
High-throughput Computation of
Shannon Mutual Information on Chip

Peter Zhi Xuan Li*, Zhengdong Zhang*, Sertac Karaman, Vivienne Sze
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Emails: {peterli,zhangzd,sertac,sze}@mit.edu
*These authors contributed equally to this work

Abstract—Exploration problems are fundamental to robotics,
arising in various domains, ranging from search and rescue to
space exploration. Many effective exploration algorithms rely
on the computation of mutual information between the current
map and potential future measurements in order to make
planning decisions. Unfortunately, computing mutual information
metrics is computationally challenging. In fact, a large fraction
of the current literature focuses on approximation techniques
to devise computationally-efficient algorithms. In this paper, we
propose a novel computing hardware architecture to efficiently
compute Shannon mutual information. The proposed architecture
consists of multiple mutual information computation cores, each
evaluating the mutual information between a single sensor beam
and the occupancy grid map. The key challenge is to ensure
that each core is supplied with data when requested, so that all
cores are maximally utilized. Our key contribution consists of a
novel memory architecture and data delivery method that ensures
effective utilization of all mutual information computation cores.
This architecture was optimized for 16 mutual information
computation cores, and was implemented on an FPGA. We show
that it computes the mutual information metric for an entire map
of 20m× 20m at 0.1m resolution in near real time, at 2 frames
per second, which is approximately two orders of magnitude
faster, while consuming an order of magnitude less power, when
compared to an equivalent implementation on a Xeon CPU.

I. INTRODUCTION

Robotic exploration problems arise in various contexts,
ranging from search and rescue missions to underwater and
space exploration. In these domains and beyond, exploration
algorithms that can rapidly reduce uncertainty can provide
significant benefits, for instance, by shortening time and
reducing resources required for exploration. Unfortunately,
principled algorithms based on rigorous information-theoretic
metrics, such as, maximizing Shannon mutual information
along the exploration path, are computationally extremely
demanding [1]. As a result, the emerging literature considers
approximation algorithms, and many practitioners rely on
heuristics that often fail to provide any guarantees [2–4].

Dedicated hardware accelerators have been presented for
motion planning [5–8], visual inertial odometry [9, 10], deep
neural networks [11, 12], object detection for semantic un-
derstanding [13, 14] and model predictive control [15]. To
the best of our knowledge, custom hardware accelerators for
information-theoretic mapping has not yet been considered.

In this paper, we focus on the design of a hardware acceler-
ator for efficiently computing the mutual information between
the map and future measurements for a robot equipped with a
range measurement sensor. In particular, we propose a novel

multi-core hardware architecture capable of high-throughput
computation of Shannon mutual information between an oc-
cupancy grid map and potential future measurements. A Field
Programmable Gate Array (FPGA) implementation of the new
hardware architecture leads to significant improvements in
computation time and power consumption, for instance, when
compared to state-of-the-art implementations for powerful
Central Processing Units (CPUs).

Throughout the paper, we show that the throughput of the
multi-core hardware is dictated by its memory architecture and
data delivery method. In other words, we find that paralleliza-
tion alone is not sufficient for high-throughput computation. In
addition, it is critical to consider (i) memory management, e.g.,
how data is placed and organized in memory, (ii) data delivery,
e.g., how data is accessed and delivered to parallel cores,
so that throughput scales well with increasing parallelization.
In fact, we argue that the effective co-design of computing
hardware and algorithms for robotics applications will be
enabled by novel methods in data flow on chip, for instance,
rather than counting the number of operations or amount of
memory required that has been essential to developing robotics
algorithms for CPUs.

Occupancy grid map [16] is the standard probabilistic repre-
sentation for a 2D environment and serves as a building block
for many well-known mapping system, including the frontier-
exploration algorithm [17] and a Shannon mutual-information-
based mapping algorithm [1, 18–21]. Aside from Shannon
mutual information, alternative information metrics such as
Cauchy-Schwarz Quadratic Mutual Information (CSQMI) [22,
23] also proves to be helpful and efficient. Although the
computation cores of the hardware presented in this paper
is based on the Fast Shannon Mutual Information (FSMI)
algorithm [24], the memory architecture and data delivery
method to these cores naturally generalizes to potential hard-
ware implementations of other mutual information algorithms,
such as the CSQMI.

Thus, the main contribution of this paper is a multi-core
hardware architecture that contains a novel memory manage-
ment and data delivery method for feeding data into multiple
high-throughput FSMI computation cores which split mutual
information computation across range sensing measurements.
The proposed memory management method stores the occu-
pancy grid map into multiple memory banks under a special
access pattern, and the proposed data delivery method involves
a fair arbiter that quickly manages memory requests from all

computation cores and resolves memory access conflicts.
We implement the proposed architecture on an FPGA

clocked at 62.5 MHz and demonstrate that the resulting system
is able to compute the mutual information metric for a 20m
by 20m map at 0.1m resolution (i.e., 200-by-200 grid map) in
near real time, at 2 Hz, resulting in two orders of magnitude
improvement in computation time, while lowering the power
consumption by an order magnitude to under 2 Watts, when
compared to an implementation for an Intel Xeon CPU,
which consumes more than 20 Watts extra when running the
implementation.

This paper is organized as follows. Section II briefly
summarizes FSMI algorithm. Section III is devoted to the
description of the proposed architecture. Section IV discusses
the results of an FPGA implementation. Section V concludes
the paper with a summary and remarks.

II. PRELIMINARIES

An information theoretic mapping problem involves the
construction of an occupancy grid map, represented by a vector
of independent occupancy cells, each with an occupancy value
oi that represents the probability for the cell to be occupied. As
a convention, no prior information is assumed on oi; therefore,
initially for all cells oi = 0.5. The odds-ratio of a cell relates
to its occupancy value by ri = oi/(1− oi) = oi/ōi.

We use a Bayesian filter to update the map from the range
measurement:

rt+1
i = rtiδ

i(z), (1)

where t is the time of the scan, rti is the odds-ratio of the
occupancy value for the i-th cell before the scan, rt+1

i is the
odds-ratio after the scan, z is the range measurement, δi(z) is
the standard inverse sensing model [1]:

δi(z) =

 δemp The beam indicates the cell to be empty
δocc The beam indicates the cell to be occupied
0 otherwise

(2)
where δemp < 1 and δocc > 1 are hyper-parameters fixed
throughout an exploration trial.

