
1

Sparse Architectures

ISCA Tutorial (2019)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

http://eyeriss.mit.edu/tutorial.html

2

Motivation

• Leverage CNN sparsity to improve energy-efficiency

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

conv1 conv2 conv3 conv4 conv5

W
or

k
(#

 o
f m

ul
tip

lie
s)

De
ns

ity
 (I

A,
 W

)

AlexNet Density (IA)

Density (W)

3

Tensor Data

a b c
d e f
g h i

K

N

0 1 2

0

1

2

• The elements of each “rank” (dimension) are identified by
their “coordinates”, e.g., rank K has coordinates 0, 1, 2

• Each element of the tensor is identified by the tuple of
coordinates from each of its ranks, i.e., a “point”.

Coordinates

Coordinates

4

Tree-based Tensor Representation

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

a b c
d e f
g h i

K

N

0 1 2

0

1

2

N

K

Rank

Fiber

5

Tree-based Tensor Representation

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

a b c
d e f
g h i

K

N

0 1 2

0

1

2

N

K

Finding point (2, 1)

6

Tree-based Tensor Representation

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

a b c
d e f
g h i

K

N

0 1 2

0

1

2

N

K

Each coordinate references a fiber

7

a c

g h
K

N

0 1 2

0

1

2

a b c
d e f
g h i

K

N

0 1 2

0

1

2

Rank-based Tensor Representation

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

N

K

Each coordinate references a fiber

8

a c

g h
K

N

0 1 2

0

1

2

a b c
d e f
g h i

K

N

0 1 2

0

1

2

Rank-based Tensor Representation

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

N

K

Finding point (2, 1)

9

a c

g h
K

N

0 1 2

0

1

2

a b c
d e f
g h i

K

N

0 1 2

0

1

2

Rank-based Tensor Representation

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

N

K

What if tensor
is sparse?

10

Sparse Tensor Representation

a c g h

0

0 2 1

2

0

N

K

a c

g h
K

N

0 1 2

0

1

2

11

a c

g h
K

N

0 1 2

0

1

2

Sparse Tensor Representation

a c g h

0

0 2 1

2

0

N

K

Finding point (2, 1)

12

Information in a Fiber

• Each fiber has set of (coordinate, “payload”) tuples

a c g h

0

0 2 1

2

0

N

K

Payload:
Reference
to fiber in
next rank

Payload:
Value

Coordinate

13

Information in a Fiber

Method: payload = fiber.lookup(coordinate)

a c g h

Rank K Fiber Representation

Rank N Fiber
Representation

N

K

14

Fiber Representation Choices

Each fiber has set of (coordinate, “payload”) tuples

• Implicit Coordinates
– Uncompressed (no meta-data required)
– Compressed – e.g., run length encoded

• Explicit Coordinates
– E.g., coordinate list

• Space efficiency of a representation depends on sparsity
– Compressed format can have overhead relative to uncompressed

format for dense data

15

Compressed Implicit Coordinate Representations

• “Empty” coordinate compression via zero-run encoding

– Run-length coding (RLE)

• (run-length of zeros, non-zero payload)…

– Significance map coding

• (flag to indicate if non-zero, non-zero payload)…

• Payload encoding

– Fixed length payload

– Variable length payload

• E..g., Huffman coding

• Efficiency of different traversal patterns through the

tensor is affected by encoding, e.g., finding the payload

for a particular coordinate…

16

Uncompressed/Compressed Representation

a c g h

0

0 2 1

2

0

N

K

Rank

Fiber

a c

g h
K

N

0 1 2

0

1

2

1

17

Uncompressed/Compressed Representation

a c g h

0 2 10

N

K

0,2 2,0 2,20 1 2

Coordinate == Position

Position, Length

18

Uncompressed/Compressed Representation

a c g h

0 2 10

N

K

0,2 2,0 2,2

0 1 2 3

Position, Length

19

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

N

K

0,2 2,0 2,2

0 1 2 3

0 1 2 3

Position

Position, Length

20

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

N

K

0,2 2,0 2,2

0 1 2 3

0 1 2 3

Position

Note: First element of pair is
always sum of pair of elements
in previous cell

Position, Length

21

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

N

K

0 2 2

0 1 2 3

0 1 2 3

Position

Note: First element of pair is
always sum of pair of elements
in previous cell, so length can
be computed from next cell’s value.

