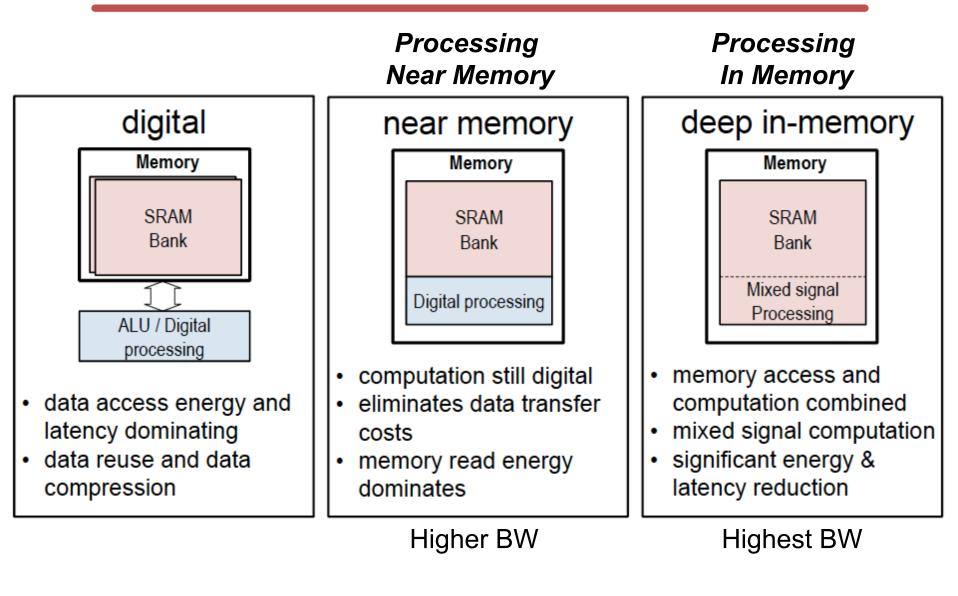
Processing Near/In Memory

ISCA Tutorial (2019)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

Processing Near vs. In Memory



MiT 📀

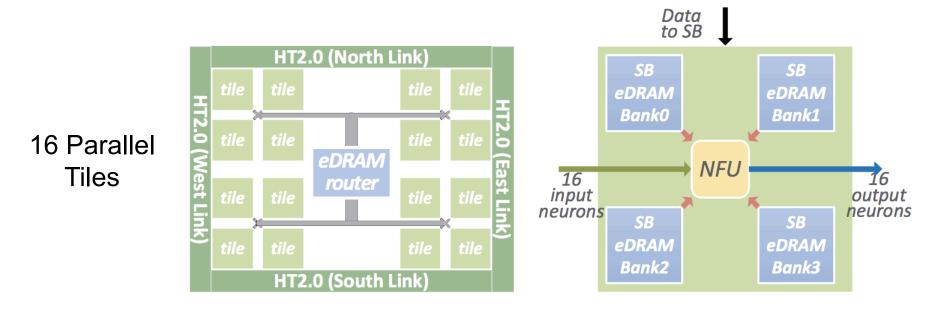
Modified image from [Gonugondla, ISSCC 2018]

Processing Near Memory

- Bring compute closer to the memory
- Benefits
 - Increase memory bandwidth
 - Reduce energy per access
- Challenges
 - Cost
- Embedded DRAM (eDRAM)
- 3D Stacked Memory (DRAM, SRAM)

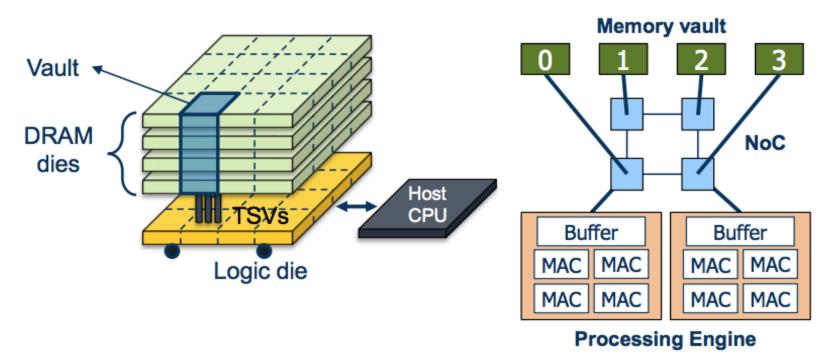
eDRAM (DaDianNao)

