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Abstract— Depth sensing is a critical function for robotic
tasks such as localization, mapping and obstacle detection.
There has been a significant and growing interest in depth
estimation from a single RGB image, due to the relatively low
cost and size of monocular cameras. However, state-of-the-art
single-view depth estimation algorithms are based on fairly
complex deep neural networks that are too slow for real-time
inference on an embedded platform, for instance, mounted on
a micro aerial vehicle. In this paper, we address the problem
of fast depth estimation on embedded systems. We propose an
efficient and lightweight encoder-decoder network architecture
and apply network pruning to further reduce computational
complexity and latency. In particular, we focus on the design
of a low-latency decoder. Our methodology demonstrates that
it is possible to achieve similar accuracy as prior work on
depth estimation, but at inference speeds that are an order of
magnitude faster. Our proposed network, FastDepth, runs at
178 fps on an NVIDIA Jetson TX2 GPU and at 27 fps when
using only the TX2 CPU, with active power consumption under
10 W. FastDepth achieves close to state-of-the-art accuracy
on the NYU Depth v2 dataset. To the best of the authors’
knowledge, this paper demonstrates real-time monocular depth
estimation using a deep neural network with the lowest latency
and highest throughput on an embedded platform that can be
carried by a micro aerial vehicle.

I. INTRODUCTION

Depth sensing is essential to many robotic tasks, includ-
ing mapping, localization, and obstacle avoidance. Existing
depth sensors (e.g., LiDARs, structured-light sensors, etc.)
are typically bulky, heavy, and have high power consumption.
These limitations make them unsuitable for small robotic
platforms (e.g., micro aerial and mini ground vehicles),
which motivates depth estimation using a monocular camera,
due to its low cost, compact size, and high energy efficiency.

Past research on monocular depth estimation has fo-
cused almost exclusively on improving accuracy, resulting
in computation-intensive algorithms that cannot be readily
adopted in robotic systems. Since most systems are not only
limited in compute resources, but are also subject to latency
constraints, a key challenge is balancing the computation and
runtime cost with the accuracy of the algorithm.

Current state-of-the-art depth estimation algorithms rely
on deep learning based methods, and while these achieve
significant improvement in accuracy, they do so at the cost
of increased computational complexity. Prior research on
designing fast and efficient networks has primarily focused
on encoder networks for tasks such as image classification
and object detection [1]. In these applications, the input is
an image (pixel-based), and the output is reduced to a label
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Fig. 1: Accuracy vs. runtime (in fps) on an NVIDIA Jetson TX2
GPU for various depth estimation algorithms. Top right represents
the desired characteristics of a depth estimation network design:
high throughput and high accuracy.

(an object class and position). To the best of our knowledge,
little effort has been put into the efficient design of both
encoder and decoder networks (i.e., auto-encoder networks)
for tasks such as depth estimation, where the output is
a dense image. In particular, reducing decoder complexity
poses an additional challenge since there is less information
reduction at each of the decoding layers and the decoder’s
output is high dimensional.

To address these challenges, this paper presents a low la-
tency, high-throughput, high-accuracy depth estimation algo-
rithm running on embedded systems. We propose an efficient
encoder-decoder network architecture with a focus on low
latency design. Our approach employs MobileNet [2] as an
encoder and nearest neighbor interpolation with depthwise
separable convolution in the decoder. We apply state-of-
the-art network pruning, NetAdapt [3], and use the TVM
compiler stack [4] to further reduce inference runtime on a
target embedded platform. We show that our low latency
network design, FastDepth, can perform real-time depth
estimation on the NVIDIA Jetson TX2 [5], operating at over
120 frames per second (fps) on the TX2 GPU (see Figure 1)
and at over 25 fps on the TX2 CPU only1, with active power
consumption under 10 W. The attained throughput is an order
of magnitude higher than prior work on depth estimation,
with only a slight loss of accuracy; FastDepth achieves a δ1
accuracy2 of 77.1% on NYU Depth v2.

The low latency and high throughput attainable with our
network is motivated by practical robotic systems, where

1This throughput is achieved with a batch size of one and 32-bit floating
point precision. Throughput can be increased by using a larger batch size (at
the cost of higher latency), and/or reducing bitwidths through quantization.

