Motivation
- Time-of-flight (TOF) cameras are useful for many applications
- Due to system power constraints or multi-camera inference, TOF cameras cannot always acquire depth

Rigidity Assumption

From Frame 1 to 2, the patch undergoes rotation, \(R \), and translation, \(T \)

\[
x_1 = \frac{f}{2} \cdot x_1 \\
x_2 = \frac{f}{2} \cdot x_2 = \frac{f}{2} \cdot (Rx_1 + T)
\]

Approximate \(R \) with angular velocity, \(\omega \), because the time between frames is small:

\[
x_2 = \frac{f}{2} \cdot x_2 (Rx_1 + T) \approx \frac{f}{2} \cdot x_2 (x_1 + \omega \times x_1 + T)
\]

Exploit collinearity:

\[
x_2 \times (x_1 + \omega \times x_1 + T) = 0
\]

The pixel wise motion of a locally rigid patch must follow the rigidity assumption

Non-Rigid Depth Estimation Algorithm

3D Point Partitioning: Group all rigid points together

Constrained Motion Estimation: Estimate the pose of each rigid region

Obtaining Depth: Reproject each point and interpolate

Use the rigidity assumption along with RANSAC to identify rigid regions

Consistency Constraint

\[
\omega_1 \times X_1 + T_1 = \omega_2 \times X_1 + T_2
\]

Solve least squares formulation that minimizes the rigidity assumption while maintaining the consistency constraint

Algorithm Evaluation

- Sequentially estimate depth for our synthetic sequences and those in [2]
- Evaluate with percent mean relative error (MRE)

Key Contribution: Estimate depth maps with a mean relative error of 0.37% (0.48% for sequences in [2])

References

We thank Analog Devices for funding this work