In information-theoretic mapping problems, we aim to select
a path that maximizes an information-theoretic measure, which
typically leads to maximizing the amount of information
collected along the path. A prominent metric is the mutual
information between the current occupancy grid map and
future measurements. Below we summarize the computation
of the mutual information metric for a robot equipped with
a range measurement sensor. The sensor has multiple beams,
each of which measures distance in a different direction. The
computation utilizes the Fast Shannon Mutual Information
(FSMI) algorithm [24].

Suppose a sensor beam intersects with n occupancy grid
cells, namely M = [M1, . . . ,Mn], where each cell Mi has an
occupancy value oi. Suppose also that the corresponding range
measurement is Z. Then, the Shannon mutual information
(MI) between the sensor beam and the occupancy grid map,
which we denote by I(M ;Z), can be computed in three steps:

1) P (ej): The probability of the j-th cell being the first
non-empty cell on the beam: For all j ∈ {1, 2, . . . , n},

P (ej) =
∏
i<j

ōioj . (3)

2) Ck: The mutual information contribution of a beam that
hits cell k: For all for all k ∈ {1, 2, . . . , n},

Ck =
∑
i<k

f(δemp, ri) + f(δocc, rk), (4)

where f(δ, r) is the contribution of mutual information
from of a depth measurement to a cell indicating whether
the cell is empty or occupied:

f(δ, r) = log

(
r + 1

r + δ−1

)
− log δ

rδ + 1
. (5)

3) I(M ;Z): The approximate Shannon mutual information
based on P (ej) and Ck:

I(M ;Z) =

n∑
j=1

j+∆∑
k=j−∆

P (ej)CkG|k−j|, (6)

where G|k−j| is the area under the sensor’s Gaussian noise
curve in the k-th cell if j-th cell is the first non-empty cell hit
by the sensor beam, and n is the number of occupancy cells
that intersect with the sensor beam. The hyper-parameter ∆ is
the width of the Gaussian truncation, and is typically as small
as five1 [1, 22, 24].

In the sequel, we use MI as a shorthand for the Shannon
mutual information I(M ;Z).

III. HARDWARE ARCHITECTURE

A. Hardware Architecture Overview
This paper presents a novel hardware architecture for FSMI

computation shown in Fig. 1. The input to this architecture is
a scan location and its associated sensor beams. The output
of this architecture is the Shannon MI for the requested scan
location in 32-bit floating point precision. This architecture
consists of 16 parallel FSMI computation cores that can
concurrently compute MI for a set of 16 distinct sensor
beams. The occupancy grid map (stored in a specialized mem-
ory architecture) contains 8-bit quantized occupancy values
bi, which can be used to generate oi, ōi, f(δemp, ri) and
f(δocc, ri) used by FSMI computation cores via look up tables.
The hardware also contains three data delivery modules (mem-
ory request generator, arbiter and workload balance controller)
to efficiently delivery these quantized occupancy values bi
from the shared memory to all the FSMI cores. The design
goals to enable high-throughput hardware architecture are

1) Fully utilize all the FSMI cores and avoid idle time.
2) Reduce number of cycles required by each FSMI core

to compute MI .
3) Increase the clock frequency of the entire system by

minimizing the worst case delay between two clocked
registers (referred to as the critical path delay).

1In a typical occupancy grid map, the resolution of the cell is set to match
the sensor noise level; hence the Gaussian truncation width ∆ should only
span a small number of cells (i.e., ∆ = 5 works well).

(C
)

B
ea

m
 A

ng
le

 A
ss

ig
ne

r

Bresenham0

Bresenham7

Bresenham8

Bresenham15

⋮

⋮ Port 1 Arbiter

Port 0 Arbiter

(B)
Partitioned
Occupancy
Grid Map
(Bank0-15)

FSMI Core0

FSMI Core6

FSMI Core7

FSMI Core15

⋮

⋮

+

Sc
an

 L
oc

at
io

ns
 &

 B
ea

m
 A

ng
le

s

M
I t

ot
alP
or

t
0

R
ea

dE
n

P
or

t
0

A
dd

re
ss

Q
ua

nt
iz

ed
 O

cc
up

an
cy

V

al
ue

s
(b

)

A
ng

le
0-

7
A

ng
le

8-
15

(x
,y

) 0
-7

(x
,y

) 8
-1

5

b 0
-7

b 8
-1

5

M
I 0-

7
M

I 8-
15

P
or

t
1

R
ea

dE
n

P
or

t
1

A
dd

re
ss

(B, C) Memory Requests
Generation

(D) Arbiter (F) Shannon’s MI Computation

(E
) W

or
kl

oa
d

Ba
la

nc
e

Co
nt

ro
lle

r &
 F

IF
O

s

Fig. 1: Overview of the top-level architecture. The Section III’s
subsection letter that corresponds to each module is annotated
before the module name.

B. Partitioned Occupancy Grid Map
The design of the specialized memory architecture for

storing the occupancy grid map has three target requirements:
(1) sufficient memory bandwidth to keep cores busy, (2) min-
imize read conflicts among cores, and (3) minimize resource
utilization.

FPGA memories are composed of blocks of standard ran-
dom access memory (BRAM) which contains only two read
ports (dual-port), meaning that only two independent reads
(i.e., two reads from different addresses) can be performed
concurrently (i.e., in the same clock cycle). Therefore, if the
entire occupancy grid map is stored in a single memory bank,
a maximum of two FSMI cores can operate in parallel at
full utilization because each core requires one independent
memory read from the occupancy grid map every cycle.

Enabling 16 FSMI cores to operate at full utilization would
require that we replicate the memory bank that stores the entire
occupancy grid map by 8 times so that each core has its own
read port, and each port can access any occupancy value in
the entire map, thus avoiding any read conflicts across cores
during every cycle. However, this is very wasteful in terms
of the memory storage resources on the FPGA. In fact, this
approach does not fit our target mid-tier FPGA platform.

