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Reduce Number of Ops and Weights

• Exploit Activation Statistics
• Exploit Weight Statistics
• Exploit Dot Product Computation
• Decomposed Trained Filters
• Knowledge Distillation
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Sparsity in Fmaps
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I/O Compression in Eyeriss

Run-Length Compression (RLC) 

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b5b 16b 5b 16b
2 12 4 53 2 22 0
RunLevelRunLevelRunLevelTerm

Off-Chip DRAM
64 bits

Decomp

Comp

[Chen et al., ISSCC 2016]

DCNN Accelerator
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Compression Reduces DRAM BW
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[Chen et al., ISSCC 2016]

Simple RLC within 5% - 10% of theoretical entropy limit
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Data Gating / Zero Skipping in Eyeriss
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Cnvlutin
• Process Convolution Layers
• Built on top of DaDianNao (4.49% area overhead)
• Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]
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Pruning Activations

[Reagen et al., ISCA 2016]

Remove small activation values

[Albericio et al., ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin
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Exploit Correlation in Input Data
• Exploit Temporal Correlation of Inputs 

– Reduce amount of computation if there is temporal correlation between 
frames

– Requires additional storage and need to measure redundancy (e.g. 
motion vector for videos)

– Application specific (e.g. videos) – requires that the same operation is 
done for each frame (not always the case) 

[Zhang et al., FAST, CVPRW 2017], [EVA2, ISCA 2018],
[Euphrates, ISCA 2018], [Riera et al., ISCA 2018]
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Exploit Correlation in Input Data

• Exploit Spatial Correlation of Inputs 
– Delta code neighboring values (activation) resulting in sparse inputs to 

each layer
– Reduces storage cost and data movement for improvement in energy-

efficiency and throughput

[Diffy, MICRO 2018]
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Pruning – Make Weights Sparse

• Optimal Brain Damage
1. Choose a reasonable network 

architecture
2. Train network until reasonable 

solution obtained

3. Compute the second derivative 
for each weight

4. Compute saliencies (i.e. impact 
on training error) for each weight

5. Sort weights by saliency and 
delete low-saliency weights

6. Iterate to step 2

[Lecun et al., NeurIPS 1989]

retraining
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Pruning – Make Weights Sparse

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Prune based on magnitude of weights

Train Connectivity

Prune Connections

Train Weights

Example: AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

[Han et al., NeurIPS 2015]
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Speed up of Weight Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV

NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV

NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

On Fully Connected Layers Only
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

[Han et al., NeurIPS 2015]
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Design of Efficient DNN Algorithms

• Popular efficient DNN algorithm approaches 

pruning 
neurons

pruning 
synapses
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Network Pruning
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Compact Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?
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Energy-Evaluation Methodology

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption 
L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

Evaluation tool available at http://eyeriss.mit.edu/energy.html

http://eyeriss.mit.edu/energy.html
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Key Observations

• Number of weights alone is not a good metric for energy
• All data types should be considered 

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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Energy-Aware Pruning

Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x
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Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]

http://eyeriss.mit.edu/energy.html
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# of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
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NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

[Yang et al., ECCV 2018]

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

Code to be released at http://netadapt.mit.edu

http://netadapt.mit.edu/
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Improved Latency vs. Accuracy Tradeoff
• NetAdapt boosts the real inference speed of MobileNet

by up to 1.7x with higher accuracy

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]
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Compression of Weights & Activations

• Compress weights and activations between DRAM 
and accelerator

• Variable Length / Huffman Coding

• Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:
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Compression Overhead

Index (non-zero position info – e.g., IA and JA for CSR) accounts for 
approximately half of storage for fine grained pruning

[Han et al., ICLR 2016]
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Coarse-Grained Pruning
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Structured/Coarse-Grained Pruning 
• Scalpel

– Prune to match the underlying data-parallel hardware 
organization for speed up

[Yu et al., ISCA 2017]

Dense weights Sparse weights

Example: 2-way SIMD
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Exploit Redundant Weights 
• Preprocessing to reorder weights (ok since weights are 

known)

• Perform addition before multiplication to reduce number 
of multiplies and reads of weights

• Example: Input = [1 2 3 ] and filter [A B A]

Typical processing: Output = A*1+B*2+A*3

If reorder as [A A B]:  Output =  A*(1+3)+B*1

3 multiplies and 3 weight reads

2 multiplies and 2 weight reads

Note: Bitwidth of multiplication may need to increase

[UCNN, ISCA 2018]
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Exploit ReLU
• Reduce number operations when if resulting activation will be 

negative as ReLU will set to zero

• Need to either perform preprocess (sort weights) or minimize 
prediction overhead and error

[PredictiveNet, ISCAS 2017], [SnaPEA, ISCA 2018], [Song et al., ISCA 2018]
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Compact Network Architectures

• Break large convolutional layers into a series of 
smaller convolutional layers
– Fewer weights, but same effective receptive field

• Before Training: Network Architecture Design 
(already discussed this morning; e.g., MobileNet)

• After Training: Decompose Trained Filters
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Decompose Trained Filters
After training, perform low-rank approximation by applying tensor 
decomposition to weight kernel; then fine-tune weights for accuracy

[Lebedev et al., ICLR 2015]R = canonical rank
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Decompose Trained Filters

[Denton et al., NeurIPS 2014]

• Speed up by 1.6 – 2.7x on CPU/GPU for CONV1, 
CONV2 layers

• Reduce size by 5 - 13x for FC layer 
• < 1% drop in accuracy

Original Approx.
Visualization of Filters
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Decompose Trained Filters on Phone

[Kim et al., ICLR 2016]

Tucker Decomposition
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Knowledge Distillation

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015] 
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