- Advantages of eDRAM
 - 2.85x higher density than SRAM
 - 321x more energy-efficient than DRAM (DDR3)
- Store weights in eDRAM (36MB)
 - Target fully connected layers since dominated by weights



Stacked DRAM (NeuroCube)

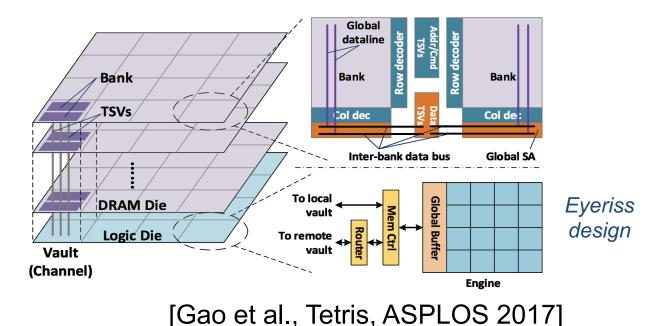
- NeuroCube on Hybrid Memory Cube Logic Die
 - 6.25x higher BW than DDR3
 - HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)
 - Computation closer to memory (reduce energy)



[Kim et al., NeuroCube, ISCA 2016]

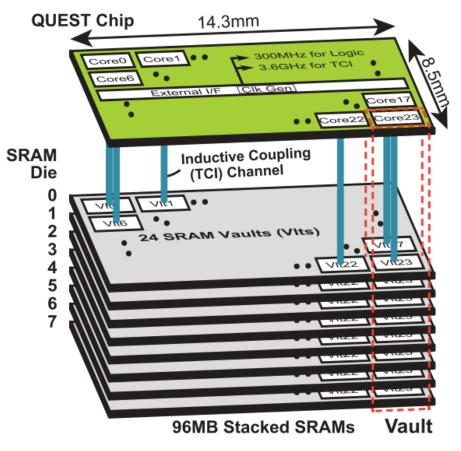
Stacked DRAM (TETRIS)

- Explores the use of HMC with the Eyeriss spatial architecture and row stationary dataflow
- Allocates more area to the computation (PE array) than on-chip memory (global buffer) to exploit the low energy and high throughput properties of the HMC
 - 1.5x energy reduction, 4.1x higher throughput vs. 2-D DRAM



Stacked SRAM (Quest)

- Explores use of stacked SRAM which has lower latency and power dissipation than DRAM
 - Lower storage density than DRAM but can stack more due to low power density
- Use inductive coupling to connect to SRAM rather than TSV for lower integration cost
 - 9.6Gb/s per channel x 24 channels = 28.8 GB/s

