Navion: An Energy-Efficient Visual-Inertial Odometry Accelerator for Micro Robotics and Beyond

Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne Sze

Massachusetts Institute of Technology

http://navion.mit.edu/
Contributors

Amr Suleiman
PhD Graduate in EECS

Zhengdong Zhang
PhD Candidate in EECS

Luca Carlone
Professor in AeroAstro

Sertac Karaman
Professor in AeroAstro

Vivienne Sze
Professor in EECS
Motivation: Autonomous Navigation

Self Driving Cars

UAVs: Unmanned Aerial Vehicles

Robots

[images] Electrek, Amazon, Knightscope, Boston Dynamics
Motivation: Miniaturized Robots

Very small form factor

Micro Nano Pico?
Motivation: Miniaturized Robots

Very small form factor

Micro
Nano
Pico?

Applications

Search & Rescue

Surveillance

How Does Autonomous Navigation Work?

Perception

Motion Planning

Where to Go?

Control
How Does Autonomous Navigation Work?

Perception

Motion Planning

Where to Go?

Control

Perception is the computation bottleneck

[Kanellakis et al., JIRS 2017]
Challenges: High Dimensionality

• Large amount of data
 – Sensors data: High resolution & frame rates
 – Data expansion: Image pyramid
Challenges: High Dimensionality

• Large amount of data
 – Sensors data: High resolution & frame rates
 – Data expansion: Image pyramid

• Growing map size

[T. Pire et al., 2017]
Challenges: Low Power Budget
Challenges: Low Power Budget

For example:

Insect-scale UAV (100mg)

<table>
<thead>
<tr>
<th>Lifting</th>
<th>Sensing</th>
<th>CPU, GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mW</td>
<td>100 mW</td>
<td>10 - 100 W</td>
</tr>
</tbody>
</table>

[R.J. Wood et al., IJRR 2012]
Navion: Energy-Efficient Visual-Inertial Odometry

- Energy-efficient & real-time localization and mapping
- Real-time performance of 20 fps at 2mW
- Peak performance of up to 171 fps at 24 mW
Outline

- Localization & Mapping: Visual-Inertial Odometry (VIO)
- Chip Architecture
- Main Contributions
- Chip Specifications and Comparisons
- Summary
Localization and Mapping Using VIO

Image sequence

IMU
Inertial Measurement Unit

Visual-Inertial Odometry (VIO)
Localization and Mapping Using VIO

Image sequence

Visual-Inertial Odometry (VIO)

Localization

Mapping

IMU
Inertial Measurement Unit
Localization and Mapping Using VIO

Image sequence

IMU
Inertial Measurement Unit

Visual-Inertial Odometry (VIO)

Localization

Subset of SLAM algorithm
(Simultaneous Localization And Mapping)

Mapping
VIO: Frontend

Camera

Vision Frontend (VFE)

Process mono/stereo Images
VIO: Frontend

Process mono/stereo Images
- Detect & track features (L_i)
Process mono/stereo Images
- Detect & track features (L_i)
- Generate **Feature Tracks** \rightarrow (keyframe IDs & feature coordinates)
VIO: Frontend

Camera

Vision Frontend (VFE)

Feature Tracks

IMU

Frontend (IFE)

Gyro. & Acc. Measurements

KF: Keyframe

Stereo Images

KF1 → KF2 → KF3 → KF4 → …

Feature Tracks

Stereo Images
VIO: Frontend

Camera → **Vision Frontend (VFE)**
- Feature Tracks
- Estimated States

IMU Frontend (IFE)
- IMU

KF
- IMU$_{12}$: $\{\Delta R_{12}, \Delta T_{12}\}$
- IMU$_{23}$: $\{\Delta R_{23}, \Delta T_{23}\}$

- Stereo Images
- Gyro. & Acc. Measurements

- Preintegration

- KF: Keyframe
VIO: Frontend

- **Camera**
- Vision Frontend (VFE)
- Feature Tracks
- Estimated States
- **IMU Frontend (IFE)**
- **IMU**