Instead, we use another approach called memory banking,
which involves partitioning the occupancy grid map into dis-
tinct parts and storing each part in a separate memory bank. In
this work, we partition the occupancy grid map into 16 banks.
The benefit of banking is that multiple cores can operate in
parallel at full utilization if they are accessing different parts of
the map that are stored in different banks. Due to the utilization
of dual-port memory banks, only two cores can access the
same bank at the same time. Thus, if more than two cores
want to access different addresses of the same bank, a read
conflict will occur and some cores will have to wait for their
turn and idle (i.e., operate below full utilization). Therefore,
one of the key challenges with the memory banking technique
is the allocation of different regions of the occupancy grid
map to different memory banks so that read conflicts among
multiple FSMI cores are minimized during every cycle.

Since each FSMI core has an associated Bresenham module
for ray-casting each sensor beam [25], the memory allocation
of the occupancy grid map can be optimized based on the

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Memory Access Pattern

X

Y

(a) Memory access pattern of
Bresenham algorithm for mul-
tiple beams at every cycle

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

X

Y

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

(b) Diagonal partitioning of the occu-
pancy grid map

Fig. 2: Diagonal partitioned occupancy grid map minimizes
memory read conflicts at each cycle, indexed by the numbers.

pattern of memory access requests generated by the Bresen-
ham module for each FSMI core (green box in Fig. 1). The
Bresenham algorithm has a special property that the output
coordinate along the major axis of the beam angle always
increments by exactly one cell every iteration (execution) of
the algorithm as shown in Fig. 2(a). Using the first quadrant as
an example, when cores are concurrently processing multiple
sensor beams in the same quadrant, these cores will read cells
either in the same column (when the beam is between 0 to
45 degrees) or same row (when the beam is between 45 to 90
degrees) of the occupancy grid map. This means that vertically
neighboring cells in the same column (when the beam is
between 0 to 45 degrees), and horizontally neighboring cells
in the same row (when the beam is between 45 to 90 degrees)
of the map should be stored in different memory banks. As
a result, we propose to partition the occupancy grid map to
different banks using a diagonal pattern as shown in Fig. 2(b).

Finally, each memory port can only service one address per
clock cycle. To further increase the amount of data that the
cores can read in parallel, we pack 2×2 occupancy cells into
the same address which increases the amount of occupancy
cells read per cycle by 4×. However, we do not pack more
than this. Too many occupancy cells per address can result in
wasted reads as there is no guarantee that all occupancy cells
in the address will be used by the cores. An example of 2×2
packing for an occupancy grid map of 8×8 is shown in Fig. 3.

Using the technique of diagonal partitioning and multiple
cell packing, we partition an occupancy grid map of size
512×512 into 16 dual-port memory banks with 2×2 packing
in our hardware accelerator. The specialized memory architec-
ture for storing occupancy grid map can support the concurrent
and continuous operation of 16 FSMI cores.

C. Beam Angle Assignment

Another key design decision is to determine the order with
which to assign the beams to the Bresenham ray-casting
modules associated with each FSMI core for memory request
generation (Fig. 1). We observe that if neighboring beams
intersect the same cell at the same time, their corresponding
cores can issue and share a single memory read of the

ADDR b63 b62 b55 b54
b62 b63

b54 b55

b56 b57 b58 b59 b60 b61 b62 b63

b48 b49 b50 b51 b52 b53 b54 b55

b40 b41 b42 b43 b44 b45 b46 b47

b32 b33 b34 b35 b36 b37 b38 b39

b24 b25 b26 b27 b28 b29 b30 b31

b16 b17 b18 b19 b20 b21 b22 b23

b8 b9 b10 b11 b12 b13 b14 b15

b0 b1 b2 b3 b4 b5 b6 b7

b14 b15

b6 b7

2x2 Packing

2x2 Packing Memory Bank 0

32-bit word

ADDR b15 b14 b7 b6

Memory Bank 1

32-bit word

Occupancy Grid Map

X

Y

Fig. 3: An example of 2×2 occupancy cell packing for an 8×8
occupancy grid map partitioned into two memory banks.

0

1

2

5 4 3

1 2 3 4 5 6 7 8
Cycle

5

4

3

2

1

0

FS
M

I c
or

es

(a) Naı̈ve assignment

0

1

2

3 4 5

1 2 3 4 5 6 7 8
Cycle

5

4

3

2

1

0

FS
M

I c
or

es

(b) Proposed assignment

Fig. 4: Comparison of memory access pattern between two
beam angle assignment strategies. Note for beams 3 to 5, the
proposed strategy shares the data read from memory at cycle
6 to 7.

cell so that the total number of memory reads are reduced
to save energy. Therefore rather than consistently assigning
the beams to be processed by each core in a clockwise or
counterclockwise manner, we assign the beams to go from
major axes (i.e., 0, 90, 180, 270 degrees) to diagonal axes (i.e.,
45, 135, 225, 315 degrees). Since each core processes stream
of occupancy value starting from the scan location, this beam
angle assignment order increases the number of shared reads
at every cycle among neighboring beams as shown in Fig. 4.

D. Fast and Fair Memory Arbiter

While the specialized memory architecture for storing the
occupancy grid map in Section III-B minimizes the memory
read request conflicts from all FSMI cores, the memory arbiter
is required to identify and resolve these read conflicts. Thus,
the arbiter has two key requirements:
• Complete in a single clock cycle: The arbiter must

complete all collision checking in one clock cycle. This
constraint ensures that the arbiter does not introduce
additional delay for memory access, which would reduce
the memory bandwidth from the occupancy grid map to

the FSMI cores.
• Fairness: When a collision arises, the arbiter should not

be biased towards memory request from one core over
another so that a constant data delivery rate from the
memory to all cores is maintained. This ensures that all
FSMI cores are equally active.

The complexity and, consequently, the delay of the arbiter
grows with the number of cores. Therefore rather than using
a single arbiter to service memory requests from 16 cores
using 16 dual-port memory banks, we separate 16 cores into
two groups of 8, where each group has its own arbiter. As a
result, each arbiter only need to service memory requests from
its group of 8 cores using a single memory port from every
bank. This is illustrated in the red box of Fig. 1.