2Accuracy metrics are defined in Section IV-A.
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multiple programs (such as localization, mapping, motion
planning, control, and potentially other perception tasks) all
run in parallel. Each program demands a certain amount of
computational resources, and consequently, the CPU/GPU is
not dedicated to the depth estimation task alone. A lower
latency network design enables real-time performance even
with a limited computing budget.

In summary, this paper demonstrates real-time monocular
depth estimation using a deep neural network that achieves
the lowest latency and highest throughput on an embedded
platform that can be carried by a micro aerial vehicle.

II. RELATED WORK

In this section, we summarize past research done on depth
estimation, efficient neural networks, and network pruning.

A. Monocular Depth Estimation

Depth estimation from a single color image has been
an active research topic in both the robotics and computer
vision communities for over a decade. Early works on depth
estimation using RGB images captured by a monocular cam-
era usually relied on hand-crafted features and probabilistic
graphical models. For instance, Saxena et al. [6] estimated
the absolute scales of different image patches and inferred
depth using a Markov Random Field model. Non-parametric
approaches [7–10] were also exploited to estimate the depth
of a query image by combining the depths of images with
similar photometric content retrieved from a database. Since
then, depth estimation has evolved from using simple hand-
crafted feature representations [6] to modern deep learning
based approaches [11–14].

State-of-the-art RGB-based depth estimation methods use
deep learning based methods to train a convolution neural
network using large-scale datasets [12, 15, 16]. Eigen et al.
[11] suggested a two-stack convolutional neural network
(CNN), with one stack predicting the global coarse scale
and the other stack refining local details. Eigen and Fergus
[16] further incorporated other auxiliary prediction tasks
into the same architecture. Liu et al. [15] combined a
deep CNN and a continuous conditional random field, and
attained visually sharper transitions and local details. Laina
et al. [12] developed a deep residual network based on
ResNet [17] and achieved higher accuracy than [15, 16].
Qi et al. [18] trained networks to estimate both the depth
and the normals, as a way to address the problem of blurri-
ness in predictions. Semi-supervised [19] and unsupervised
learning [20–22] setups have also been explored for disparity
image prediction. For instance, Godard et al. [22] formulated
disparity estimation as an image reconstruction problem,
where neural networks were trained to warp left images to
match the right. Mancini et al. [23] proposed a CNN that
took both RGB images and optical flow images as input to
predict distance. Fusion of RGB images and sparse depth
measurements [24, 25] at early stages also improved the
accuracy of depth estimation.

All of these methods focus heavily on attaining higher
accuracy at increased complexity and runtime cost, with di-

minishing accuracy improvement. For instance, the δ1 accu-
racy of depth estimation on the NYU Depth V2 dataset [26]
saturates at around 82% in recent years [12, 18].

B. Efficient Neural Networks

There has been significant effort in prior work to design
efficient neural networks. As an example, for image classifi-
cation, MobileNet [2] achieves similar accuracy as VGG-
16 [27] but has 2.7 times fewer multiply-and-accumulate
operations (MACs) and 32.9 times fewer weights. For ob-
ject detection, SSD [28] is 6.6 times faster than Faster-
RCNN [29] with a higher mean average precision (mAP).

However, most previous work in this space has focused
on encoder networks that reduce an input image into a label.
Designing efficient neural networks for applications requiring
pixel-based results, where an encoder network is followed
by a decoder network, has been less explored. As will be
shown in Figure 3, in existing designs that achieve close
to state-of-the-art accuracy on the depth estimation task, the
decoder largely dominates inference runtime. In our work,
we emphasize efficient encoder-decoder network design. In
particular, our usage of depthwise separable convolution in
the decoder differentiates us from existing approaches and
enables us to develop an architecture in which the decoder
no longer dominates inference runtime.

C. Network Pruning

Hand-crafted networks are usually over-parameterized due
to the ease of training, which reduces network efficiency. To
address this problem, network pruning, such as [3, 30–32], is
widely used to identify and remove redundant parameters and
computation. However, these pruning methods are mainly
applied on encoder networks. In this work, we adopt a
state-of-the-art algorithm, NetAdapt [3], to demonstrate how
pruning can improve the efficiency of both encoder and
decoder networks used in a depth estimation network design.