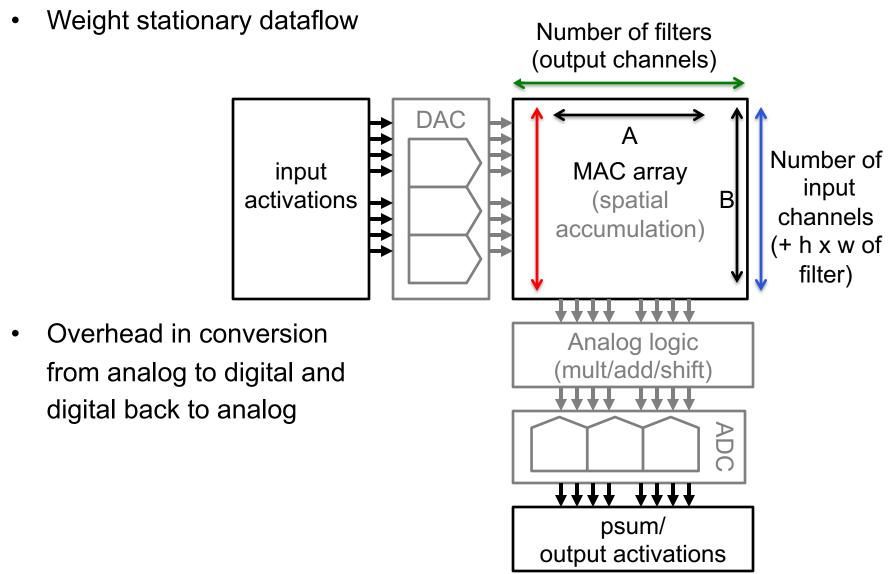


7

Processing In Memory

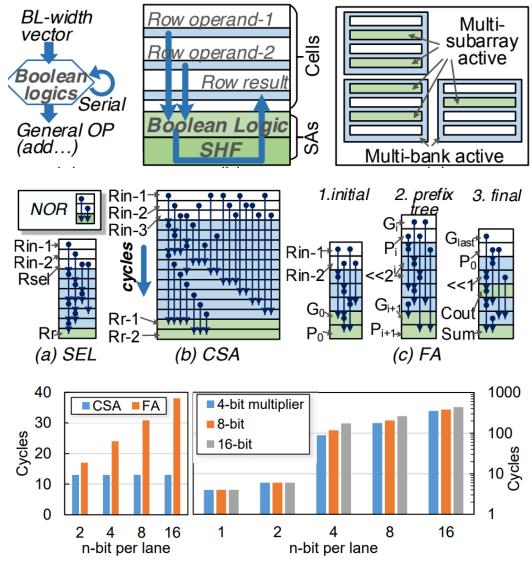
- Embed processing in peripheral or perform compute in analog domain
- Benefits
 - read multiple weights in parallel (high bandwidth)
 - perform multiple computations in parallel (high throughput)
 - Increase density of compute engines (lower capacitance on input delivery)
 - reduce number of conversions (sense amp only applied to final accumulated value)
- Challenges
 - non-idealities of analog compute (non-linearity, sensitivity to process and temperature variations)
 - conversion cost from analog to digital (fewer conversions, but each one is more expensive)
 - increase size of bit cell and increase size in peripheral (reduce storage density)
 - limited precision that can be stored in each storage element (e.g. bit cell, device); need to use bit serial or multiple elements if want to support higher precision; also may need to use two arrays to enable differential signal to represent negative values
- Memory Technology
 - SRAM, DRAM, NVM (Flash, memristors)

Dataflow for PIM



DRAM (DRISA)

- Build multiplier and adders from NOR logic in DRAM
 - Add shift logic to output of DRAM before write back
- Requires multiple cycles
 - Number of cycles depends on bit width
 - Tradeoff parallelism for cycles
- Parallelism dictated by array width and number of arrays
- Demonstrate on BNN: 1b weights, 8 bit activation for AlexNet, VGG-16, VGG-19, ResNet



[Li, MICRO 2017]

Analog Computation

- Conductance = Weight
- Voltage = Input
- Current = Voltage × Conductance
- Sum currents for addition

$$Output = \sum Weight \times Input$$

Input = V1, V2, ...

Filter Weights = G1, G2, ... (conductance)