Each arbiter uses a round robin scheme that keeps track of a
priority pointer to ensure fairness in processing read requests
among all cores so that they are equally active and the overall
throughput can be improved. There are three steps to this
approach as shown in Fig. 5:
• Step 1: Identify read conflicts among all cores (i.e., cores

that want to read different addresses of the same bank).
• Step 2: Starting from the priority pointer, service read

requests from all cores up to the first read conflict. The
priority pointer is referred to as the beginning of the
service window, while the core before the one with the
first conflict is referred to as the end of the window.

• Step 3: Move the priority pointer to the location of the
first conflict, and get the new read requests from the core
that were serviced in Step 2.

These three steps are repeated until the MI computation is
complete. One of the main challenges of the arbiter design is
to complete all three steps in one clock cycle. In particular,
the main computation bottleneck is to determine the size of
the service window for a given position of the priority pointer.

In our design, the length of the critical path in the arbiter
determines the maximum frequency of the clock. Hence, to
maximize the clock frequency, we propose a tree structured
circuit with a shorter critical path to determine the start and
end positions of the service window for every bank in each
arbiter. Fig. 6 illustrates the design. The location of the window
is first determined for each bank. Starting at the leaf nodes,
the arbiter computes the start and end location of the window
for subsets of the cores in each bank and the windows are
merged at the next level. The overall window, which is the
intersection of the service windows across all 16 banks, is
computed using another tree structure. By utilizing two tree-
structured circuits, the critical path delay scales logarithmically
in O(log(B) + log(T)), where B is the number of memory
banks and T is the number of cores that the arbiter has to
service. In our design, B = T = 16.

E. Workload Balance Controller

Since number of occupancy cells varies per beam (depend-
ing on the angle), the number of cycles required to process
each beam varies for each FSMI core. Using the beam angle
assignment strategy described in Section III-C, the core with

12

3

5

6

5

15

5

1

conflict

Step 1:
Identify
Conflicts

(access to
same bank)

12

3

5

6

5

8

5

1

12

1

2

5

8

9

5

1

Step 2:
Service all
cores up to

conflict

Priority
Pointer

Step 3:
Update priority
pointer and get

next request
from services

cores

Priority
Pointer

12

1

2

5

8

9

5

1

Priority
Pointer

Repeat
Steps 1 to 3

FS
M

I c
or

es

0

1

2

3

4

5

6

7

30

50

7

91

7

100

30

10

Bank Address

30

50

7

91

7

100

30

10

Bank Address

30

32

14

88

16

41

30

10

Bank Address

30

32

14

88

16

41

30

10

Bank Address

conflict

W
in

do
w

Ne
w

 re
qu

es
ts

Fig. 5: Key steps in arbiter.

Example: Bank 5

0 X 0 0 0

1 7 1 1 1

0 X 2 2 2

1 7 3 3 3

0 X 4 4 4

1 30 5 5 5

0 X 6 6 6

0 X 7 7 7

Priority
Pointer
0

1

2

3

4

5

6

7

Va
lid

Ad
dr

es
s

FS
M

I c
or

e
in

de
x

re
la

tiv
e

to

pr
io

rit
y

po
in

te
r

W
in

do
w

St
ar

t
W

in
do

w
En

d

Lo
w

es
t

In
de

x

1 7 0 1 1

1 7 2 3 3

1 30 4 5 5

0 X 6 7 6

Va
lid

Ad
dr

es
s

W
in

do
w

St
ar

t
W

in
do

w
En

d

Lo
w

es
t

In
de

x

1 7 0 3 1

1 30 4 7 5

1 7 0 4 1

Va
lid

Ad
dr

es
s

W
in

do
w

St
ar

t
W

in
do

w
En

d

Lo
w

es
t

In
de

x

Va
lid

Ad
dr

es
s

W
in

do
w

St
ar

t
W

in
do

w
En

d

Lo
w

es
t

In
de

x

Ex
pe

ct
ed

W

in
do

w
 S

iz
e

||
Expected Window Size

Fig. 6: Tree structure to determine start and end of service
window in arbiter for each bank.

higher index (i.e., closer to the diagonal) tends to process
less occupancy values because its associated sensor beam
(of fixed length) crosses the occupancy cells in the map
diagonally. However, achieving high throughput requires that
the workloads across all FSMI cores are balanced as the overall
speed up depends on the core that does the most work (i.e.,
takes the most clock cycles to complete). Since the hardware
contains 16 cores, FSMI for a batch of 16 beams that intersect
different number of cells are calculated every round. Thus, a
workload balance controller is added before the FSMI cores
so that for every round of 16 beams, the controller flips the
order of beam allocation and Bresenham module association
for each FSMI core as shown in Fig. 7.

F. FSMI Computation Cores

In the previous section, we present the memory and data
delivery architecture that improve the utilization of the 16
parallel FSMI cores. In this section, we will illustrate how
to make the cores themselves fast by performing parallel

Without workload balance controller

With workload balance controller
Round 1 Round 2 Total workload across all MI cores

15
14

1
0

FS
M

I C
or

e
W

or
kl

oa
d

⋮ ⋮ ⋮

Round 2
15
14

1
0

FS
M

I C
or

e
W

or
kl

oa
d

⋮

⋮ ⋮

Round 1 Total workload across all MI cores

Fig. 7: Workload balance controller flips beam assigned to
each FSMI core to balance workload for higher throughput.

Compute P(ej)

Compute Ck Compute MI

G|k-j|

MI

P(ej)

Ck

bi

Oi

𝐎𝐢

𝐟(𝛅𝐄𝐌𝐏, 𝐫𝐤)

𝐟(𝛅𝐎𝐂𝐂, 𝐫𝐤)

(a) Connections among the main modules of the FSMI core

O1 O2 O7 O8 On

𝐟𝟏𝐄𝐌𝐏 𝐟𝟐𝐄𝐌𝐏 𝐟𝟕𝐄𝐌𝐏 𝐟𝟖𝐄𝐌𝐏 𝐟𝐧𝐄𝐌𝐏

𝐟𝟏𝐎𝐂𝐂 𝐟𝟐𝐎𝐂𝐂 𝐟𝟕𝐎𝐂𝐂 𝐟𝟖𝐎𝐂𝐂 𝐟𝐧𝐎𝐂𝐂

P(e1) P(e6) P(e7) P(en-1) P(en) P(e0)