III. METHODOLOGY

In this section, we describe our proposed network archi-
tecture, the motivation behind our design choices, and the
steps we take to reduce inference runtime.

A. Network Architecture

Our proposed fully convolutional encoder-decoder archi-
tecture is shown in Figure 2. The encoder extracts high-
level low-resolution features from the input image. These
features are then fed into the decoder, where they are
gradually upsampled, refined, and merged to form the final
high-resolution output depth map. In developing a depth
estimation network that can run in real-time, we seek low-
latency designs for both the encoder and the decoder.

1) Encoder Network: The encoder used in depth estima-
tion networks is commonly a network designed for image
classification. Popular choices include VGG-16 [27] and
ResNet-50 [17] because of their strong expressive power
and high accuracy. However, such networks also suffer from
high complexity and latency, making them unsuitable for
applications running in real-time on embedded systems.



Fig. 2: Proposed network architecture. Dimensions of intermediate feature maps are given as height × width × # channels. Arrows from
encoding layers to decoding layers denote additive (rather than concatenative) skip connections.

Targeting low latency, we employ a state-of-the-art effi-
cient network, MobileNet [2], as our encoder of choice.
MobileNet makes use of depthwise decomposition, which
factorizes an m×m×n standard convolutional layer into n
m×m depthwise layers and a 1×1 pointwise layer. Since
each filter in a depthwise layer only convolves with a single
input channel, the complexity of a depthwise layer is much
lower than that of a standard convolutional layer, where
each filter convolves with all input channels. Moreover, each
pointwise filter is just a 1×1 kernel, so the number of MACs
performed by a pointwise layer is m2 times smaller than that
of the original standard convolution. Therefore, depthwise
decomposition significantly reduces the complexity of a
convolutional layer, making MobileNet more efficient than
networks with standard convolution like ResNet and VGG.
This translates to reduced latency,

2) Decoder Network: The objective of the decoder is
to merge and upsample the output of the encoder to form
a dense prediction. A key design aspect of the decoder
is the upsample operation used (e.g., unpooling, transpose
convolution, interpolation combined with convolution).

Our decoder network (termed NNConv5) consists of five
cascading upsample layers and a single pointwise layer at
the end. Each upsample layer performs 5 × 5 convolution
and reduces the number of output channels by 1/2 relative
to the number of input channels. Convolution is followed
by nearest-neighbor interpolation that doubles the spatial
resolution of intermediate feature maps. Interpolating after
convolution instead of before lowers the resolution of feature
maps processed by the convolutional layers. We use depth-
wise decomposition to further lower the complexity of all
convolutional layers, resulting in a slim and fast decoder.

3) Skip Connections: Encoder networks typically contain
many layers to gradually reduce the spatial resolution and
extract higher-level features from the input. The output of
the encoder into the decoder becomes a set of low resolution
features in which many image details can be lost, making it
more difficult for the decoder to recover pixel-wise (dense)
data. Skip connections allow image details from high resolu-
tion feature maps in the encoder to be merged into features
within the decoder; this helps the decoding layers reconstruct
a more detailed dense output. Skip connections have been
previously been used in networks for image segmentation
such as U-Net [33] and DeeperLab [34], showing that they
can be beneficial in networks producing dense outputs.

We incorporate skip connections from the MobileNet

encoder to the outputs of the middle three layers in the
decoder. Feature maps are combined with via addition rather
than concatenation, to avoid increasing the number of feature
map channels processed by the decoding layers.

B. Network Compilation

Our proposed network architecture is fully convolutional
and makes use of depthwise decomposition in both the
encoder and the decoder. Depthwise separable convolutional
layers are currently not yet fully optimized for fast runtime
in commonly-used deep learning frameworks. This motivates
the need for hardware-specific compilation to translate the
complexity reduction achievable with depthwise layers into
runtime reduction on hardware. We use the TVM compiler
stack [4] to compile our proposed network design for de-
ployment on embedded platforms such as the Jetson TX2.