Weight Stationary Dataflow

V1

V2

G1

 $I1 = V1 \times G1$

G2

 $I2 = V2 \times G2$

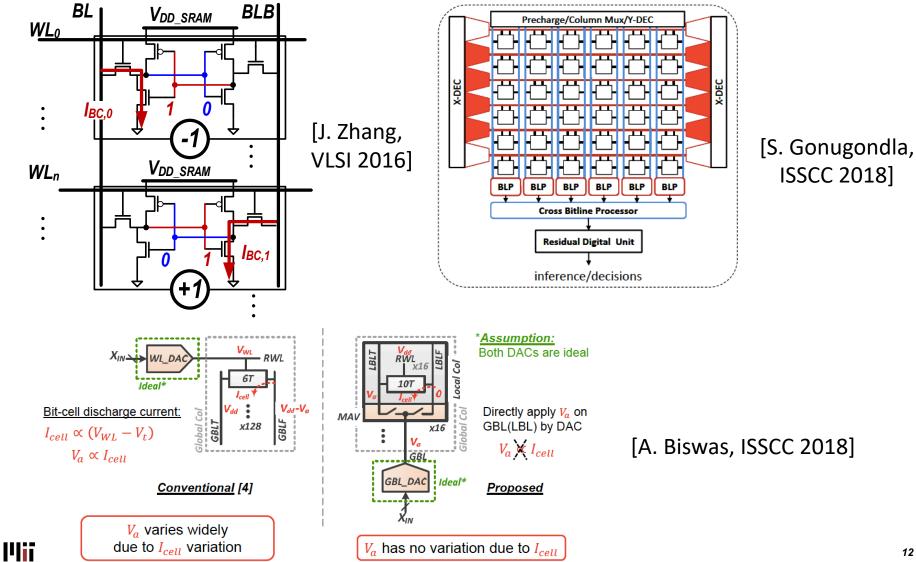
| = |1 +

= V1×G1 + V2×G2

Figure Source: ISAAC, ISCA 2016

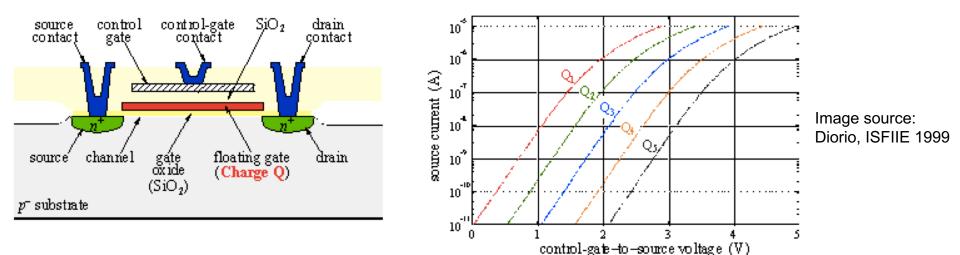
Compute Dot Product in SRAM

Approaches vary in terms of how data applied to BL and/or WL



Analog Compute with Flash Memory

Floating Gate: Program by changing threshold voltage (shift I-V curve)



	Enterprise With DRAM	Enterprise No-DRAM	Edge With DRAM	Edge No-DRAM	Mythic NVM
SRAM	<50 MB	100+ MB	< 5 MB	< 5 MB	< 5 MB
DRAM	8+ GB	-	4-8 GB	-	-
Power	70+ W	70+ W	3-5 W	1-3 W	1-5 W
Sparsity	Light	Light	Moderate	Heavy	None
Precision	32f / 16f / 8i	32f / 16f / 8i	8i	1-8i	1-8i
Accuracy	Great	Great	Moderate	Poor	Great
Performance	High	High	Very Low	Very Low	High
Efficiency	25 pJ/MAC	2 pJ/MAC	10 pJ/MAC	5 pJ/MAC	0.5 pJ/MAC

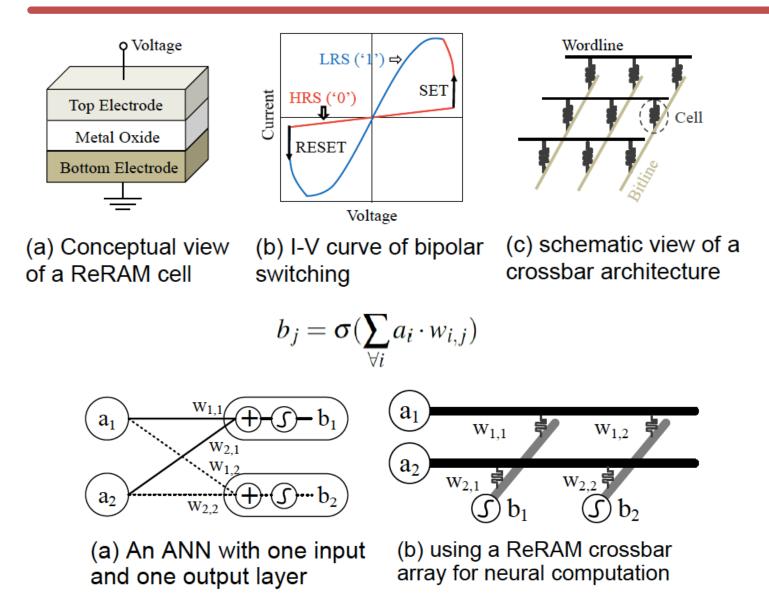
Phir

Memristor Computation

Use memristors as programmable weights (resistance)