- **State:**
 - Pose (Rotation R)
 - Location (Translation T)

- **Gyro. & Acc. Measurements**

- **KF: Keyframe**
 - K_{F_1}
 - K_{F_2}
 - K_{F_3}
 - K_{F_4}

- **IMU:**
 - ΔR_{12}, ΔT_{12}
 - ΔR_{23}, ΔT_{23}

- **Preintegration:**
 - K_{F_1}
 - K_{F_2}
 - K_{F_3}

- Stereo Images
VIO: Backend

- Camera
- Vision Frontend (VFE)
 - Feature Tracks
 - Estimated States
- IMU Frontend (IFE)
- Backend (BE)
- IMU
VIO: Backend

- **Camera**
- **Vision Frontend (VFE)**
- **IMU Frontend (IFE)**
- **IMU**

Feature Tracks → **Backend (BE)** → **Estimated States**

Update states \((x_i) \) to minimize inconsistencies between measurements across time.
VIO: Backend

Non-linear least squares factor graph optimization

\[
\min_x \sum_{(i,j) \in F} \|r_{IMU}(x, \Delta \theta_{ij}, \Delta \phi_{ij}, \Delta \psi_{ij})\|^2 + \sum_{k \in L} \sum_{i \in F_k} \|r_{CAM}(x, l_k, u_{ik}, u_{ik})\|^2 + \|r_{PRIOR}(x)\|^2
\]

IMU Factors Vision Factors Other Factors

Factor Graph

Feature Tracks Estimated States

Camera Vision Frontend (VFE) IMU Frontend (IFE)

Backend (BE)

4000+ factors

Horizon at time \(t_k \)

KF_1 KF_2 KF_3
VIO: Backend

Non-linear least squares factor graph optimization

\[
\min_x \sum_{(i,j) \in F} \|r_{\text{IMU}}(x, \Delta \tilde{r}_{ij}, \Delta \tilde{p}_{ij}, \Delta \hat{p}_{ij})\|^2 + \sum_{k \in L} \sum_{l \in F_k} \|r_{\text{CAM}}(x, k, u_{ik}, u_{lk})\|^2 + \|r_{\text{PRIOR}}(x)\|^2
\]

IMU Factors

Vision Factors

Other Factors

Factor Graph

Updated States \((x_i)\) & Sparse 3D Map

Camera

Vision Frontend (VFE)

Feature Tracks

Estimated States

IMU Frontend (IFE)

IMU

Updated States

Sparse 3D Map

4000+ factors

Horizon at time \(t_k\)

\(KF_1, KF_2, KF_3\)
Outline

• Localization & Mapping: Visual-Inertial Odometry (VIO)
• Chip Architecture
• Main Contributions
• Chip Specifications and Comparisons
• Summary
Navion is a **fully integrated** system: No off-chip storage or processing
VFE: All Image Processing

- Fixed point arithmetic
- Parallel/pipelined image processing
- Mono & stereo cameras
- Operates at the sensor rate (up to 171 fps)
- Outputs at keyframe rate:
 Feature tracks

Vision Frontend (VFE)

- Line Buffers
- Previous Frame
- Current Frame
- Feature Detection (FD)
- Undistort & Rectify (UR)
- Undistort & Rectify (UR)
- Feature Tracking (FT)
- Left Frame
- Right Frame
- Sparse Stereo (SS)

Vision Frontend Control

- Data & Control Bus
- RANSAC
- Fixed Point Arithmetic
- Point Cloud

Vision Frontend (VFE)

- All Image Processing
- Fixed point arithmetic
- Parallel/pipelined image processing
- Mono & stereo cameras
- Operates at the sensor rate (up to 171 fps)
- Outputs at keyframe rate:
 Feature tracks
IFE: IMU Preintegration

- Double precision arithmetic
- Low cost: 2.4% area & 1.2% power
- Operates at the sensor rate (up to 52 kHz)

