Memory Read Memory Write

MemDRAM DRAM

MAC*

Extra levels of local memory hierarchy

Mem
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Energy Estimation 

Methodology
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Energy Estimation Methodology

• Estimate the energy consumption of each layer separately

• For each layer, 𝐸𝑙𝑎𝑦𝑒𝑟 = 𝐸𝑐𝑜𝑚𝑝+𝐸𝑑𝑎𝑡𝑎

Computation energy only 

depends on the # of MACs
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Energy Estimation Methodology

• Estimate the energy consumption of each layer separately

• For each layer, 𝐸𝑙𝑎𝑦𝑒𝑟 = 𝐸𝑐𝑜𝑚𝑝+𝐸𝑑𝑎𝑡𝑎

Computation energy only 

depends on the # of MACs

Minimize energy consumption

under the hardware constraints
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Energy Estimation Methodology

• Estimate the energy consumption of each layer separately

• For each layer, 𝐸𝑙𝑎𝑦𝑒𝑟 = 𝐸𝑐𝑜𝑚𝑝+𝐸𝑑𝑎𝑡𝑎

Data energy does NOT only 

depend on the # of MACs

Computation energy only 

depends on the # of MACs
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Factor in Bitwidth

Computation energy scales linearly 

with the bitwidth of each input

Data energy:

• Consider bitwidths in the optimization

• Scale # of bits linearly with the bitwidth

weight

pixel
Out
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Factor in Sparsity
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Factor in Sparsity

Skip the MAC when at 

least one input is zero

Use data compression to reduce

the # of bits accessed

0

In2
0

Skipped!
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Insights
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Example Platform

Eyeriss [ISSCC, 2016]

A reconfigurable CNN processor
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Key Insights

Deeper CNNs with fewer weights do not necessarily consume

less energy than shallower CNNs with more weights

Normalized Energy# of Weights# of Layers

x105 x108

51.8x

2.3x
1.3x

SqueezeNet: F. N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x 

fewer parameters and <0.5MB model size,” arXiv:1602.07360, 2016.
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Key Insights

• Data movement is more expensive than computation

• Feature maps need to be taken into account

Input Feature Map
25%

Output Feature Map
43%

Weight
22%

Computation
10%

Input Feature 
Map
25%

Output Feature 
Map
43%

Weight
22%

Computation
10%

GoogLeNet Energy Breakdown

Computation 10% Feature Map 68%
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Application
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Energy-Aware Pruning (EAP)

Sort Layers 

Based on 

Energy

L1 L2 L3

Energy

L2 L1 L3

Output

Input Input

~Output

~Output

Input

Remove 

Weights

• Use estimated energy to guide the layer-by-layer pruning

• Start from pruning the layers that consume the most of energy

T.-J. Yang et al., “Designing Energy-Efficient Convolutional Neural 

Networks using Energy-Aware Pruning,” CVPR, July 2017.
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Energy-Aware Pruning (EAP)

We remove the weights having the smallest joint impact on

the output instead of the small magnitude weights

Our Method

Magnitude-based Method
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Pruned Result Analysis

• EAP reduces AlexNet energy by 3.7x and outperforms the

previous work by 1.7x

• Energy is more difficult to reduce than # of weights and

MACs

DC: S. Han et al., “Deep Compression: Compressing Deep Neural Networks with 

Pruning, Trained Quantization and Huffman Coding,” in ICLR, 2016.
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• Energy-aware pruning achieves better trade-off

Network Comparison

Better
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Summary

• We proposed an energy estimation methodology 

of DNNs based on the architecture, bitwidth and 

sparsity

• We showed that
– # of weights and MACs are not good metrics for energy

– data movement is more expensive than computation

– feature maps need to be taken into account

• Better accuracy-energy trade-off can be achieved 

by combining the energy estimation methodology 

with pruning
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Thank You

Learn more about energy-aware pruning at

http://eyeriss.mit.edu/energy.html

Learn more about efficient neural networks at

https://arxiv.org/abs/1703.09039


