
1

Popular DNNs and
Datasets

ISCA Tutorial (2019)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

http://eyeriss.mit.edu/tutorial.html

2

Popular DNNs

• LeNet (1998)
• AlexNet (2012)
• OverFeat (2013)
• VGGNet (2014)
• GoogleNet (2014)
• ResNet (2015)

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2015 Human

A
cc

ur
ac

y
(T

op
 5

 e
rr

or
)

[O. Russakovsky et al., IJCV 2015]

AlexNet

OverFeat

GoogLeNet

ResNet

Cl
ar
ifa
i

VGGNet

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

3

MNIST

http://yann.lecun.com/exdb/mnist/

Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

http://yann.lecun.com/exdb/mnist/

4

LeNet-5

[Lecun et al., Proceedings of the IEEE, 1998]

CONV Layers: 2
Fully Connected Layers: 2
Weights: 60k
MACs: 341k
Sigmoid used for non-linearity

Digit Classification!
(MNIST Dataset)

2x2
average
pooling

sixteen
5x5 filters

2x2
average
pooling

six
5x5 filters

5

LeNet-5

http://yann.lecun.com/exdb/lenet/

http://yann.lecun.com/exdb/lenet/

6

ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/

For ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

accuracy of classification task reported
based on top-1 and top-5 error

http://www.image-net.org/challenges/LSVRC/
http://karpathy.github.io/

7

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity [Krizhevsky et al., NeurIPS 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

input ofmap1 ofmap2 ofmap3 ofmap4 ofmap5 ofmap6

ofmap7

ofmap8

8

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity [Krizhevsky et al., NeurIPS 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

L1
96 filters
(11x11x3)

L2
256 filters
(5x5x48)

L3
384 filters
(3x3x256)

L4
384 filters
(3x3x192)

L5
384 filters
(3x3x192)

L6
4096 filters

(13x13x256)

L7
4096

(4096x1) L8
1000

(4096x1)

9

Large Sizes with Varying Shapes

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1

AlexNet Convolutional Layer Configurations

34k Params 307k Params 885k Params

Layer 1 Layer 2 Layer 3

105M MACs 224M MACs 150M MACs

[Krizhevsky et al., NIPS 2012]

10

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity [Krizhevsky et al., NeurIPS 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

L1 L2 L3 L4 L5 L6 L7

1000

scores224x224

Input

Image

C
o

n
v

 (
1

1
x
1

1
)

N
o

n
-L

in
e

a
ri

ty

N
o

rm
 (

L
R

N
)

M
a

x
 P

o
o

l

C
o

n
v

 (
5

x
5

)

N
o

n
-L

in
e

a
ri

ty

N
o

rm
 (

L
R

N
)

M
a

x
 P

o
o

li
n

g

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

M
a

x
 P

o
o

li
n

g

F
u

ll
y

 C
o

n
n

e
c
t

N
o

n
-L

in
e

a
ri

ty

F
u

ll
y

 C
o

n
n

e
c
t

N
o

n
-L

in
e

a
ri

ty

F
u

ll
y

 C
o

n
n

e
c
t

34k 307k 885k 664k 442k 37.7M 16.8M 4.1M # of weights

11

VGG-16
CONV Layers: 13
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5G

[Simonyan et al., arXiv 2014, ICLR 2015]

Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

Also, 19 layer version

More Layers à Deeper!

12

Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same

receptive field with fewer filter weights

3 0 4 2 0 1 0

0 0 1 2 3 2 0

0 1 2 2 2 0 3

5 0 1 0 1 3 0

0 1 2 2 1 0 1

0 0 1 0 3 1 0

5 2 0 3 0 5 8

5x5 filterExample

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

13

Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same

receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

14

Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same

receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

15

Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same

receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

16

Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same

receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

17

VGGNet: Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same receptive field

with fewer filter weights
• Non-linear activation inserted between each filter

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter2

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Example: 5x5 filter (25 weights) à two 3x3 filters (18 weights)

3x3 filter1

18

GoogLeNet/Inception (v1)
CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

[Szegedy et al., arXiv 2014, CVPR 2015]

Also, v2, v3 and v4
ILSVRC14 Winner

9 Inception Layers

3 CONV layers 1 FC layer
(reduced from 3)Auxiliary Classifiers

(helps with training,
not used during inference)

19

GoogLeNet/Inception (v1)
Also, v2, v3 and v4
ILSVRC14 Winner

parallel filters of different size have the effect of
processing image at different scales

1x1 ‘bottleneck’ to
reduce number of
weights and
multiplications

Inception
Module

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

[Szegedy et al., arXiv 2014, CVPR 2015]

20

1x1 Bottleneck

Modified image from source:
Stanford cs231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use 1x1 filter to capture cross-channel correlation, but no spatial correlation.
Can be used to reduce the number of channels in next layer (bottleneck)

1

56

56

filter1

(1x1x64)

21

1x1 Bottleneck

Modified image from source:
Stanford cs231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use 1x1 filter to capture cross-channel correlation, but no spatial correlation.
Can be used to reduce the number of channels in next layer (bottleneck)

filter2

(1x1x64)

2

56

56

22

1x1 Bottleneck

Modified image from source:
Stanford cs231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use 1x1 filter to capture cross-channel correlation, but no spatial correlation.
Can be used to reduce the number of channels in next layer (bottleneck)

32

56

56

23

GoogLeNet:1x1 Bottleneck

1x1 ‘bottleneck’ to
reduce number of
weights and
multiplications

Inception
Module

[Szegedy et al., arXiv 2014, CVPR 2015]

Apply bottleneck before ‘large’ convolution filters.
Reduce weights such that entire CNN can be trained on one GPU.