C. Network Pruning

To reduce network latency even further, we perform post-
training network pruning using the state-of-the-art algorithm,
NetAdapt [3]. Starting from a trained network, NetAdapt au-
tomatically and iteratively identifies and removes redundant
channels from the feature maps to reduce the computational
complexity. In each iteration, NetAdapt generates a set of
network proposals simplified from a reference network. The
network proposal with the best accuracy-complexity trade-
off is then chosen and used as the reference network in
the next iteration. The process continues until the target
accuracy or complexity is achieved. Network complexity can
be gauged by indirect metrics (e.g., MACs) or direct metrics
(e.g., latency on a target hardware platform).

IV. EXPERIMENTS

In this section, we present experiment results to demon-
strate our approach. We first present an evaluation against
existing work and then provide an ablation study of our
design. We offer comparisons of various encoder and decoder
options, analysing them based on accuracy and latency
metrics. We also show that hardware-specific compilation
reduces the runtime cost of the depthwise separable layers
within our network and that network pruning helps improve
the efficiency of both of the encoder and the decoder.

A. Experiment Setup

We train our networks and evaluate their accuracy on the
NYU Depth v2 dataset [26] with the official train/test data
split. Network training is similar to [24] and is implemented



in PyTorch [35] with 32-bit floating point precision. For
training, a batch size of 8 and a learning rate of 0.01
are used. The optimizer is SGD with a momentum of 0.9
and a weight decay of 0.0001. Encoder weights (e.g., for
MobileNet and ResNet) are pretrained on ImageNet [36].
Accuracy is measured by both δ1 (the percentage of predicted
pixels where the relative error is within 25%) and RMSE
(root mean squared error). For evaluation, a batch size of 1
is used. Precision is kept at 32-bit floating point. Our primary
target platform is a Jetson TX2 in max-N mode.3

B. Final Results and Comparison With Prior Work

Results achieved with our methodology are summarized
in Figure 3. ResNet-50 with UpProj serves as a baseline;
this network follows the architecture described in [12].4

The runtime of this baseline network is largely dominated
by the decoder. In our approach, the most immediate and
significant runtime reduction comes from using a smaller and
computationally simpler decoder. However, the decoder con-
tinues to dominate network runtime when combined with the
MobileNet encoder. By simplifying the convolutions within
the decoder with depthwise decomposition, the runtime of
the decoder begins to more closely match that of MobileNet.
Pruning and compiling the network for the target Jetson
TX2 platform lower the runtime of both the encoder and
the decoder even further, ultimately reducing total inference
runtime by a factor of 65 times relative to the baseline and
enabling an extremely high throughput of up to 178 fps.

Fig. 3: Reduction in inference runtime achieved with our approach.
Stacked bars represent encoder-decoder breakdown; total runtimes
are listed above the bars. The row of δ1 accuracies listed at the
bottom shows the impact of individual steps in our approach on
accuracy. Relative to ResNet-50 with UpProj, our final model
achieves 65 times speedup while maintaining accuracy.

Accuracy and latency metrics of our model in comparison
with prior work5 are summarized in Table I. We evaluate
against depth estimation methods that use deep learning but
do not involve additional processing such as CRFs, since the
additional processing incurs computation and runtime cost.

3Max-N mode: all CPU cores in use and GPU clocked at 1.3 GHz.
4With modifications, namely a 224× 224 input to the encoder and five

(instead of four) upsample layers in the decoder. This is done to match
our architecture and allow for a more fair comparison to our network.
Consequently, the accuracy and runtime reported in Figure 3 will differ from
that of the unmodified model reported as part of our evaluation in Table I.

5MACs and runtimes were generated from our re-implemented models.

TABLE I: Comparison with prior work. For δ1, higher is better. For
all others, lower is better. Runtimes are measured on a Jetson TX2.
Our network design achieves close to state-of-the-art accuracy and
is an order of magnitude faster.

on NYU Depth v2
Input
Size

MACs
[G] RMSE δ1

CPU
[ms]

GPU
[ms]

Eigen et al. [11] 228×304 2.06 0.907 0.611 307 23
Eigen et al. [16] (AlexNet) 228×304 8.39 0.753 0.697 1391 96
Eigen et al. [16] (VGG) 228×304 23.4 0.641 0.769 2797 195
Laina et al. [12] (UpConv) 228×304 22.9 0.604 0.789 2384 237
Laina et al. [12] (UpProj) 228×304 42.7 0.573 0.811 3928 319
Xian et al. [37] 384×384 61.8 0.660 0.781 4429 283

This Work 224×224 0.37 0.604 0.771 37 5.6

We measure the active power consumption when running our
model on the TX2 in max-N mode to be under 10 W. We
additionally report runtime and power consumption data for
the TX2 in the more energy-efficient max-Q mode.6 Table II
summarizes this data. We note that with the TX2 in max-Q
mode, our model can achieve close to real-time speeds on
the CPU and can still easily surpass real-time speeds on the
GPU, with active power consumption under 5 W.