- Outputs at keyframe rate: Estimated state
BE: Fusing Sensors Data

- Double precision arithmetic
- Complex Finite State Machine (FSM)
- Operates at the keyframe rate
 (up to 90 fps)

- Outputs at keyframe rate:
 Updated state & 3D map
VIO Full Integration Challenges

• Vision Frontend (VFE)
 – Heterogeneous computation modules
 • Feature detection
 • Feature tracking
 • Stereo matching
 • Outliers rejection using RANSAC
 • ...
VIO Full Integration Challenges

• Vision Frontend (VFE)
 – Heterogeneous computation modules
 • Feature detection
 • Feature tracking
 • Stereo matching
 • Outliers rejection using RANSAC
 • …

• Backend (BE)
 – High dimensional and complex data structures
 • Large optimization problem (more than 4000 factors)
 • Dynamically changing factor graph
 • High computation precision (64-bit floating point)
Outline

• Localization & Mapping: Visual-Inertial Odometry (VIO)
• Chip Architecture
• Main Contributions
• Chip Specifications and Comparisons
• Summary
Enabling Full Integration

Vision Frontend (VFE)
- Line Buffers
- Previous Frame
- Current Frame
- Feature Detection (FD)
- Undistort & Rectify (UR)
- Undistort & Rectify (UR)
- Feature Tracking (FT)
- Left Frame
- Right Frame
- Sparse Stereo (SS)

Backend (BE)
- Backend Control
- Data & Control Bus
- Build Graph
- Linearize
- Linear Solver
- Marginal
- Retract
- Graph
- Linear Solver
- Horizon States
- Shared Memory
- Register File

Vision Frontend Control
- Data & Control Bus

IMU Frontend (IFE)
- Pre-Integration
- IMU memory

RANSAC
- Fixed Point Arithmetic
- Point Cloud

Line Buffers

Previous Frame

Current Frame

Feature Detection (FD)

Undistort & Rectify (UR)

Undistort & Rectify (UR)

Feature Tracking (FT)

Left Frame

Right Frame

Sparse Stereo (SS)

Vision Frontend Control

Data & Control Bus

IMU Frontend (IFE)

Fixed Point Arithmetic

Point Cloud

IMU memory

Floating Point Arithmetic

Matrix Operations

Cholesky

Back Substitute

Rodrigues Operations

RANSAC

Current Frame

Left Frame

Right Frame

Previous Frame

Register File
Enabling Full Integration

Vision Frontend (VFE)
- Line Buffers
 - Feature Detection (FD)
 - Undistort & Rectify (UR)
- Left Frame
- Right Frame
- Sparse Stereo (SS)

Backend (BE)
- Backend Control
- Data & Control Bus
 - Build Graph
 - Linear Solver
 - Linearize
 - Horizon States
 - Shared Memory
 - Register File

IMU Frontend (IFE)
- RANSAC
- Fixed Point Arithmetic
- Point Cloud

Memory Capacities
- Frame buffers: 1,410 kB
- Linear solver memory: 703 kB
- Graph memory (Feature tracks): 962 kB
Enabling Full Integration

Frame buffers 1,410 kB

Use compression and exploit sparsity
Method 1

Data Compression
Frame Buffer: Image Compression

- Lossy Block-wise Image Compression

![Diagram](diagram.png)

- Compress
- 4x4 pixels example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

- Find Min. & Max.
 - Min.
 - Max.