4

Position, Length

22

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

N

K

0 2 2

0 1 2 3

0 1 2 3

Position

4

Extra cell for
computing
final length

Position, Length

23

g

Compressed Sparse Row (CSR)

ca

N

K

0 2 2 4

0 2 0 1

h

a c

g h
K

N

0 1 2

0

1

2

24

Compression Overhead

Index (non-zero position info – e.g., IA and JA for CSR) accounts for
approximately half of storage for fine grained pruning

[Han et al., ICLR 2016]

25

Explicit Coordinate Representations

• Coordinate/Payload list
– (coordinate, non-zero payload)…

• Hash table (per fiber)
– (coordinate -> payload) mapping

• Hash table (per rank)
– (fiber_id, coordinate -> payload) mapping

• Bit vector of non-zero coordinates
– Uncompressed payload

26

Per Rank Tensor Representations

– Uncompressed [U]
•

– Run-length Encoded [R]
•

– Coordinate/Payload List [C]
•

– Hash Table (per rank) [Hr]

– Hash Table (per fiber) [Hf]
•

Inspired by collaboration with Kjolstad
in [Kjolstad, TACO]

27

Payload Needed to Find Fiber in a Rank

– Uncompressed [U]
• Payload*: None

– Run-length Encoded [R]
• Payload*: Pointer to fiber data structure

– Coordinate/Payload List [C]
• Payload*: Pointer to fiber data structure

– Hash Table (per rank) [Hr]
• Payload*: fiber_id

– Hash Table (per fiber) [Hf]
• Payload*: Pointer to fiber data structure

*Payload needed in preceding rank to perform “lookup():”

28

g

Notation for CSR

ca

N

K

0 2 2 4

0 2 0 1

h

a c

g h
K

N

0 1 2

0

1

2
CSR: Tensor-UC/KN

Uncompressed

Coordinate/Payload

Rank order

29

Representation of Order of Ranks

Tensor-UC/KN -> CSR

a c g h

0

0 2 1

2

0

N

K

1

a cg h

0

0 2 2

2

0
K

N

1

a c

g h
K

N

0 1 2

0

1

2
Tensor-UC/NK -> CSC

30

Traversal Efficiency

Efficiency of different traversal patterns through the tensor
is affected by encoding, e.g., finding the payload for a
particular coordinate…

• Operations:

– payload = Tensor.Locate(coordinate… | point)

– (coordinate, payload) = Tensor.Next(rank_traversal_order)

Tensor.next() is a very common operation and its efficiency
is highly dependent on representation, both order of ranks
and representation of each rank….

31

Concordant traversal orders
CSR and CSC each has a natural (or “concordant”*)

traversal order

Original
Matrix

Compressed
Sparse Column

(CSC)
Compressed
Sparse Row

(CSR)

Processing
Order

* Term from Michael Pellauer

32

Example Traversal Efficiency

• Locate efficiency:

– Uncompressed – direct reference - O(1)

– Run length encoded – linear search – O(n)

– Hash table – multiple references and compute – O(1)

– Coordinate/Payload list – binary search – O(log n)

• Next efficiency (concordant traversal)

– Uncompressed – sequential reference, good spatial locality - O(1)

– Run length encoded – sequential reference – O(1)

– Coordinate/Payload list - same as uncompressed

• Next efficiency (discordant traversal)

– Essentially as good (or bad) as locate….

33

Merging Ranks

Tensor-CC/KN

a c g h

0

0 2 1

2

0

N

K

a c

g h
K

N

0 1 2

0

1

2

a c g h

0,0 0,2 2,12,0

K,N

Tensor-(C2)/(KN)

34

Merging Ranks
• For efficiency one can form new representations where the

data structure for two or more ranks are combined:

• Examples:
– Tensor-(C2)

List of (coordinate tuple,payload) - COO

– Tensor-(H2)
• Hash table with coordinate tuple as key

– Tensor-(U2)
• Flattened array
• Coordinates can be recovered with modulo arithmetic on “position”