TABLE II: Inference runtime and peak power consumption when
deploying our model on the Jetson TX2 in high performance
(max-N) and high energy-efficiency (max-Q) modes. Active power
consumption can be estimated by subtracting the reported idle
power consumption.

Platform Runtime Max Frame Rate Power Consumption

TX2 GPU (max-N) 5.6 ms 178 fps 12.2 W (3.4 W idle)
TX2 GPU (max-Q) 8.2 ms 120 fps 6.5 W (1.9 W idle)
TX2 CPU (max-N) 37 ms 27 fps 10.5 W (3.4 W idle)
TX2 CPU (max-Q) 64 ms 15 fps 3.8 W (1.9 W idle)

Figure 4 visualizes results of depth estimation produced by
our model on images from the NYU Depth v2 dataset. Skip
connections between encoding and decoding layers improve
the sharpness and visual clarity of depth map outputs, while
network pruning preserves and even enhances clarity. We
also show an error map visualizing the difference between
the output of our model and ground truth, noting that the
error is highest at boundaries and at distant objects.

C. Ablation Study: Encoder Design Space

A common encoder used in existing high-accuracy ap-
proaches [12, 37] is ResNet-50 [17]. Targeting lower en-
coder latency, we consider the smaller ResNet-18 [17]
and MobileNet [2] as alternatives to ResNet-50. The last
average pooling layer and fully connected layers are removed
from the MobileNet and ResNet architectures. To make
the encoders compatible with a fixed decoder structure, we
append a 1×1 convolutional layer to the end of ResNet
encoders, such that the output from all encoder variants has
a consistent shape of 7×7 with 1024 channels.

We compare all three encoder options against each other
in Table III. The reported runtimes are obtained by compiling
and running the encoder networks in PyTorch. Runtimes
for ResNet-50 and ResNet-18 are too high, even on the

6Max-Q mode: only the ARM Cortex-A57 cores in use and GPU clocked
at 0.85 GHz. Configured for best power-throughput tradeoff.



(a) (b) (c) (d) (e) (f)

Fig. 4: Visualized results of depth estimation on the NYU Depth
v2 dataset. (a) input RGB image; (b) ground truth; (c) our model,
without skip connections, unpruned; (d) our model, with skip con-
nections, unpruned; (e) our model, with skip connections, pruned;
(f) error map between the output of our final pruned model and
ground truth, where redder regions indicate higher error.

TX2 GPU, to achieve real-time speeds (i.e., above 30 fps) if
these encoders are paired with decoders of similar latency.
In comparison, MobileNet efficiently trades off between
accuracy and latency, and has a noticeably lower GPU
runtime. We therefore select MobileNet as our encoder.

We note that despite its lower complexity, MobileNet is an
order of magnitude slower on the TX2 CPU than ResNet-18.
This can be attributed to as-of-yet unoptimized implemen-
tations for depthwise layers in deep learning frameworks,
motivating the need for an alternate deep learning compiler,
as will be discussed in Section IV-E.

TABLE III: Comparison of encoders. RMSE and δ1 are for
encoder-decoder networks with the decoder fixed as NNConv5.
All other metrics are for the encoder in isolation. Runtimes are
measured on a TX2. MobileNet is selected as best encoder option.

Encoder
Weights

[M]
MACs

[G]
RMSE
[meters] δ1

CPU
[ms]

GPU
[ms]

ResNet-50 25.6 4.19 0.568 0.800 610 35.0
ResNet-18 11.7 1.84 0.568 0.782 220 15.2
MobileNet 3.19 0.57 0.579 0.772 3700 8.7

D. Ablation Study: Decoder Design Space

While encoders have been well characterized in deep
learning applications, decoders have been less extensively
explored, especially in the context of efficient network de-
sign. We consider several decoder design aspects: upsample
operation, depthwise decomposition, and skip connections.

