Popular DNNs and Datasets

ISCA Tutorial (2019)
Website: http://eyeriss.mit.edu/tutorial.html
Joel Emer, Vivienne Sze, Yu-Hsin Chen
Popular DNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)

ImageNet: Large Scale Visual Recognition Challenge (ILSVRC)

Accuracy (Top 5 error)

[O. Russakovsky et al., IJCV 2015]
Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

http://yann.lecun.com/exdb/mnist/
LeNet-5

CONV Layers: 2
Fully Connected Layers: 2
Weights: 60k
MACs: 341k
Sigmoid used for non-linearity

Digit Classification!
(MNIST Dataset)

![Diagram of LeNet-5 architecture with convolution and pooling layers.](image)

[Lecun et al., Proceedings of the IEEE, 1998]
LeNet-5

http://yann.lecun.com/exdb/lenet/
Image Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation)

For ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
accuracy of classification task reported based on top-1 and top-5 error

Image Source: http://karpathy.github.io/

http://www.image-net.org/challenges/LSVRC/
AlexNet

CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity

ILSCVR12 Winner
Uses Local Response Normalization (LRN)
[Krizhevsky et al., NeurIPS 2012]
AlexNet

- CONV Layers: 5
- Fully Connected Layers: 3
- Weights: 61M
- MACs: 724M
- ReLU used for non-linearity

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

[Krizhevsky et al., NeurIPS 2012]
Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

<table>
<thead>
<tr>
<th>Layer</th>
<th>Filter Size (RxS)</th>
<th># Filters (M)</th>
<th># Channels (C)</th>
<th>Stride</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11x11</td>
<td>96</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5x5</td>
<td>256</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3x3</td>
<td>384</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3x3</td>
<td>384</td>
<td>192</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3x3</td>
<td>256</td>
<td>192</td>
<td>1</td>
</tr>
</tbody>
</table>

![Layer 1 Diagram](image1)

![Layer 2 Diagram](image2)

![Layer 3 Diagram](image3)

- Layer 1: 34k Params, 105M MACs
- Layer 2: 307k Params, 224M MACs
- Layer 3: 885k Params, 150M MACs

[Krizhevsky et al., NIPS 2012]
AlexNet

CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity

ILSCVR12 Winner
Uses Local Response Normalization (LRN)

[Krizhevsky et al., NeurIPS 2012]
VGG-16

CONV Layers: 13
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5G

Also, 19 layer version

More Layers \rightarrow Deeper!

Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

[Simonyan et al., arXiv 2014, ICLR 2015]
Stacked Filters

- Deeper network means more weights
- Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights

Example

5x5 filter

```
0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1
```
Stacked Filters

- Deeper network means more weights
- Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights

Example
Stacked Filters

- Deeper network means more weights
- Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights

Example

```
0 0 0 0 0 0 0
0 0 1 2 3 2 0
0 1 2 2 2 0 0
0 0 1 0 1 3 0
0 1 2 2 1 0 0
0 0 1 0 3 1 0
0 0 0 0 0 0 0
```

3x3 filter_1

7 8
Stacked Filters

• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights

Example

```
0 0 0 0 0 0 0 0
0 0 1 2 3 2 0 0
0 1 2 2 2 0 0 0
0 0 1 0 1 3 0 0
0 1 2 2 1 0 0 0
0 0 1 0 3 1 0 0
0 0 0 0 0 0 0 0
```

```
7 8 8
```

3x3 filter₁
Stacked Filters

- Deeper network means more weights
- Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights
VGGNet: Stacked Filters

- Deeper network means more weights
- Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights
- Non-linear activation inserted between each filter

Example: 5x5 filter (25 weights) → two 3x3 filters (18 weights)
GoogLeNet/Inception (v1)

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

Also, v2, v3 and v4
ILSVRC14 Winner

9 Inception Layers

3 CONV layers

Auxiliary Classifiers
(helps with training, not used during inference)

1 FC layer (reduced from 3)

[Szegedy et al., arXiv 2014, CVPR 2015]
GoogLeNet/Inception (v1)

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

Also, v2, v3 and v4
ILSVRC14 Winner

parallel filters of different size have the effect of processing image at different scales

Inception Module

1x1 ‘bottleneck’ to reduce number of weights and multiplications

[Szegedy et al., arXiv 2014, CVPR 2015]
1x1 Bottleneck

Use **1x1 filter** to capture cross-channel correlation, but no spatial correlation. Can be used to reduce the number of channels in next layer (**bottleneck**).