Number of multiplications reduced from 854M à 358M

24

ResNet

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Go Deeper!

ILSVRC15 Winner
(better than human level accuracy!)

http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

25

ResNet: Training
Training and validation error increases with more layers;

this is due to vanishing gradient, no overfitting.
Introduce short cut module to address this!

Without shortcut With shortcut

Thin curves denote training error, and bold curves denote validation error.

[He et al., arXiv 2015, CVPR 2016]

26

ResNet: Short Cut Module

[He et al., arXiv 2015, CVPR 2016]

Helps address the vanishing gradient challenge for
training very deep networks

1 CONV layer

1 FC layer

16 Short
Cut Layers

ResNet-34

3x3 CONV

ReLU

ReLU

3x3 CONV

+

x	

F(x)	

H(x)	=	F(x)	+	x	

Iden%ty	
x	

Learns
Residual

F(x)=H(x)-x

Skip Connection
(also referred to

as highway)

27

ResNet: Bottleneck

[He et al., arXiv 2015, CVPR 2016]

Apply 1x1 bottleneck to reduce computation and size
Also makes network deeper (ResNet-34 à ResNet-50)

28

ResNet-50
CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

[He et al., arXiv 2015, CVPR 2016]

Also, 34,152 and 1202 layer versions
ILSVRC15 Winner

1 CONV layer

1 FC layer

16 Short
Cut Layers

ResNet-34

Short Cut Module

29

Summary of Popular DNNs
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224
of CONV Layers 2 5 16 21 (depth) 49
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1, 2 1, 2
of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
of MACs 283k 666M 15.3G 1.43G 3.86G
of FC layers 2 3 3 1 1
of Weights 58k 58.6M 124M 1M 2M
of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

CONV Layers increasingly important!

30

Summary of Popular DNNs
• AlexNet

– First CNN Winner of ILSVRC

– Uses LRN (deprecated after this)

• VGG-16
– Goes Deeper (16+ layers)

– Uses only 3x3 filters (stack for larger filters)

• GoogLeNet (v1)
– Reduces weights with Inception and only one FC layer

– Inception: 1x1 and DAG (parallel connections)

– Batch Normalization

• ResNet
– Goes Deeper (24+ layers)

– Shortcut connections

31

DenseNet

[Huang et al., CVPR 2017]

Feature maps are concatenated rather than added.
Break into blocks to limit depth and thus size of combined feature map.

More Skip Connections!
Connections not only from previous layer, but
many past layers to strengthen feature map
propagation and feature reuse.Dense

Block

Transition layers

32

DenseNet

Note: 1 MAC = 2 FLOPS

Higher accuracy than ResNet with fewer weights and multiplications

[Huang et al., CVPR 2017]

Top-1 error Top-1 error

33

Wide ResNet
Increase width (# of filters) rather than depth of network
• 50-layer wide ResNet outperforms 152-layer original ResNet
• Increasing width instead of depth is also more parallel-friendly

Image Source: Stanford cs231n

[Zagoruyko et al., BMVC 2016]

34

ResNeXt

ResNet ResNeXt

[Xie et al., CVPR 2017]

Used by ILSVRC
2017 Winner WMW

Increase number of convolution groups (referred to as
cardinality) instead of depth and width of network

35

ResNeXt
Improved accuracy vs. ‘complexity’ tradeoff compared to

other ResNet based models

36

Efficient DNN Models

37

Accuracy vs. Weight & OPs

[Alfredo et al., arXiv, 2017]

38

Bottleneck in Popular DNN Models

ResNet

GoogleNet

compress

expand

compress

39

Example: SqueezeNet

[Iandola et al., arXiv 2016, ICLR 2017]]

Fire Module

Reduce number of weights by reducing number of
input channels by “squeezing” with 1x1

50x fewer weights than AlexNet (no accuracy loss)
However, 2.4x more operations than AlexNet*

*SqueezeNetv1.0

40

Stacking Small Filters

5x5 filter Two 3x3 filters

decompose

Apply sequentially

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially
GoogleNet/Inception v3

VGG-16

Build network with a series of small filters
(reduces degrees of freedom)

separable
filters

41

Example: Inception V3
Go deeper (v1: 22 layers à v3: 40+ layers) by reducing the

number of weights per filter using filter decomposition
~3.5% higher accuracy than v1

[Szegedy et al., arXiv 2015]