1) Upsample Operation: We survey four ways of upsam-
pling in the decoder. Their characteristics are listed below,
and visual representations are shown in Figure 5:
(a) UpProj [12]: 2×2 unpooling (zero-insertion) followed

by a two-branched residual structure that computes a
total of three convolutions (two 5× 5 and one 3× 3).

(b) UpConv [12]: 2×2 unpooling (zero-insertion) followed
by a single 5×5 convolution.

Fig. 5: Visual representations of different upsample operations.
(a) UpProj, (b) UpConv, (c) DeConv5, (d) NNConv5.

(c) DeConv5: transpose convolution using a 5× 5 kernel.7

(d) NNConv5: 5 × 5 convolution followed by nearest-
neighbor interpolation8 with a scale factor of 2.

We implement four decoder variants using these upsample
operations, keeping the structure fixed at 5 decoding layers
with 1×1 convolution at the end. Table IV compares the four
decoders. UpProj is most complex, due to its larger number
of convolutions per upsample layer. It achieves the highest
δ1 accuracy but is the slowest. UpConv is less complex and
faster than UpProj, but its CPU and GPU runtimes are still
too slow for real-time processing. DeConv5 has an identical
number of weights and MACs as UpConv and is noticeably
faster on both the CPU and GPU. However, it can be prone
to introducing checkerboard artifacts in its outputs [38],
which helps explain its lower accuracy. NNConv5 achieves
higher δ1 accuracy and lower RMSE than both UpConv and
DeConv5, with a slightly lower GPU runtime. We therefore
select NNConv5 as our decoder.

TABLE IV: Comparison of decoders. RMSE and δ1 are for
encoder-decoder networks with a MobileNet encoder. All other
metrics are for the decoder in isolation. Runtimes are measured on
a TX2. NNConv5 is selected as best decoder option.

Decoder
Weights

[M]
MACs

[G]
RMSE
[meters] δ1

CPU
[ms]

GPU
[ms]

(a) UpProj [12] 38.1 28.0 0.599 0.774 3300 325
(b) UpConv [12] 17.5 12.9 0.591 0.771 1600 238
(c) DeConv5 17.5 12.9 0.596 0.766 290 31.0
(d) NNConv5 17.5 3.21 0.579 0.772 410 26.2

2) Depthwise Separable Convolution: After selecting Mo-
bileNet as our encoder and NNConv5 as our decoder, we
observe that the runtime of our network is dominated by the
decoder (see Figure 3 for the encoder-decoder breakdown).
This motivates us to simplify our decoder even further. Sim-
ilar to how depthwise decomposition lowers the complexity
and latency in MobileNet, we now replace all convolutions
within the decoder with depthwise separable convolutions.

Table V shows that depthwise decomposition in the de-
coder lowers inference runtime on the GPU by almost half.9

However, as was the case with MobileNet, depthwise layers
in the decoder result in a slight accuracy loss, due to the

7We use a kernel size of 5 to fairly compare against UpConv.
8An alternate option would be bilinear interpolation. We select nearest-

neighbor interpolation as is it a simpler operation with more consistent
implementations across deep learning frameworks and compilers.

9In contrast, runtime on the CPU increases, despite reduced number of
MACs. This is due to the inefficient CPU operation of depthwise layers.



reduction in trainable parameters and computation. In order
to restore some of the lost accuracy, we incorporate skip
connections between the encoding and decoding layers.

TABLE V: Impact of depthwise decoding layers and skip connec-
tions on network complexity and TX2 runtime.

MobileNet-NNConv5
Weights

[M]
MACs

[G]
RMSE
[meters] δ1

CPU
[ms]

GPU
[ms]

with standard decoder 20.6 3.78 0.579 0.772 4100 34.9
with depthwise decoder 3.93 0.74 0.584 0.767 5200 18.6
depthwise & skip-concat 3.99 0.85 0.601 0.776 5500 26.8
depthwise & skip-add 3.93 0.74 0.599 0.775 5100 19.1

3) Skip Connections: We consider both additive and con-
catenative skip connections. Concatenative skip connections
increase the computational complexity of the decoder since
decoding layers need to process feature maps with more
channels. Table V shows that this improves the δ1 accuracy
but also noticeably increases CPU and GPU runtimes. In
contrast, using additive skip connections leaves the number
of channels in the decoder unchanged and has a negligible
impact on inference runtime while achieving almost the same
accuracy boost. We therefore use additive skip connections
in our final network design. As shown in Figure 4(d), skip
connections noticeably improve the sharpness and visual
clarity of the depth maps output by our network design.