C1 C6 C7 Cn-1 Cn 0 0 0

S1 S2 Sn-6 Sn-5 Sn-4 Sn Sn+1
S1 S2 Sn-6 Sn-5 Sn-1 Sn Sn+1

S1 S2 Sn-6 Sn-2 Sn-1 Sn Sn+1
MI1 MI2 MIn-6 MIn-2 MIn-1 MIn MIn+1

1 2 7 14 15 n+8 n+12 n+13 n+14 n+15

Cycle

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮
⋮⋮

⋮
⋮
⋮
⋮
⋮
⋮
⋮

⋮
⋮
⋮
⋮
⋮
⋮

⋮ ⋮

LUT
access

C
om

pu
te

 M
I

(8
-s

ta
ge

 p
ip

el
in

e)

Compute P(ej)

Compute (Ck)
Stage 0

Stage 1

Stage 6

⋮
⋮

⋮⋮

⋮

⋮

⋮Stage 7 ⋮

⋮

𝐎𝐧𝐎𝟏 𝐎𝟐 𝐎𝟕 𝐎𝟖 𝐍𝐨𝐭𝐞	𝐭𝐡𝐚𝐭: 	𝐌𝐈𝐤 =	8𝐏 𝐞𝐣 𝐒𝐣

𝐤

𝐣;𝟏

(b) Timing diagram of interactions among main modules. (LUT = look up
table)

Fig. 8: Hardware architecture overview of the FSMI core.

operations within each core, improving the utilization of its
compute units (i.e., multipliers and adders), and reducing the
critical path delay (increasing clock frequency) via pipelining.

Each FSMI core is used to evaluate the Shannon MI
between a single sensor beam and the occupancy grid map.
From Section II, the computation of MI is defined by Eq. (6),
which requires the computation of P (ej) (defined by Eq. (3))
and Ck (defined by Eq. (4)). The proposed FSMI core, shown
in Fig. 8(a), performs these computations in parallel, shown
in Fig. 8(b), such that we can complete the MI computation
within n + 15 clock cycles, where n is the beam length.
Look up tables (LUT) are accessed for translating the 8-bit
quantized output of the occupancy grid map bi to pre-loaded
floating-point parameters of oi, ōi, f(δemp, ri) and f(δocc, ri)
needed for computing P (ej) and Ck (red in Fig. 8(b)). All
computations in the FSMI core are performed in 32-bit floating
point precision.

The micro-architecture for computing P (ej) is shown in
Fig. 9(a) with its associated timing diagram shown in Fig. 9(b).
It consists of two 32-bit floating point multipliers operating in
parallel; one is used to compute the cumulative multiplication
of ōi to generate Ei−1, while the other is used to update the
value of P (ej) every clock cycle by computing the product of
Ei−1 and oi. Muxes are inserted in the feedback loop and the
output to handle initialization (sw fb) and termination (sw o)
of the module. The critical path is highlighted in Fig. 9(a), and
it is dictated by a multiplication and a mux.

The micro-architecture for computing Ck is shown in
Fig. 10(a) with its associated timing diagram shown in
Fig. 10(b). The module is almost identical to P (ej) except
that the multipliers are replaced with adders.

The final computation of MI uses the output of P (ej) and
Ck computations. From Section II, the width of the Gaussian
noise truncation ∆ = 5. To increase the throughput, the double
summation in Eq. (6) is broken into two operations:

Sj =

j+∆∑
k=j−∆

CkG|k−j| (7) MI =

n∑
j=1

P (ej)Sj (8)

The operations in Eq. (7) is illustrated in Fig. 11(a). The
inputs needed for calculating Sj is a shifted stream of 11
consecutive Ck within the range of the truncated Gaussian
noise curve. To compute Sj , each Ck is first multiplied by
a corresponding area under the Gaussian noise distribution
(G|k−j|) and then summed together. Since the Gaussian noise
distribution is symmetric, hardware optimization can be per-
formed by first summing the corresponding Ck under the
symmetric regions of the Gaussian curve and then multiply
the summation by G|k−j|, reducing the required number
of floating-point multipliers by almost half, as shown in
Fig. 11(b).

Fig. 11(b) is directly mapped to the hardware shown in
Fig. 12. The MI micro-architecture uses 8 pipeline stages
in order to reduce the critical path delay and simultaneously
process different data in each stage. In stage 0, a sliding
window of consecutive Ck is created with the shift registers.
This requires one Ck every clock cycle, matching the through-
put of the hardware architecture for Ck computation. Stage 1
and 2 illustrate the optimization described in Fig. 11(b). The
summation in Eq. (7) is performed with an adder tree in stages
3 to 5 so that Sj is computed at the output of stage 5. Stage 6
and 7 perform the accumulation in Eq. (8) over n+ 1 cycles.

IV. RESULTS

A. Hardware Accuracy
The FPGA implementation was verified against a reference

MATLAB implementation of FSMI [24] by computing the MI

clk

Oi

clk

clk

clk

1
1
0

1
0

sw
_f

b

sw
_o

P(ej)

Ei-1

Ei𝐎𝐢

Critical path

(a) Micro-architecture

reset

sw_fb

P(ej)

sw_o

0

0

x

1

0

P(e1)

1

0

P(e2)

1

0

P(e3)

⋮
⋮
⋮

1

0

P(en)

1

1

P(e0)

Oi O1 O2 O3 O4 x
x⋮⋮

Cycle

1

0

P(en-1)

On x
x𝐎𝐢 𝐎𝟏 𝐎𝟐 𝐎𝟑 𝐎𝟒 𝐎𝐧

(b) Timing diagram

Fig. 9: Compute module for P (ej)

clk

clk

clk

0
1
0

1
0

sw
_f

b

sw
_o

CK

qk-1

qk

𝐟𝐤𝐄𝐌𝐏=
𝐟(𝛅𝐄𝐌𝐏, 𝐫𝐤)

𝐟𝐤𝐎𝐂𝐂 =	
𝐟(𝛅𝐎𝐂𝐂, 𝐫𝐤)