![Diagram of 1x1 filter and 1x1 convolution with 32 filters](source_image)

Modified image from source: Stanford cs231n

Use **1x1 filter** to capture cross-channel correlation, but no spatial correlation. Can be used to reduce the number of channels in next layer (**bottleneck**).

1x1 Bottleneck

Use 1x1 filter to capture cross-channel correlation, but no spatial correlation. Can be used to reduce the number of channels in next layer (bottleneck)

[Image of 3D block diagrams showing the reduction in channel count from 64 to 32]

(Modified image from source: Stanford cs231n)

GoogLeNet: 1x1 Bottleneck

Apply bottleneck before ‘large’ convolution filters. Reduce weights such that entire CNN can be trained on one GPU. Number of multiplications reduced from 854M → 358M

Inception Module

1x1 ‘bottleneck’ to reduce number of weights and multiplications

[Szegedy et al., arXiv 2014, CVPR 2015]
ResNet

ILSVRC15 Winner
(better than human level accuracy!)

Go Deeper!

ResNet: Training

Training and validation error **increases** with more layers; this is due to vanishing gradient, no overfitting. Introduce **short cut module** to address this!

![Graphs showing error rates with and without shortcut modules](image)

Thin curves denote training error, and bold curves denote validation error.

[He et al., arXiv 2015, CVPR 2016]
ResNet: Short Cut Module

Helps address the vanishing gradient challenge for training very deep networks

[He et al., arXiv 2015, CVPR 2016]
ResNet: Bottleneck

Apply 1x1 bottleneck to reduce computation and size
Also makes network deeper (ResNet-34 → ResNet-50)

[He et al., arXiv 2015, CVPR 2016]
ResNet-50

CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

Also, 34, 152 and 1202 layer versions
ILSVRC15 Winner

Short Cut Module

[He et al., arXiv 2015, CVPR 2016]
Summary of Popular DNNs

<table>
<thead>
<tr>
<th>Metrics</th>
<th>LeNet-5</th>
<th>AlexNet</th>
<th>VGG-16</th>
<th>GoogLeNet (v1)</th>
<th>ResNet-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-5 error</td>
<td>n/a</td>
<td>16.4</td>
<td>7.4</td>
<td>6.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Input Size</td>
<td>28x28</td>
<td>227x227</td>
<td>224x224</td>
<td>224x224</td>
<td>224x224</td>
</tr>
<tr>
<td># of CONV Layers</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>21 (depth)</td>
<td>49</td>
</tr>
<tr>
<td>Filter Sizes</td>
<td>5</td>
<td>3, 5, 11</td>
<td>3</td>
<td>1, 3, 5, 7</td>
<td>1, 3, 7</td>
</tr>
<tr>
<td># of Channels</td>
<td>1, 6</td>
<td>3 - 256</td>
<td>3 - 512</td>
<td>3 - 1024</td>
<td>3 - 2048</td>
</tr>
<tr>
<td># of Filters</td>
<td>6, 16</td>
<td>96 - 384</td>
<td>64 - 512</td>
<td>64 - 384</td>
<td>64 - 2048</td>
</tr>
<tr>
<td>Stride</td>
<td>1</td>
<td>1, 4</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2</td>
</tr>
<tr>
<td># of Weights</td>
<td>2.6k</td>
<td>2.3M</td>
<td>14.7M</td>
<td>6.0M</td>
<td>23.5M</td>
</tr>
<tr>
<td># of MACs</td>
<td>283k</td>
<td>666M</td>
<td>15.3G</td>
<td>1.43G</td>
<td>3.86G</td>
</tr>
<tr>
<td># of FC layers</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td># of Weights</td>
<td>58k</td>
<td>58.6M</td>
<td>124M</td>
<td>1M</td>
<td>2M</td>
</tr>
<tr>
<td># of MACs</td>
<td>58k</td>
<td>58.6M</td>
<td>124M</td>
<td>1M</td>
<td>2M</td>
</tr>
<tr>
<td>Total Weights</td>
<td>60k</td>
<td>61M</td>
<td>138M</td>
<td>7M</td>
<td>25.5M</td>
</tr>
<tr>
<td>Total MACs</td>
<td>341k</td>
<td>724M</td>
<td>15.5G</td>
<td>1.43G</td>
<td>3.9G</td>
</tr>
</tbody>
</table>