E. Hardware-Specific Optimization

Current deep learning frameworks rely on framework-
specific operator libraries, where the level of hardware-
specific optimization of operator implementations may vary.
Our proposed network architecture incorporates depthwise
layers throughout the encoder and decoder. These layers
are currently not yet fully optimized in commonly-used
deep learning frameworks. As a result, although depthwise
decomposition significantly reduces the number of MACs in
a network, a similar reduction is not reflected in latency.
The left portion of Table VI highlights exactly this: the TX2
CPU runtime of MobileNet-NNConv5 is high to begin with,
due to the prevalence of depthwise layers in MobileNet,
and it increases even more when we use depthwise layers in
the decoder. To address the observed runtime inefficiencies
of depthwise layers, we use the TVM compiler stack [4].
TVM performs hardware-specific scheduling and operator
tuning that allows the impact of reduced operations to be
translated into reduced processing time. The right portion of
Table VI reports TX2 runtimes for networks compiled with
TVM. Depthwise decomposition in the decoder now reduces
CPU runtime by 3.5 times and GPU runtime by 2.5 times.

F. Network Pruning

Prior to network pruning, our architecute (MobileNet-
NNConv5 with depthwise decomposition in the decoder
and additive skip connections) already surpasses real-time
throughput on the TX2 GPU but does not yet achieve real-
time speeds on the TX2 CPU. Network pruning lowers the
model’s runtime so that it can achieve a CPU framerate
above 25 fps that is more suitable for real-time inference. As

TABLE VI: Hardware-specific compilation enables fast depthwise
layers in our network. Runtimes are measured on the TX2.

MobileNet-NNConv5
in PyTorch using TVM

CPU [ms] GPU [ms] CPU [ms] GPU [ms]

with standard decoder 4100 34.9 176 20.9
with depthwise decoder 5200 18.6 50 8.3
with depthwise & skip-add 5100 19.1 66 8.2

shown in Table VII, pruning achieves a 2 times reduction
in MACs, a 1.5 times reduction in GPU runtime, and a
1.8 times reduction in GPU runtime with almost the same
accuracy. Figure 4(e) shows that pruning process preserves
the sharpness and visual clarity of output depth maps.

Fig. 6 shows the pruned architecture. We can see that
there are two bottlenecks: one in the encoder (the layer
mobilenet.9) and one in the decoder (the layer decoder.2).
This is consistent with the observations in [3, 39].

TABLE VII: Impact of pruning on our encoder-decoder network.
Runtimes are measured post-compilation for the TX2.

Before Pruning After Pruning Reduction
Weights 3.93M 1.34M 2.9×
MACs 0.74G 0.37G 2.0×
RMSE 0.599 0.604 -

δ1 0.775 0.771 -
CPU [ms] 66 37 1.8×
GPU [ms] 8.2 5.6 1.5×

Fig. 6: Number of input channels to each layer in our network ar-
chitecture after pruning. The shaded part represents the architecture
before pruning. The very first layer to the network (mobilenet.0) is
not shown since the channel size of the input fed into the network
remains fixed at 3 channels (RGB).

V. CONCLUSION

In this work, we enable high-speed depth estimation
on embedded systems. We achieve high frame rates by
developing an efficient network architecture, with a low-
complexity and low-latency decoder design that does not
dominate inference runtime even when combined with a
small MobileNet encoder. The size of our compact model
is further reduced by applying a state-of-the-art pruning
algorithm. Hardware-specific compilation is used to translate
complexity reduction into lower runtime on a target platform.
On the Jetson TX2, our final model achieves runtimes that
are an order of magnitude faster than prior work, while
maintaining comparable accuracy.

Although this work focuses on depth estimation, we be-
lieve that similar approaches can be used to achieve real-time
performance with deep-learning based methods for other
dense prediction tasks, such as image segmentation.
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