– Tensor-(R2)
• Flattened run-length encoded sequence

35

H

W

…

…

…C…

1

Fully-Connected (FC) Layer

M

input fmaps
output fmaps

…
filters

…

1
…

…

1
1

H

…

…C…

1
W

H

W

…

…

…C…

M

36

Output-Stationary Operations

a b c
d e f
g h i

K

N

1

0

0 2 1

1

0 2

a d g b e h c f i

1

0

0 2 1

1

0 2 1

2

0 2

Filter
a b
d e

c
f

M

K
a b d ec f

37

Output-Stationary Lists

a b c
d e f
g h i

K

N

1

0

0 2 1

1

0 2

a d g b e h c f i

1

0

0 2 1

1

0 2 1

2

0 2

Filter
a b
d e

c
f

M

K
a b d ec f

38

Output-Stationary Intersection Lists

a b c
e f

g h i
K

N

1

0

2 1

1

0 2

a g b e h c f i

0

0 2 1

1

0 2 1

2

0 2

Filter
b

d e
c
f

M

K
b d ec f

2-2 is the only “effectual” computation

39

EIE: A Sparse Linear Algebra Engine
• Process Fully Connected Layers (after Deep Compression)
• Store weights column-wise in Run Length format (i.e., CSC format)
• Read relative column when input is non-zero

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016]

Input

Weights

Output Dequantize Weight

Keep track of location

Output Stationary Dataflow

Supports Fully Connected Layers Only

40

PE Architecture

Pointer Read Act R/W

Act Queue

Sparse Matrix Access

Sparse
Matrix
SRAM

Arithmetic Unit

Regs

Col
Start/
End

Addr

Act Index

Weight
Decoder

Address
Accum

Dest
Act

Regs

Act
SRAM

Act Value

Encoded
Weight

Relative
Index

Src
Act

Regs
Absolute Address

Bypass

Leading
NZero
Detect

Even Ptr SRAM Bank

Odd Ptr SRAM Bank ReLU

Act Value

Act Index

SRAM Regs Comb

41

Impact of Representation on Dataflow

[Dorrance et al., FPGA 2014]

Compressed Sparse Column (CSC) Compressed Sparse Row (CSR)

CSC reduces memory bandwidth over CSR
(when not M >> N)

For DNN, M = # of filters,
N = # of weights per filter

M

N

Output stationary

Input stationary

From SpMxV research

weights inputs outputs weights inputs outputs

42

Sparse Accelerators

43

1-D Output-Stationary Convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[W]; # Input activations
int w[R]; # Filter weights
int o[E]; # Output activations

for (e = 0; e < E; e++) {
for (r = 0; r < R; r++) {

o[e] += i[e+r]*w[r];
}}

† Assuming: ‘valid’ style convolution

What opportunity(ies) exist if
some of the values are zero?

Can avoid reading operands, doing
multiply and updating output

44

1-D Output-Stationary Convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[W]; # Input activations
int w[R]; # Filter weights
int o[E]; # Output activations

for (e = 0; e < E; e++) {
for (r = 0; r < R; r++) {

o[e] += i[e+r]*w[r];
}}

† Assuming: ‘valid’ style convolution

if (!w[r]) o[e] += i[e+r]*w[r];

Saved energy but not time

8 0 6

45

Eyeriss – Clock Gating

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip mult and mem reads
when image data is zero.

Reduce PE power by 45%

46

Compressed Weights

47

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Compressed Weights

8 0 6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Uncompressed Weights

Compressed Storage of Weights

† Assuming: ‘valid’ style convolution

8 6

X

48

8 6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Compressed Weights

8 0 6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Uncompressed Weights

Compressed Storage of Weights

† Assuming: ‘valid’ style convolution

Coordinate value in
uncompressed storage

0 2

49

Compressed Weights 1-D Convolution

int i[W]; # Input activations
int wv[R], wc[R]; # Compressed filter weights
int o[E]; # Output activations

for (e = 0; e < E; e++) {
for (r = 0; r < R; r++) {

o[e] += i[e+rcc] * wv[r];
}}

8 6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =
0 2

Weight values (wv)

Weight indices (wi) Big enough to hold worst case size

// Anything needed here?
o[e] += i[e+wc[r]] * wv[r];