- Thresh
- \(\geq ? \)
- \(\geq 7 \)

- Shift Right
- \(>> 1 \)
- 1 bit/pixel

- Frame Memory

8 bit/pixel

Original

(352.5 kB)
Frame Buffer: Image Compression

- Lossy Block-wise Image Compression

Compress:

<table>
<thead>
<tr>
<th>4x4 pixels example</th>
<th>Find Min. & Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 6 6 4</td>
<td>Min. 4</td>
</tr>
<tr>
<td>6 8 6 5</td>
<td>Max. 11</td>
</tr>
<tr>
<td>6 8 10 11</td>
<td>≥ 7</td>
</tr>
<tr>
<td>8 5 5 6</td>
<td>>>1</td>
</tr>
</tbody>
</table>

Decompress:

Frame Memory

Thresh 7

8 bit/pixel | Original (352.5 kB) | Compressed (79.4 kB) | 1.625 bit/pixel
Frame Buffer: Image Compression

- Lossy Block-wise Image Compression

Lossy Image Compression:
4.4x Memory size reduction

Used only in Feature tracking & Sparse stereo

8 bit/pixel
Original (352.5 kB) → Compressed (79.4 kB) → 1.625 bit/pixel
Method 2
Exploit Sparsity
(Structured & Unstructured)
Linearize

\[H\delta = \hat{\epsilon} \]

Solve a large linear system for \(\delta \)

\[
\min_{x} \sum_{(i,j) \in \mathcal{F}} \left\| \mathbf{r}_{\text{IMU}}(x, \Delta \hat{R}_{ij}, \Delta \tilde{p}_{ij}, \Delta \tilde{v}_{ij}) \right\|^2 + \sum_{k \in \mathcal{L}} \sum_{i \in \mathcal{F}_k} \left\| \mathbf{r}_{\text{CAM}}(x, l_k, u^l_{ik}, u^r_{ik}) \right\|^2 + \left\| \mathbf{r}_{\text{PRIOR}}(x) \right\|^2
\]
Linear Solver Memory: Structured Sparsity

\[
\min_x \sum_{(i,j) \in F} \| r_{MU}(x, \Delta \tilde{R}_{ij}, \Delta \tilde{p}_{ij}, \Delta \tilde{v}_{ij}) \|^2 + \sum_{k \in \mathcal{L}} \sum_{i \in F_k} \| r_{CAM}(x, l_k, u_{ik}^l, u_{ik}^r) \|^2 + \| r_{PRIOR}(x) \|^2
\]

Linearize

\[H \delta = \delta \]

Solve a large linear system for \(\delta \)

\(H \) is:
- Symmetric

Memory size (kB)

<table>
<thead>
<tr>
<th></th>
<th>Full</th>
<th>Sym</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x</td>
<td>703</td>
<td>353</td>
</tr>
</tbody>
</table>

\(2x \)
Linear Solver Memory: Structured Sparsity

\[
\min_x \sum_{(i,j) \in F} \| r_{IMU}(x, \Delta R_{ij}, \Delta p_{ij}, \Delta v_{ij}) \|^2 + \sum_{k \in E} \sum_{i \in E_k} \| r_{CAM}(x, l_k, u^l_{ik}, u^r_{ik}) \|^2 + \| r_{PRIOR}(x) \|^2
\]

Linearize $H\delta = \hat{\epsilon}$

Solve a large linear system for δ

H is:
- Symmetric
- Sparse
 (Black: non zero)

Memory size (kB):
- Full
- Sym: 703
- Sym + Sparse: 134

Reduction:
- Full to Sym: 2x
- Full to Sym + Sparse: 5.2x
Linear Solver Memory: Structured Sparsity

\[
\min_x \sum_{(i,j) \in F} \|r_{IMU}(x, \Delta \hat{R}_{ij}, \Delta \hat{\rho}_{ij}, \Delta \hat{v}_{ij})\|^2 + \sum_{k \in \mathcal{L}} \sum_{i \in F_k} \|r_{CAM}(x, l_k, u_{ik}^l, u_{ik}^r)\|^2 + \|r_{PRIOR}(x)\|^2
\]

\[H \delta = \dot{\epsilon}\]

Solve a large linear system for \(\delta\)

H is:
- Symmetric
- Sparse
 (Black: non zero)