CONV Layers increasingly important!
Summary of Popular DNNs

- **AlexNet**
 - First CNN Winner of ILSVRC
 - Uses LRN (deprecated after this)

- **VGG-16**
 - Goes Deeper (16+ layers)
 - Uses only 3x3 filters (stack for larger filters)

- **GoogLeNet (v1)**
 - Reduces weights with Inception and only one FC layer
 - Inception: 1x1 and DAG (parallel connections)
 - Batch Normalization

- **ResNet**
 - Goes Deeper (24+ layers)
 - Shortcut connections
DenseNet

More Skip Connections!
Connections not only from previous layer, but many past layers to strengthen feature map propagation and feature reuse.

Feature maps are concatenated rather than added.
Break into blocks to limit depth and thus size of combined feature map.

[Huang et al., CVPR 2017]
DenseNet

Higher accuracy than ResNet with fewer weights and multiplications

Note: 1 MAC = 2 FLOPS

[Huang et al., CVPR 2017]
Wide ResNet

Increase width (# of filters) rather than depth of network

- 50-layer wide ResNet outperforms 152-layer original ResNet
- Increasing width instead of depth is also more parallel-friendly

Image Source: Stanford cs231n

[Zagoruyko et al., BMVC 2016]
ResNeXt

Increase number of convolution groups (referred to as cardinality) instead of depth and width of network

ResNet

ResNeXt

256-d in

256, 1x1, 64

64, 3x3, 64

64, 1x1, 256

256-d out

256-d in

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

4, 1x1, 256

4, 1x1, 256

256-d out

[Xie et al., CVPR 2017]

Used by ILSVRC
2017 Winner WMW
ResNeXt

Improved accuracy vs. ‘complexity’ tradeoff compared to other ResNet based models
Efficient DNN Models
Accuracy vs. Weight & OPs

[Alfredo et al., arXiv, 2017]
Bottleneck in Popular DNN Models

ResNet

GoogleNet

compress

expand

compress
Example: SqueezeNet

Reduce number of weights by reducing number of input channels by “squeezing” with 1x1
50x fewer weights than AlexNet (no accuracy loss)
However, 2.4x more operations than AlexNet*

Fire Module

[landola et al., arXiv 2016, ICLR 2017]

*SqueezeNetv1.0
Stacking Small Filters

Build network with a series of small filters (reduces degrees of freedom)

VGG-16

5x5 filter

decompose

Two 3x3 filters

Apply sequentially

GoogleNet/Inception v3

5x5 filter

decompose

5x1 filter

1x5 filter

separable filters

Apply sequentially
Example: Inception V3

Go deeper (v1: 22 layers \rightarrow v3: 40+ layers) by reducing the number of weights per filter using filter decomposition
~3.5% higher accuracy than v1

5x5 filter \rightarrow 3x3 filters

3x3 filter \rightarrow 3x1 and 1x3 filters

Separable filters

[Szegedy et al., arXiv 2015]
Depth-wise Separable

Decouple the **cross-channels correlations** and **spatial correlations** in the feature maps of the DNN.
Example: Xception

- An Inception module based on depth-wise separable convolutions
- Claims to learn richer features with similar number of weights as Inception V3 (i.e. more efficient use of weights)
 - Similar performance on ImageNet; 4.3% better on larger dataset (JFT)
 - However, 1.5x more operations required than Inception V3

[Chollet, CVPR 2017]
Example: MobileNets

Depth-wise filter decomposition

Table 4. Depthwise Separable vs Full Convolution MobileNet

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet Accuracy</th>
<th>Million Mult-Adds</th>
<th>Million Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv MobileNet</td>
<td>71.7%</td>
<td>4866</td>
<td>29.3</td>
</tr>
<tr>
<td>MobileNet</td>
<td>70.6%</td>
<td>569</td>
<td>4.2</td>
</tr>
</tbody>
</table>

[Howard et al., arXiv, April 2017]
MobileNets: Comparison

Comparison with other DNN Models

Table 8. MobileNet Comparison to Popular Models

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet Accuracy</th>
<th>Million Mult-Adds</th>
<th>Million Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 MobileNet-224</td>
<td>70.6%</td>
<td>569</td>
<td>4.2</td>
</tr>
<tr>
<td>GoogleNet</td>
<td>69.8%</td>
<td>1550</td>
<td>6.8</td>
</tr>
<tr>
<td>VGG 16</td>
<td>71.5%</td>
<td>15300</td>
<td>138</td>
</tr>
</tbody>
</table>