Is this right?Table lookup of
weight index No Direct access into

compressed buffer

break if !wi[r].valid;

or pre-computed length

50

To Extend to Other Dimensions of DNN

• Need to add loop nests for:
– 2-D input activations and filters
– Multiple input channels
– Multiple output channels

• Add parallelism…

51

Compressed Inputs

52

Multi-Input Channel 1-D Convolution

† Assuming: ‘valid’ style convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[C][W]; # Multi-input channel activations
int w[C][R]; # Filter weights
int o[E]; # Output activations

for (w = 0; w < W; w++) {
for (r = 0; r < R; r++) {

for (c = 0; c < C; c++) {
o[w-r] += i[c][w]*w[c][r];

}}}

parallel-for (c = 0; c < C; c++) {

Note opportunity for
spatial sum

53

Multi-Input Channel 1-D Convolution

† Assuming: ‘valid’ style convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int iv[C][W], ic[C][W]; # Compressed input activations
int w[C][R]; # Filter weights
int o[E]; # Output activations

Should we compress along C or W dimension? Let’s see

Input values and indices
are now 2D

Input values and
coordinates are now 2D

C

54

Compressed Sparse W-dimension

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int iv[C][W], icw[C][W]; # Compressed input activations
int w[C][R]; # Filter weights
int o[E]; # Output activations

for (w = 0; w < W; w++) {
for (r = 0; r < R; r++) {

parallel-for (c = 0; c < C; c++) {
break if !icw[c][w].valid;
o[icw[c][w]-r] += iv[c][w]*w[c][r];

}}}

Compressed along input (w) dimension

Running parallel
COMPRESSed w’s

The variation of these index values with different
c’s will prevent synchronized spatial sum

C

55

Compressed Sparse C-dimension

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int iv[C][W], icc[C][W]; # Compressed input activations
int w[C][R]; # Filter weights
int o[E]; # Output activations

for (r = 0; r < R; r++) {
for (w = 0; w < W; w++) {

parallel-for (c = 0; c < C; c++) {
break if !icc[c][w].valid;
o[w-r] += iv[c][w]*w[icc[c][w]][r];

}}}

Compressed along channel (c) dimension

Running parallel
COMPRESSed c’s

Note we now have a
synchronized spatial sum

C

56

Cnvlutin
• Process Convolution Layers
• Built on top of DaDianNao (4.49% area overhead)
• Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

58

Compressing Inputs + Weights

59

Output Stationary – Sparse W&I

int i[W]; # Input activations
int w[R]; # Filter weights
int o[E]; # Output activations

for (e = 0; e < E; e++) {
parallel-for (r = 0; r < R; r++) {

next if w[r] == 0;
next if i[e+r] == 0;
o[e] += i[e+r] * w[r];

}}

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =4 0 0 0 3 0 0 8 0 2

How often is work done in inner loop? Not very much!

8 0 6 1/3 0/3 1/3 0/3

60

Flattened Inputs & Weights
int i[C][W*H]; # Flattened input activations
int w[C][M*R*S]; # Flattened filter weights
int o[M][E][F]; # Output activations

for mrs2 = [0..MRS2) {
for c2 = [0..C) {

for wh1 = [0..WH1) {
for mrs1 = [0..MRS1) {
parallel-for wh0 = [0..WH0) x

mrs0 = [0..MRS0) {
m = Mcoord(mrs2, mrs1, mrs0);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
o[m][e][f] += i[c2][wh1*WH0+wh0]

* w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0];
}}}}

At inner loop inputs are
stationary across steps mrs1

Any opportunity for spatial sum? No

61

Sparse CNN (SCNN)
• Architecture to exploit sparsity

62

Intuition behind SCNN

* =
y

z

xx`

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight

63

Intuition behind SCNN

* =
y

z

xx`

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight

64

Intuition behind SCNN

* =
y

z

x` y

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight

65

Intuition behind SCNN

* =
z

x` y

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight

66

Intuition behind SCNN

* =
y

z

x ?
a

d
c

f

b

e

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight

67

Sparse CNN (SCNN)

Input Stationary Dataflow

Supports Convolutional Layers

=
x

a
b

d
e
f

c y
z

xa *
ya *
za *

xb *
yb *
zb * …

Scatter
network

Accumulate MULs

PE frontend PE backend

Densely Packed
Storage of Weights

and Activations

All-to all
Multiplication of

Weights and Activations

Mechanism to Add to
Scattered Partial Sums

[Parashar et al., ISCA 2017]