<table>
<thead>
<tr>
<th>Memory size (kB)</th>
<th>Full</th>
<th>Sym</th>
<th>Sym + Sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>703</td>
<td>353</td>
<td>134</td>
</tr>
</tbody>
</table>

2x

5.2x

<table>
<thead>
<tr>
<th>Processing time (ms)</th>
<th>Full</th>
<th>Sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.2</td>
<td>6.7</td>
</tr>
</tbody>
</table>

7.2x

Back-substitution

Cholesky Factorization

MIT
Linear Solver Memory: Structured Sparsity

\[
\min_x \sum_{(i,j) \in E} \|r_{IMU}(x, \Delta \tilde{R}_{ij}, \Delta \tilde{p}_{ij}, \Delta \tilde{v}_{ij})\|^2 + \sum_{k \in L} \sum_{i \in F_k} \|r_{CAM}(x, l_k, u_{ik}^l, u_{ik}^r)\|^2 + \|r_{PRIOR}(x)\|^2
\]

Storing symmetric non-zero values:
5.2x Memory size reduction

Skip processing zeros:
7.2x Speed up
Feature Tracks: Unstructured Sparsity

- Feature Tracks accounts for 88% of the Graph memory
Feature Tracks: Unstructured Sparsity

- Feature Tracks accounts for 88% of the Graph memory

3D Point (3x64-bit)

KF ID (5-bit)

<table>
<thead>
<tr>
<th>KF_1</th>
<th>KF_2</th>
<th>KF_3</th>
<th>KF_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

One Memory
(962 kB)
Feature Tracks: Unstructured Sparsity

- Feature Tracks accounts for 88% of the Graph memory

One Memory
(962 kB)

Two-stage Memory
(177 kB)
Feature Tracks: Unstructured Sparsity

• Feature Tracks accounts for 88% of the Graph memory

Feature tracks two-stage storage:

5.4x Memory size reduction

Overhead:

1 extra cycle access latency
Outline

• Localization & Mapping: Visual-Inertial Odometry (VIO)
• Chip Architecture
• Main Contributions
• Chip Specifications and Comparisons
• Summary
Navion Chip

Silicon Specifications

<table>
<thead>
<tr>
<th>Technology</th>
<th>65nm CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip area (mm²)</td>
<td>4.0 x 5.0</td>
</tr>
<tr>
<td>Logic gates</td>
<td>2,043 kgates</td>
</tr>
<tr>
<td>Resolution</td>
<td>752 x 480</td>
</tr>
<tr>
<td>SRAM</td>
<td>854 kB</td>
</tr>
</tbody>
</table>

Over 250 configurable parameters to adapt to different sensors and environments.
Memory Optimization

5.0 mm

4.0 mm

- Feature Tracking
- Feature Detection
- IFE
- VFE Control
- Shared Memory
- Marginal
- Horizon States
- Sparse Stereo
- Linear Solver

Graph

Memory size

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Image Compression</th>
<th>Two-stage Storage</th>
<th>Sparse LS Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory size</td>
<td>3.5 MB</td>
<td>1.5x 2.4 MB</td>
<td>2.6x 1.6 MB</td>
<td>4.1x 854 kB</td>
</tr>
</tbody>
</table>

Legend:
- Blue: Frame
- Green: Graph
- Orange: Linear Solver
- Gray: Misc.
Navion Evaluation

- EuRoC dataset
 - A very challenging, and widely used UAV dataset
 - 11 sequences with three categories: easy, medium & difficult

Examples of Easy Sequences

Examples of Difficult Sequences

- Dark scenes
- Motion blur
Navion Evaluation

- **Peak Performance @ Max Configuration**
 - VFE: 28 - 171 fps (71 fps average)
 - BE: 16 - 90 fps (19 fps average)
- **Average Power Consumption:** 24mW
- **Trajectory Error:** 0.28%

- **Real-Time Performance @ Optimized Configuration**
 - VF: 20 fps
 - BE: 5 fps
- **Average Power Consumption:** 2mW
- **Trajectory Error:** 0.27%
Navion Evaluation