0

Critical path

(a) Micro-architecture

reset

sw_fb

Ck

sw_o

0

1

0

1

0

C1

1

0

C2

1

0

C3

⋮
⋮
⋮

1

0

Cn

1

1

0

x
x⋮⋮

Cycle

𝐟𝐤𝐄𝐌𝐏

𝐟𝐤𝐎𝐂𝐂
𝐟𝟏𝐄𝐌𝐏 𝐟𝟐𝐄𝐌𝐏 𝐟𝟑

𝐄𝐌𝐏 𝐟𝟒𝐄𝐌𝐏

𝐟𝟏𝐎𝐂𝐂 𝐟𝟐𝐎𝐂𝐂 𝐟𝟑𝐎𝐂𝐂 𝐟𝟒𝐎𝐂𝐂

1

0

Cn-1

𝐟𝐧𝐄𝐌𝐏

𝐟𝐧𝐎𝐂𝐂
x
x

(b) Timing diagram

Fig. 10: Compute module for Ck

for every potential scan location on a 512 × 512 occupancy
grid map shown in Fig. 14(a). Fig. 14(b) shows the MI map
computed by FPGA. The MI value computed by FPGA at
every scan location has a relative error of less than 4×10−5%
compared with the one generated by the MATLAB reference.
We believe this negligible error is due to the difference in the
order of the operations for the floating point computations.

B. Computational Speed

1) Performance of Single FSMI Core: We compare the
speed of processing a single beam on the proposed single
FSMI core on running on a Xilinx Zynq-7000(XC7Z045)
FPGA to a Intel Xeon E5-4627 v2 CPU core running a refer-
ence C++ implementation of FSMI with all optimizations dis-
cussed in [24]. The comparison is performed across different
beam lengths (n). For each beam length, both implementations
compute MI on randomly generated occupancy vectors, and
we repeat this procedure 10000 times for each beam length to
get more stable timing results. Fig. 15(a) shows that a single
FSMI core on operating at 62.5MHz on an FPGA is more than
an order of magnitude faster than a Xeon CPU core operating
at 3.4GHz across all tested beam lengths.

2) Performance of 16 FSMI cores with proposed memory
and data delivery architecture: As previously discussed, if
the memory has infinite bandwidth, 16 FSMI cores running
in parallel will always lead to 16 times acceleration compared
against a single core. We use the latency of this ideal case
as the reference to measure the quality of the proposed mem-
ory and data delivery architecture. Recall that the hardware
accelerator uses 16 dual-port memory banks to partition the
occupancy grid map in a diagonal fashion. Each entry of the
memory stores 2 × 2 occupancy values. In our simulation,
each MI is computed by summing the MIs for all sensor
beams with a beam length of 200 in various scan resolution
settings (1◦ to 22.5◦ between neighboring beams in a 360◦

scan). Fig. 15(b) shows the speed of computing MI on the
hardware accelerator compared against the ideal reference that
assumes infinite bandwidth. Across all scan resolutions with a
fixed beam length of 200, the proposed design is less than 6%
slower than the ideal reference. This validates the effectiveness
of the proposed memory and data delivery architecture.

Ck Ck-1 Ck-2 Ck-3 Ck-4 Ck-5 Ck-6 Ck-7 Ck-8 Ck-9 Ck-10

Sj

Summation

G1 G2 G4G3 G5 G6G2G3G4G5G6x xx x xx x xx x x

Gaussian Noise

(a) Direct computation

Ck Ck-1 Ck-2 Ck-3 Ck-4 Ck-5

Ck-10 Ck-9 Ck-8 Ck-7 Ck-6 0
+ + + + + +

Summation

Sj

G1G2G3G4G5G6 xx x xx

Gaussian Noise

x

(b) Exploit symmetry

Fig. 11: Illustration of computation for Sj in Eq. (7)

C. Resource Usage and Power Consumption
Table I shows the resource utilization of the proposed

hardware accelerator shown in Fig. 1 on the FPGA with
16 FSMI cores and 16 dual-port memory banks. On an
FPGA, arithmetic operations are either performed using digital
signal processing (DSP) hardware, which supports fixed-point
multiplication and addition, or Look-Up Tables (LUT) that
emulate logic gates (e.g., AND/OR); floating point operation
uses both DSPs and LUTs. On-chip memory includes Block
RAM (BRAM), LUT RAM and LUT registers (Reg). The
entire FPGA implementation consumes around 2 Watts which
is over an order of magnitude less than the Xeon CPU
core which consumes 22 Watts when running FSMI. The
breakdown shows that the 16 FSMI cores dominates the
resource utilization as well as the power consumption. Thus,
we drastically increased the memory bandwidth to all FSMI
cores with only 22% logic and 8% power overhead (first four
rows of Table I) compared with total amount of logic and
power used by 16 FSMI cores (fifth row of Table I) while
maintaining the same storage size of the occupancy grid map.

D. Impact of Hardware Design Parameters
We evaluate the impact of our design choices on throughput

and resource utilization by exploring the design space.
1) Number of memory banks: For a fixed memory size, in-

creasing the number of banks increases the memory bandwidth
as well as the logic needed for the arbiter (larger tree struc-
ture) and the workload balance controller (manage data from
more banks). However, for a fixed number of FSMI cores,
increasing the memory bandwidth beyond a certain point has
diminishing returns on the overall throughput improvement of
the hardware system. Therefore, we balanced the trade-offs
between hardware resource utilization and overall throughput
when choosing the number of banks for a fixed number of
FSMI cores so that the system fit on our target FPGA platform.

2) Number of bi per memory address (packing factor L):
Another design choice is the packing factor L that dictates
the number of quantized occupancy values bi (L×L) packed
in each memory address of every bank. While increasing L
also increases memory bandwidth to FSMI cores, it introduces
hardware complexity and resource overhead for the Bresenham
modules (need to generate L requests every cycle), the arbiter

clk

clk

clk

clk

clk

⋮

clk

clk

clk

⋮

Ck

clk

clk

G1

G2

⋮

clk

G6

clk

clk

clk

⋮ clk

clk

clk

clk

clk

clk

P(ej)
MI

clk

clk

⋮

⋮

⋮

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Ck-1

Ck-2

Ck-8

Ck-9

Ck-10
Adder Tree P(ej)

Multiplication
Final

Accumulation

Sh
ift

in
g

C
k

Grouped Gaussian Noise Multiplication

Sj

Fig. 12: Micro-architecture to compute MI

(need to service L requests from every core every cycle)
and the workload balance controller (need to control up to
L occupancy values to each MI core every cycle). In addition,
a larger L increases the energy needed for reading each useful
bi because at least L(L−1) cells in every L×L block are not
needed (a sensor beam can cross at most L occupancy cells
in a L×L block under the access pattern ray-casted using the
Bresenham algorithm).