- Advantages
 - High Density (< 10nm x 10nm size*)</p>
 - ~30x smaller than SRAM**
 - 1.5x smaller than DRAM**
 - Non-Volatile
 - Operates at low voltage
 - Computation within memory (in situ)
 - Reduce data movement

Memristor



MiT 📀

Challenges with Memristors

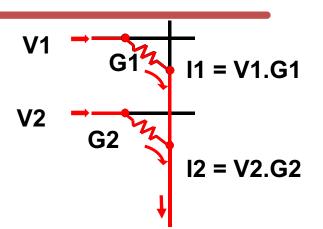
- Limited Precision
- A/D and D/A Conversion
- Array Size and Routing
 - Wire dominates energy for array size of 1k × 1k
 - IR drop along wire can degrade read accuracy
- Write/programming energy
 - Multiple pulses can be costly
- Variations & Yield

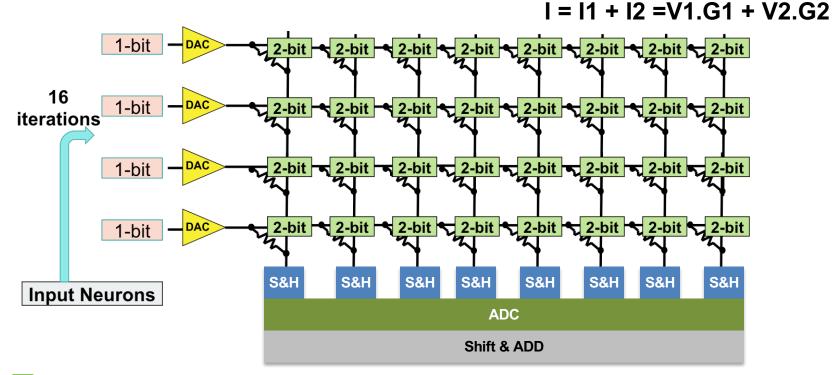
- Device-to-device, cycle-to-cycle
- Non-linear conductance across range

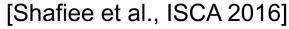
ISAAC

• eDRAM using memristors

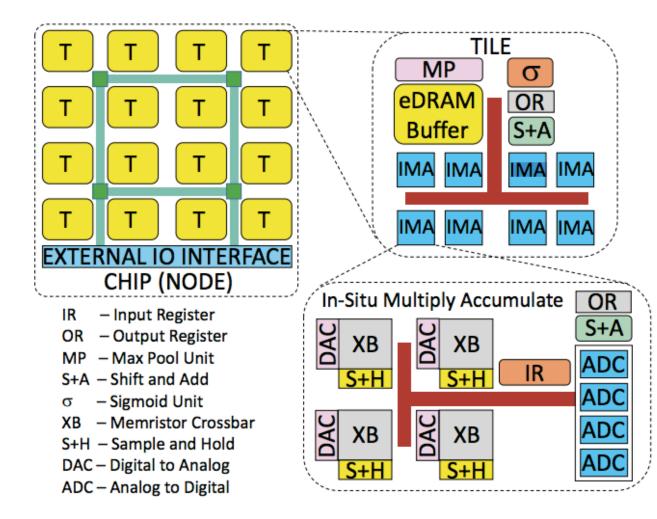
- 16-bit dot-product operation
 - 8 x 2-bits per memristors
 - 1-bit per cycle computation
 - Trade off area and cycles to address low precision