- Average numbers over the 11 EuRoC dataset sequences

<table>
<thead>
<tr>
<th>Platform</th>
<th>Xeon (E5-2667)</th>
<th>ARM (Cortex A15)</th>
<th>Navion (Peak w/ Max Config)</th>
<th>Navion (Real-time w/ Optimized Config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trajectory Error (%)</td>
<td>0.22%</td>
<td></td>
<td>0.28%</td>
<td>0.27%</td>
</tr>
<tr>
<td>Camera rate (fps)</td>
<td>63</td>
<td>19</td>
<td>71</td>
<td>20</td>
</tr>
<tr>
<td>Keyframe rate (fps)</td>
<td>12</td>
<td>2</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Average Power (W)</td>
<td>27.9</td>
<td>2.4</td>
<td>0.024</td>
<td>0.002</td>
</tr>
<tr>
<td>Energy (mJ/KF)</td>
<td>3,638</td>
<td>1,573</td>
<td>2.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Navion Evaluation

- Average numbers over the 11 EuRoC dataset sequences

<table>
<thead>
<tr>
<th>Platform</th>
<th>Xeon (E5-2667)</th>
<th>ARM (Cortex A15)</th>
<th>Navion (Peak w/ Max Config)</th>
<th>Navion (Real-time w/ Optimized Config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trajectory Error (%)</td>
<td>0.22%</td>
<td>0.28%</td>
<td>0.27%</td>
<td></td>
</tr>
<tr>
<td>Camera rate (fps)</td>
<td>63</td>
<td>19</td>
<td>71</td>
<td>20</td>
</tr>
<tr>
<td>Keyframe rate (fps)</td>
<td>12</td>
<td>2</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Average Power (W)</td>
<td>27.9</td>
<td>2.4</td>
<td>0.024</td>
<td>0.002</td>
</tr>
<tr>
<td>Energy (mJ/KF)</td>
<td>3,638</td>
<td>1,573</td>
<td>2.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Navion Energy:

- 684x or 2,247x less than embedded ARM CPU
- 1,582x or 5,197x less than server Xeon CPU
Navion System Demo

https://youtu.be/X5VZkPo_704
Outline

• Localization & Mapping: Visual-Inertial Odometry (VIO)
• Chip Architecture
• Main Contributions
• Chip Specifications and Comparisons
• Summary
Summary

• First full integration of VIO pipeline on chip for robot perception
Summary

- **First full integration** of VIO pipeline on chip for robot perception
- Leverage compression and sparsity to reduce memory size
 - 4.4x reduction with image compression
 - 5.2x reduction with structured sparsity in linear solver
 - 5.4x reduction with unstructured sparsity in feature tracks
Summary

• First **full integration** of VIO pipeline on chip for robot perception

• Leverage compression and sparsity to reduce memory size
 – **4.4x** reduction with image compression
 – **5.2x** reduction with structured sparsity in linear solver
 – **5.4x** reduction with unstructured sparsity in feature tracks

• Navion is **2 to 3 orders of magnitude** more energy efficient than CPU
Summary

• First full integration of VIO pipeline on chip for robot perception

• Leverage compression and sparsity to reduce memory size
 – 4.4x reduction with image compression
 – 5.2x reduction with structured sparsity in linear solver
 – 5.4x reduction with unstructured sparsity in feature tracks

• Navion is 2 to 3 orders of magnitude more energy efficient than CPU

Acknowledgment
AFOSR YIP and NSF CAREER
References

http://navion.mit.edu

Other Related Works

Semantic Understanding

Object Detection
w/ Deformable Parts Models
[Suleiman et al., VLSI 2016]

Eyeriss: Deep Neural Networks
[ISSCC 2016, ISCA 2016]
Eyeriss v2
https://arxiv.org/abs/1807.07928

Website: http://www.rle.mit.edu/eems/
Questions

http://navion.mit.edu/