Benchmarking Metrics for DNN Hardware

How can we compare designs?

ISCA Tutorial (2019)

Website: http://eyeriss.mit.edu/tutorial.html

Metrics for DNN Hardware

Accuracy

Quality of result for a given task

Throughput

- Analytics on high volume data
- Real-time performance (e.g., video at 30 fps)

Latency

For interactive applications (e.g., autonomous navigation)

Energy and Power

- Edge and embedded devices have limited battery capacity
- Data centers have stringent power ceilings due to cooling costs

Hardware Cost

- \$\$\$

Specifications to Evaluate Metrics

Accuracy

Difficulty of dataset and/or task should be considered

Throughput

- Number of cores (include utilization along with peak performance)
- Runtime for running specific DNN models

Latency

Include batch size used in evaluation

Energy and Power

- Power consumption for running specific DNN models
- Include external memory access

Hardware Cost

On-chip storage, number of cores, chip area + process technology

Example: Metrics of Eyeriss Chip

ASIC Specs	Input	
Process Technology	65nm LP TSMC (1.0V)	
Total Core Area (mm ²)	12.25	
Total On-Chip Memory (kB)	192	
Number of Multipliers	168	
Clock Frequency (MHz)	200	
Core area (mm²) /multiplier	0.073	
On-Chip memory (kB) / multiplier	1.14	
Measured or Simulated	Measured	

Metric	Units	Input
Name of CNN Model	Text	AlexNet
Top-5 error classification on ImageNet	#	19.8
Supported Layers		All CONV
Bits per weight	#	16
Bits per input activation	#	16
Batch Size	#	4
Runtime	ms	115.3
Power	mW	278
Off-chip Access per Image Inference	MBytes	3.85
Number of Images Tested	#	100

Comprehensive Coverage

- All metrics should be reported for fair evaluation of design tradeoffs
- Examples of what can happen if certain metric is omitted:
 - Without the accuracy given for a specific dataset and task,
 one could run a simple DNN and claim low power, high
 throughput, and low cost however, the processor might not be
 usable for a meaningful task
 - Without reporting the off-chip bandwidth, one could build a
 processor with only multipliers and claim low cost, high
 throughput, high accuracy, and low chip power however, when
 evaluating system power, the off-chip memory access would be
 substantial
- Are results measured or simulated? On what test data?

Evaluation Process

The evaluation process for whether a DNN system is a viable solution for a given application might go as follows:

- 1. Accuracy determines if it can perform the given task
- 2. Latency and throughput determine if it can run fast enough and in real-time
- Energy and power consumption will primarily dictate the form factor of the device where the processing can operate
- **4. Cost**, which is primarily dictated by the chip area, determines how much one would pay for this solution