5x5 filter à 3x3 filters 3x3 filter à 3x1 and 1x3 filters

Separable filters

42

Depth-wise Separable
Decouple the cross-channels correlations and spatial

correlations in the feature maps of the DNN

C
1

1
S

R

1

R

S
C

43

Example: Xception
• An Inception module based on depth-wise separable convolutions
• Claims to learn richer features with similar number of weights as

Inception V3 (i.e. more efficient use of weights)
– Similar performance on ImageNet; 4.3% better on larger dataset (JFT)
– However, 1.5x more operations required than Inception V3

[Chollet, CVPR 2017]

Spatial correlation

Cross-channel correlation

44

Example: MobileNets

[Howard et al., arXiv, April 2017]

Depth-wise filter decomposition

45

MobileNets: Comparison

[Howard et al., arXiv, April 2017]

Comparison with other DNN Models

[Image source: Github]

46

H

Grouped Convolutions

R

S

… …

…

C/2

input fmap

output fmap1

…

…

……C…filter1

E

W F
input fmap

output fmap2

……

E

F

H …

…

……C…

W

Grouped convolutions reduce the number of weights and
multiplications at the cost of not sharing information between groups

R

… …

…

C/2 filter2

S

47

Example: ShuffleNet
Shuffle order such that channels are not isolated across groups

(up to 4% increase in accuracy)

[Zhang et al., arXiv, July 2017]

No interaction between
channels from different groups

Shuffling allow interaction between
channels from different groups

48

Learn DNN Models

• Rather than handcrafting the model, learn the model
• More recent result uses Neural Architecture Search

• Build model from popular layers

• Identity

• 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution
• 3x3 dilated convolution
• 1x1 convolution

• 3x3 convolution
• 3x3 separable convolution
• 5x5 separable convolution

• 3x3 average pooling

• 3x3 max pooling
• 5x5 max pooling
• 7x7 max pooling

[Zoph et al., arXiv, July 2017]

49

Learned Convolutional Cells

[Zoph et al., arXiv, July 2017]

50

Comparison with Existing Networks

[Zoph et al., arXiv, July 2017]

Learned models have improved accuracy vs.
‘complexity’ tradeoff compared to handcrafted models

51

Comparison with Existing Networks

[Zoph et al., arXiv, July 2017]

52

Warning!

• These works use number of weights and operations to
measure “complexity”

• Number of weights provides an indication of storage
cost for inference

• However later in the course, we will see that
– Number of operations doesn’t directly translate to throughput
– Number of weights and operations doesn’t directly translate to

power/energy consumption

• Understanding the underlying hardware is important for
evaluating the impact of these “efficient” DNN models

53

Summary
• Approaches used to improve accuracy by popular DNN models in

the ImageNet Challenge
– Go deeper (i.e. more layers)

– Stack smaller filters and apply 1x1 bottlenecks to reduce number of
weights such that the deeper models can fit into a GPU (faster training)

– Use multiple connections across layers (e.g. parallel and short cut)

• Efficient models aim to reduce number of weights and number of
operations
– Most use some form of filter decomposition (spatial, depth and channel)

– Note: Number of weights and operations does not directly map to
storage, speed and power/energy. Depends on hardware!

• Filter shapes vary across layers and models
– Need flexible hardware!

54

Datasets

55

Image Classification Datasets
• Image Classification/Recognition

– Given an entire image à Select 1 of N classes
– No localization (detection)

Image Source: Stanford cs231n

Datasets affect difficulty of task

56

Image Classification Summary

MNIST IMAGENET
Year 1998 2012
Resolution 28x28 256x256
Classes 10 1000
Training 60k 1.3M
Testing 10k 100k
Accuracy 0.21% error

(ICML 2013)
2.25%

top-5 error
(2017 winner)

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

57

Effectiveness of More Data
Accuracy increases logarithmically based on amount training data

Results from Google Internal Dataset
JFT-300M (300M images, 18291 categories)
Orders of magnitude larger than ImageNet

[Sun et al., ICCV 2017]

Object Detection Semantic Segmentation

58

Recently Introduced Datasets

• Google Open Images (~9M images)

– https://github.com/openimages/dataset

• Youtube-8M (8M videos)

– https://research.google.com/youtube8m/

• AudioSet (2M sound clips)

– https://research.google.com/audioset/index.html

https://github.com/openimages/dataset
https://research.google.com/youtube8m/
https://research.google.com/audioset/index.html

59

Beyond CNN (CONV and FC Layers)

• RNN and LSTM
– Often used for sequential data (e.g., speech

recognition, machine translation, etc.) à ‘seq2seq’
(Note: CNNs can also be used for some of these applications)

– Key operation is matrix multiplication
Example ‘Vanilla’ RNN

à FC layer approaches/optimizations can be applied

• Transformer
– Also matrix multiplication

ht = tanh(W�[ht-1, xt]+b)

60

Summary

• Development resources presented in this
section enable us to evaluate hardware using
the appropriate DNN model and dataset
– Difficult tasks typically require larger models
– Different datasets for different tasks
– Number of datasets growing at a rapid pace