Table 9. Smaller MobileNet Comparison to Popular Models

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet Accuracy</th>
<th>Million Mult-Adds</th>
<th>Million Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50 MobileNet-160</td>
<td>60.2%</td>
<td>76</td>
<td>1.32</td>
</tr>
<tr>
<td>SqueezeNet</td>
<td>57.5%</td>
<td>1700</td>
<td>1.25</td>
</tr>
<tr>
<td>AlexNet</td>
<td>57.2%</td>
<td>720</td>
<td>60</td>
</tr>
</tbody>
</table>

[Image source: Github]

[Howard et al., arXiv, April 2017]
Grouped convolutions reduce the number of weights and multiplications at the cost of not sharing information between groups.
Example: ShuffleNet

Shuffle order such that channels are not isolated across groups (up to 4% increase in accuracy)

No interaction between channels from different groups

Shuffling allow interaction between channels from different groups

[Zhang et al., arXiv, July 2017]
Learn DNN Models

• Rather than handcrafting the model, learn the model
• More recent result uses Neural Architecture Search
• Build model from popular layers
 • Identity
 • 1x3 then 3x1 convolution
 • 1x7 then 7x1 convolution
 • 3x3 dilated convolution
 • 1x1 convolution
 • 3x3 convolution
 • 3x3 separable convolution
 • 5x5 separable convolution
 • 3x3 average pooling
 • 3x3 max pooling
 • 5x5 max pooling
 • 7x7 max pooling

[Zoph et al., arXiv, July 2017]
Learned Convolutional Cells

[Zoph et al., arXiv, July 2017]
Comparison with Existing Networks

Learned models have improved accuracy vs. ‘complexity’ tradeoff compared to handcrafted models

[Zoph et al., arXiv, July 2017]
Comparison with Existing Networks

<table>
<thead>
<tr>
<th>Model</th>
<th>image size</th>
<th># parameters</th>
<th>Mult-Adds</th>
<th>Top 1 Acc. (%)</th>
<th>Top 5 Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception V2 [27]</td>
<td>224x224</td>
<td>11.2 M</td>
<td>1.94 B</td>
<td>74.8</td>
<td>92.2</td>
</tr>
<tr>
<td>NASNet-A (N = 5)</td>
<td>299x299</td>
<td>10.9 M</td>
<td>2.35 B</td>
<td>78.6</td>
<td>94.2</td>
</tr>
<tr>
<td>Inception V3 [51]</td>
<td>299x299</td>
<td>23.8 M</td>
<td>5.72 B</td>
<td>78.0</td>
<td>93.9</td>
</tr>
<tr>
<td>Xception [9]</td>
<td>299x299</td>
<td>22.8 M</td>
<td>8.38 B</td>
<td>79.0</td>
<td>94.5</td>
</tr>
<tr>
<td>Inception ResNet V2 [50]</td>
<td>299x299</td>
<td>55.8 M</td>
<td>13.2 B</td>
<td>80.4</td>
<td>95.3</td>
</tr>
<tr>
<td>NASNet-A (N = 7)</td>
<td>299x299</td>
<td>22.6 M</td>
<td>4.93 B</td>
<td>80.8</td>
<td>95.3</td>
</tr>
<tr>
<td>ResNeXt-101 (64 x 4d) [58]</td>
<td>320x320</td>
<td>83.6 M</td>
<td>31.5 B</td>
<td>80.9</td>
<td>95.6</td>
</tr>
<tr>
<td>PolyNet [60]</td>
<td>331x331</td>
<td>92 M</td>
<td>34.7 B</td>
<td>81.3</td>
<td>95.8</td>
</tr>
<tr>
<td>DPN-131 [8]</td>
<td>320x320</td>
<td>79.5 M</td>
<td>32.0 B</td>
<td>81.5</td>
<td>95.8</td>
</tr>
<tr>
<td>NASNet-A (N = 7)</td>
<td>331x331</td>
<td>84.9 M</td>
<td>23.2 B</td>
<td>82.3</td>
<td>96.0</td>
</tr>
</tbody>
</table>