ISAAC



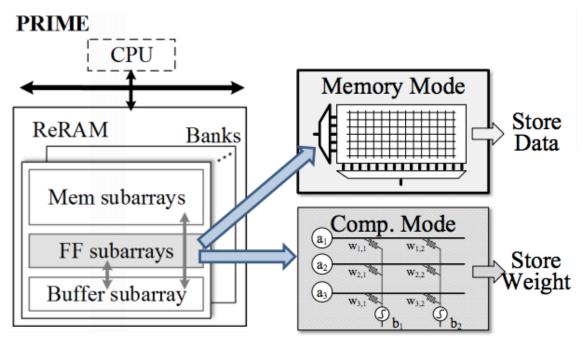
Eight 128x128 arrays per IMA

12 IMAs per Tile

14x12 Tiles in ISAAC

PRIME

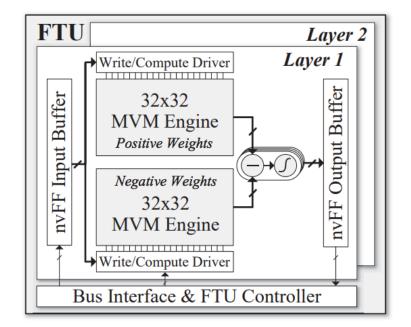
- Bit precision for each 256x256 ReRAM array
 - 3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight)
 - Dynamic fixed point (6-bit output)
- Reconfigurable to be main memory or accelerator
 - 4-bit MLC computation; 1-bit SLC for storage

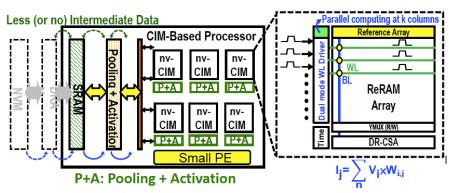


[Chi et al., ISCA 2016]

Fabricated Arrays

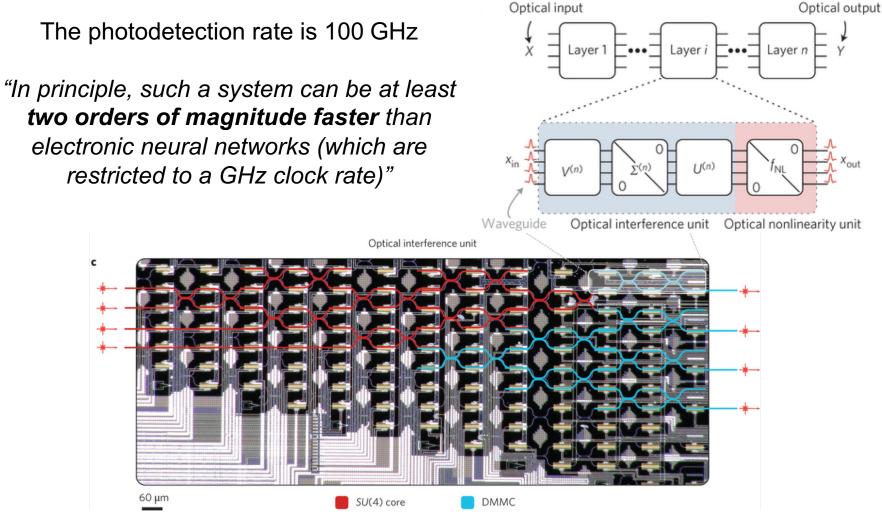
- Ternary weights and binary activations
- Use two arrays for ternary weights {-1, 0, +1}
- [Su, VLSI 2017]
 - Array size: 32x32 (2 arrays)
 - Accumulate 32 values into a 3-bit output
 - Demo Task
 - Input: 5x5 image (25 values)
 - Classify with 2 FC (25x32x4)
 - Output: 4 directions
- nvCIM [Chen, ISSCC 2018]
 - Array size: 512 x 256 (8 arrays)
 - Accumulate 512 values into a 3-bit output
 - Max 32 rows activated at a time due to sensing margin and yield
 - Demo Task
 - Input: 5x5 image (MNIST) 96.2% accuracy
 - Classify with 2 FC (25x25x3) ??
 - Output: 9 digits





Optical Neural Network

Matrix Multiplication in the Optical Domain



[Shen et al., Nature Photonics 2017]