Fig. 13 shows several sweeps of hardware performance and
design parameters. Fig. 13(a) suggests that packing 2 × 2
occupancy values (L = 2) is better than only packing a
single entry (L = 1) if the extra hardware complexity and
resource usage are tolerable. However, as long as the number
of memory banks is as high as 16, increasing L from 2 to
4 leads to more hardware complexity (Fig. 13(b)) with little
reduction to overall system latency (Fig. 13(a)). Thus, we
limit L = 2 and choose the number of banks to be 16 when
designing our system.

Finally, Fig. 13(c) shows that increasing the number of cores
alone is not sufficient for increasing throughput. The proposed
memory and data delivery architecture enables significant
increase in throughput which scales well with number of FSMI
cores. Table II summarizes the impact of our design decisions
for 16 FSMI cores with 16 dual-port memory banks compared
with a baseline system that has 1 dual-port memory bank.

E. Impact of Faster MI Evaluation

In an information theoretic mapping framework, faster com-
putation of MI enables higher planning frequency. Previous
work [26] has demonstrated that up to the mechanical limit of
a vehicle, the safe mapping speed of a vehicle scales almost
linearly with respect to the planning frequency. Hence, the
two orders of magnitude acceleration of the FPGA system
compared against a powerful Xeon CPU can potentially lead
a vehicle to explore at much faster speed.

TABLE I: Breakdown of resources utilization of different
modules on the Xilinx Zynq-7000(XC7Z045) FPGA.

Module LUT
(Logic)

LUT
(Reg) BRAM LUT

(RAM) DSP Dynamic
Power

Angle Assigner 131 437 0 0 0 0.001W

Bresenham (16x) 10602 3017 0 1408 32 0.042W

Arbiter 25226 2055 0 662 0 0.107W
Occupancy Grid Map 0 0 64 0 0

FSMI Core (16x) 163141 36856 40 49 288 1.827W

Total 199101 42365 104 2119 320 1.977W

Utilization of FPGA 91.1% 9.7% 19.1% 3.0% 35.6% NA

TABLE II: MI computation time for 60 beams of length 200
using 16 FSMI cores with different memory configurations.

Baseline
Vertical

banking &
L = 1

Diagonal
banking &

L = 1

Diagonal
banking &

L = 2

Unlimited
Bandwidth

Latency 86.53µs 39.15µs 16.48µs 12.58µs 11.84µs

Speed up 1× 2.21× 5.25× 6.88× 7.31×

10
0

10
1

10
2

Number of dual-port banks

15

20

25

30

35

40

45

50
C

o
m

p
le

ti
o
n
 t
im

e
 (

µ
s
)

L=1

L=2

L=4

(a) Impact on compute latency

10
0

10
1

10
2

Number of dual-port banks

10
1

10
2

P
e

rc
e

n
ta

g
e

 o
f

L
U

T
 l
o

g
ic

 o
n

 X
C

7
Z

0
4

5
 F

P
G

A
 (

%
)

L=1

L=2

L=4

(b) Impact on resource usage

2 4 6 8 10 12 14 16

Number of FSMI cores

2

3

4

5

6

7

8

T
h
ro

u
g
h
p
u
t
(M

I/
s
)

10
4

Baseline (1 bank)

16 banks,vertical banking,L=1

16 banks,diagonal banking,L=1

16 banks,diagonal banking,L=2

Unlimited bandwidth

(c) Impact of memory bandwidth on throughput

Fig. 13: Exploration of hardware design parameters.

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0

10

20

30

40

50

60

70

80

90

100

O
c
c
u
p
a
n
c
y
 V

a
lu

e

(a) Occupancy grid map input

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

5

10

15

20

25

30

35

40

45

50

S
h

a
n

n
o

n
 M

I

(b) MI map from FPGA

Fig. 14: Input occupancy grid map and the MI map generated
on FPGA, which has a relative error of less than 4× 10−5%
compared with one generated by the MATLAB reference.

0.29 0.93 1.7
3.32.6

9.3

17

32.9

0

5

10

15

20

25

30

35

10 50 100 200

FPGA CPU

10 ×

10 ×

10 ×

9 ×

Number of cells in a beam

C
o

m
p

u
ta

ti
o

n
 t

im
e

(u
s)

(a) Computational speed-up com-
pared with Xeon CPU

0 100 200 300 400
Number of beams per scan (n)

0

10

20

30

40

50

60

70

80

µs
/M

I

Unlimited memory bandwidth
16 Dual-port memory banks on FPGA

(b) MI computation time for different
scan resolutions

Fig. 15: Computation speed evaluation

We also validate the benefit of a faster MI evaluation in
a 2D synthetic exploration experiment. We will show that
by evaluating more MI at every planning step can lead to
faster exploration of a small 20m × 20m environment. The
map is 0.1m resolution. Hence it uses 200 × 200 portion
of the occupancy grid map, although the hardware is capable
of 512 × 512 occupancy grid map size. Fig. 16 shows the
average entropy reduction curve with respect to travel distance
for two configurations. In one configuration, the number of
candidate scan locations for FSMI is 25 times larger than the
other configuration. Five different trials are repeated for each
configuration. From Fig. 16, we measure that 25 times more

Fig. 16: Being able to evaluate FSMI at 25 times more
locations lead to shorter exploration trajectories.

FSMI evaluation leads to around 19% shorter exploration paths
for the entropy to drop by 80%. This benefit is significant for
this 2D synthetic exploration experiment.