MobileNet

<table>
<thead>
<tr>
<th>Model</th>
<th># parameters</th>
<th>Mult-Adds</th>
<th>Top 1 Acc. (%)</th>
<th>Top 5 Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception V1 [49]</td>
<td>6.6M</td>
<td>1,448 M</td>
<td>69.8</td>
<td>89.9</td>
</tr>
<tr>
<td>MobileNet-224 [22]</td>
<td>4.2 M</td>
<td>569 M</td>
<td>70.6</td>
<td>89.5</td>
</tr>
<tr>
<td>ShuffleNet (2x) [59]</td>
<td>~5M</td>
<td>524 M</td>
<td>70.9</td>
<td>89.8</td>
</tr>
<tr>
<td>NASNet-A (N=4)</td>
<td>5.3 M</td>
<td>564 M</td>
<td>74.0</td>
<td>91.6</td>
</tr>
<tr>
<td>NASNet-B (N=4)</td>
<td>5.3 M</td>
<td>488 M</td>
<td>72.8</td>
<td>91.3</td>
</tr>
<tr>
<td>NASNet-C (N=3)</td>
<td>4.9 M</td>
<td>558 M</td>
<td>72.5</td>
<td>91.0</td>
</tr>
</tbody>
</table>

[Zoph et al., arXiv, July 2017]
Warning!

- These works use **number of weights and operations** to measure “complexity”
- Number of weights provides an indication of **storage cost** for inference
- However later in the course, we will see that
 - Number of operations doesn’t directly translate to throughput
 - Number of weights and operations doesn’t directly translate to power/energy consumption
- Understanding the underlying hardware is important for evaluating the impact of these “efficient” DNN models
Summary

- Approaches used to improve accuracy by popular DNN models in the ImageNet Challenge
 - Go deeper (i.e. more layers)
 - Stack smaller filters and apply 1x1 bottlenecks to reduce number of weights such that the deeper models can fit into a GPU (faster training)
 - Use multiple connections across layers (e.g. parallel and short cut)
- Efficient models aim to reduce number of weights and number of operations
 - Most use some form of filter decomposition (spatial, depth and channel)
 - Note: Number of weights and operations does not directly map to storage, speed and power/energy. Depends on hardware!
- Filter shapes vary across layers and models
 - Need flexible hardware!
Datasets
Image Classification Datasets

• **Image Classification/Recognition**
 – Given an entire image \rightarrow Select 1 of N classes
 – No localization (detection)

Datasets affect difficulty of task
Image Classification Summary

<table>
<thead>
<tr>
<th></th>
<th>MNIST</th>
<th>IMAGENET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1998</td>
<td>2012</td>
</tr>
<tr>
<td>Resolution</td>
<td>28x28</td>
<td>256x256</td>
</tr>
<tr>
<td>Classes</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>Training</td>
<td>60k</td>
<td>1.3M</td>
</tr>
<tr>
<td>Testing</td>
<td>10k</td>
<td>100k</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.21% error (ICML 2013)</td>
<td>2.25% top-5 error (2017 winner)</td>
</tr>
</tbody>
</table>

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
Effectiveness of More Data

Accuracy increases logarithmically based on amount training data

Results from Google Internal Dataset
JFT-300M (300M images, 18291 categories)
Orders of magnitude larger than ImageNet

Object Detection

Semantic Segmentation

[Sun et al., ICCV 2017]
Recently Introduced Datasets

- Google Open Images (~9M images)
 - https://github.com/openimages/dataset
- Youtube-8M (8M videos)
 - https://research.google.com/youtube8m/
- AudioSet (2M sound clips)
 - https://research.google.com/audioset/index.html
Beyond CNN (CONV and FC Layers)

• RNN and LSTM
 – Often used for sequential data (e.g., speech recognition, machine translation, etc.) → ‘seq2seq’
 (Note: CNNs can also be used for some of these applications)
 – Key operation is matrix multiplication
 Example ‘Vanilla’ RNN \(h_t = \tanh(W \cdot [h_{t-1}, x_t] + b) \)
 → FC layer approaches/optimizations can be applied

• Transformer
 – Also matrix multiplication
Summary

• Development resources presented in this section enable us to evaluate hardware using the appropriate DNN model and dataset
 – Difficult tasks typically require larger models
 – Different datasets for different tasks
 – Number of datasets growing at a rapid pace