68

SCNN PE microarchitecture

Sparse-compressed
frontend

[Parashar et al., ISCA 2017]

wv[C][M*R*S],
wim[C][M*R*S],
wir[C][M*R*S],
wis[C][M*R*S];

iv[C][W*H]
iiw[C][W*H],
iih[C][W*H];

m = Mcoord(mrs2, mrs1, mrs0);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);

MRS0 X WH0

Dense backend

o[M][E][F];

Flattened
Weights

Flattened
Input

Activations

69

Flattened Inputs & Weights
int iv[C][W*H] iiw[C][W*H], iih[C][W*H];
int wv[C][M*R*S], wim[C][M*R*S], wir[C][M*R*S], wis[C][M*R*S];
int o[M][E][F];

for mrs2 = [0..MRS2) {
for c2 = [0..C) {
for wh1 = [0..WH1) {
for mrs1 = [0..MRS1) {
parallel-for wh0 = [0..WH0) x

mrs0 = [0..MRS0) {
break if !ii[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0].v;
break if !wi[c2][wh1*WH0+wh0].v;
m = Mcoord(mrs2, mrs1, mrs0);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
o[m][e][f] += i[c2][wh1*WH0+wh0]

* w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0];
}}}}

70

SCNN Energy Versus Density

[Parashar et al., ISCA 2017]

71

SCNN Latency Versus Density

[Parashar et al., ISCA 2017]

72

Eyeriss – V2
• Architecture to accommodate variety sparsity

73

Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports
• Wide range of filter

shapes
– Large and Compact

• Different Layers
– CONV, FC, depth wise, etc.

• Wide range of sparsity
– Dense and Sparse

• Scalable architecture
[Chen et al., JETCAS 2019]

Over an order of magnitude faster and more
energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs

of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

5.6
10.9
12.6

74

Eyeriss v2: Processing In PE

• M0
• C0

: # of output channels processed in a PE
: # of input channels processed in a PE

• S
• U

: filter width
: stride

M0

Input Activations

Psums

C0×S

C0×U
…

Weights

Sliding Window i

Sliding Window i+1

…

75

Eyeriss v2: Compressed Data Format

data vector: {a, b, c, d, e, f, g, h, i, j, k, l}
count vector: {1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0}
address vector: {0, 2, 5, 6, 6, 7, 9, 9, 12}

CSC Compressed Data:

a
b

c
d

e
f

g

h

i

j
k
l M0

C0×S

Weight Matrix

76

Eyeriss v2: PE Architecture

Iact
Addr
SPad

9×4b
Regs

Iact
Data
SPad

16×12b
Regs

Weight
Addr
SPad

16×7b
Regs

Weight
Data
SPad

96×24b
SRAM

Psum
SPad

32×20b
Regs

Input Activations

iact

weight

Weights

Psums In

Psums Out

×2

×2
96×24b

2 R/W ports

x2 for SIMD

77

Decision Tree in Eyeriss v2 PE

• If the iact is zero, the CSC format will ensure that it is not read from
the spad and therefore no cycles are wasted.

• If the iact is not zero, its value will be fetched from the iact data
SPad and passed to the next pipeline stage.
– If there are non-zero weights corresponding to the non-zero iacts,

they will be passed down the pipeline for computation. The zero weights
will be skipped since the weights are also encoded with the CSC format.

– If there are no non-zero weights corresponding to the non-zero
iacts, the non-zero iacts will not be further passed down in the pipeline.

iact

zero

non-zero

No op

corresponding
weight

non-zero

zero No op

Compute (MAC)

78

Summary

• Processing Irregular (Gather-Scatter)

– If weights and inputs compressed to dense (gather); output scatter

– If weights and inputs uncompressed sparse (scatter); output gather

• Overhead (must not exceed benefits of sparsity)

– Storage of location information for compressed data

– Logic for checking if either inputs are zero

• Underutilization

– Number of parallel cores (tiling) à maximize parallelism, but minimize

underutilization

– Flatten to 1-D avoid fragmentation from limits of each dimension

• Workload Imbalance

• Lots of challenges in sparse deep neural network acceleration!