V. CONCLUSIONS

In this paper, we presented a new hardware architecture for
low-latency, high-throughput computation of Shannon mutual
information. We argued that the key challenge is to design
the memory management and data delivery components that
ensure maximal utilization of parallel computation cores. We
have shown that the proposed hardware architecture achieves
this goal by containing a diagonally partitioned occupancy grid
map that minimizes the cores’ memory access conflicts with a
fair arbiter that quickly identifies and resolves these conflicts.
We implemented the proposed memory and data delivery
architecture with 16 high-throughput FSMI computation cores
on an FPGA platform. The entire system is able to compute the
mutual information for a 20m by 20m map at 0.1m resolution
(i.e., 200-by-200 occupancy grid map) in near real time in
2Hz, while consuming less than 2 Watts. An implementation
of the same FSMI algorithm for an Intel Xeon CPU runs two
orders of magnitude slower, while consuming more than 20
Watts of power in addition to the idle power of the CPU.

Acknowledgements. This work was partially funded by
the AFOSR YIP FA9550-16-1-0228, by the NSF CAREER
1350685 and NSF CPS 1837212.

REFERENCES

[1] Brian J Julian, Sertac Karaman, and Daniela Rus. On
mutual information-based control of range sensing robots
for mapping applications. The International Journal of
Robotics Research, 33(10):1375–1392, 2014.

[2] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and
Frank E Schneider. Coordinated multi-robot exploration.
IEEE Transactions on robotics, 21(3):376–386, 2005.

[3] Héctor H González-Banos and Jean-Claude Latombe.
Navigation strategies for exploring indoor environments.
The International Journal of Robotics Research, 21(10-
11):829–848, 2002.

[4] Dirk Holz, Nicola Basilico, Francesco Amigoni, Sven
Behnke, et al. A Comparative Evaluation of Exploration
Strategies and Heuristics to Improve Them. In ECMR,
pages 25–30, 2011.

[5] Nuzhet Atay and Burchan Bayazit. A motion planning
processor on reconfigurable hardware. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 125–132, 2006.

[6] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J Sorin,
and George Konidaris. Robot Motion Planning on a Chip.
In Robotics: Science and Systems, 2016.

[7] Youchang Kim, Dongjoo Shin, Jinsu Lee, and Hoi-Jun
Yoo. BRAIN: A Low-Power Deep Search Engine for
Autonomous Robots. IEEE Micro, 37(5):11–19, 2017.

[8] Size Xiao, Neil Bergmann, and Adam Postula. Parallel
RRT architecture design for motion planning. In Field
Programmable Logic and Applications (FPL), 2017 27th
International Conference on, pages 1–4, 2017.

[9] Zhengdong Zhang, Amr AbdulZahir Suleiman, Luca
Carlone, Vivienne Sze, and Sertac Karaman. Visual-
Inertial Odometry on Chip: An Algorithm-and-Hardware
Co-design Approach. In Robotics: Science and Systems,
2017.

[10] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac
Karaman, and Vivienne Sze. Navion: A Fully Integrated
Energy-Efficient Visual-Inertial Odometry Accelerator
for Autonomous Navigation of Nano Drones. In 2018
IEEE Symposium on VLSI Circuits, pages 133–134,
2018.

[11] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne
Sze. Eyeriss: An Energy-Efficient Reconfigurable Accel-
erator for Deep Convolutional Neural Networks. IEEE
Journal of Solid-State Circuits, 52:127–138, 2016.

[12] Bert Moons and Marian Verhelst. A 0.3–2.6 TOPS/W
precision-scalable processor for real-time large-scale
ConvNets. In Symp. on VLSI, 2016.

[13] Amr Suleiman, Zhengdong Zhang, and Vivienne Sze. A
58.6 mW real-time programmable object detector with
multi-scale multi-object support using deformable parts
model on 1920× 1080 video at 30fps. In Symp. on VLSI,
2016.

[14] Kenta Takagi, Kotaro Tanaka, Shintaro Izumi, Hiroshi
Kawaguchi, and Masahiko Yoshimoto. A real-time
scalable object detection system using low-power hog

accelerator vlsi. Journal of Signal Processing Systems,
76(3):261–274, 2014.

[15] Jacob Sacks, Divya Mahajan, Richard C Lawson, and
Hadi Esmaeilzadeh. RoboX: An end-to-end solution
to accelerate autonomous control in robotics. In Pro-
ceedings of the 45th Annual International Symposium on
Computer Architecture, pages 479–490, 2018.

[16] Alberto Elfes. Using occupancy grids for mobile robot
perception and navigation. Computer, (6):46–57, 1989.

[17] Brian Yamauchi. A frontier-based approach for au-
tonomous exploration. In IEEE International Symposium
on Computational Intelligence in Robotics and Automa-
tion, pages 146–151, 1997.

[18] Frederic Bourgault, Alexei A Makarenko, Stefan B
Williams, Ben Grocholsky, and Hugh F Durrant-Whyte.
Information based adaptive robotic exploration. In Intel-
ligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, volume 1, pages 540–545. IEEE, 2002.

[19] Gabriel M Hoffmann and Claire J Tomlin. Mobile sensor
network control using mutual information methods and
particle filters. IEEE Transactions on Automatic Control,
55(1):32–47, 2010.

[20] Thomas Kollar and Nicholas Roy. Efficient Optimization
of Information-Theoretic Exploration in SLAM. In AAAI,
volume 8, pages 1369–1375, 2008.

[21] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Bur-
gard. Information gain-based exploration using rao-
blackwellized particle filters. In Robotics: Science and
Systems, volume 2, pages 65–72, 2005.

[22] Benjamin Charrow, Sikang Liu, Vijay Kumar, and
Nathan Michael. Information-theoretic mapping using
Cauchy-Schwarz Quadratic Mutual Information. In IEEE
International Conference on Robotics and Automation,
2015.

[23] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang
Liu, Ken Goldberg, Pieter Abbeel, Nathan Michael,
and Vijay Kumar. Information-Theoretic Planning with
Trajectory Optimization for Dense 3D Mapping. In
Robotics: Science and Systems, volume 6, 2015.

[24] Zhengdong Zhang, Trevor Henderson, Vivienne Sze, and
Sertac Karaman. FSMI: Fast computation of Shannon
Mutual Information for Information Theoretic Mapping.
In IEEE International Conference on Robotics and Au-
tomation, 2019.

[25] Jack Bresenham. A linear algorithm for incremental
digital display of circular arcs. Communications of the
ACM, 20(2):100–106, 1977.

[26] Erik Nelson and Nathan Michael. Information-theoretic
occupancy grid compression for high-speed information-
based exploration. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4976–4982,
2015.

