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Motivation

• Leverage CNN sparsity to improve energy-efficiency
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Tensor Data
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• The elements of each “rank” (dimension) are identified by 
their “coordinates”, e.g., rank K has coordinates 0, 1, 2

• Each element of the tensor is identified by the tuple of 
coordinates from each of its ranks, i.e., a “point”.

Coordinates

Coordinates
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Tree-based Tensor Representation
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Tree-based Tensor Representation
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Tree-based Tensor Representation
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Rank-based Tensor Representation
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Rank-based Tensor Representation
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Sparse Tensor Representation
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Information in a Fiber

• Each fiber has set of (coordinate, “payload”) tuples 
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Information in a Fiber

Method:     payload = fiber.lookup(coordinate)

a c g h

Rank K Fiber Representation

Rank N Fiber 
Representation

N

K
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Fiber Representation Choices

Each fiber has set of (coordinate, “payload”) tuples

• Implicit Coordinates
– Uncompressed (no meta-data required)
– Compressed – e.g., run length encoded

• Explicit Coordinates
– E.g., coordinate list

• Space efficiency of a representation depends on sparsity
– Compressed format can have overhead relative to uncompressed 

format for dense data
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Compressed Implicit Coordinate Representations

• “Empty” coordinate compression via zero-run encoding

– Run-length coding (RLE)

• (run-length of zeros, non-zero payload)…

– Significance map coding

• (flag to indicate if non-zero, non-zero payload)…

• Payload encoding

– Fixed length payload

– Variable length payload

• E..g., Huffman coding

• Efficiency of different traversal patterns through the 

tensor is affected by encoding, e.g., finding the payload 

for a particular coordinate…
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Uncompressed/Compressed Representation
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Uncompressed/Compressed Representation
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Uncompressed/Compressed Representation
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Uncompressed/Compressed Representation
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Uncompressed/Compressed Representation
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Uncompressed/Compressed Representation
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Uncompressed/Compressed Representation
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g

Compressed Sparse Row (CSR)
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Compression Overhead

Index (non-zero position info – e.g., IA and JA for CSR) accounts for 
approximately half of storage for fine grained pruning

[Han et al., ICLR 2016]
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Explicit Coordinate Representations

• Coordinate/Payload list
– (coordinate, non-zero payload)…

• Hash table (per fiber)
– (coordinate ->  payload) mapping

• Hash table (per rank)
– (fiber_id, coordinate ->  payload) mapping

• Bit vector of non-zero coordinates
– Uncompressed payload
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Per Rank Tensor Representations

– Uncompressed [U]
•

– Run-length Encoded [R]
•

– Coordinate/Payload List [C]
•

– Hash Table (per rank) [Hr]

– Hash Table (per fiber) [Hf]
•

Inspired by collaboration with Kjolstad
in [Kjolstad, TACO]
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Payload Needed to Find Fiber in a Rank

– Uncompressed [U]
• Payload*: None

– Run-length Encoded [R]
• Payload*: Pointer to fiber data structure

– Coordinate/Payload List [C]
• Payload*: Pointer to fiber data structure

– Hash Table (per rank) [Hr]
• Payload*: fiber_id

– Hash Table (per fiber) [Hf]
• Payload*: Pointer to fiber data structure

*Payload needed in preceding rank to perform “lookup():”
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Notation for CSR
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Representation of Order of Ranks

Tensor-UC/KN  -> CSR  
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Traversal Efficiency

Efficiency of different traversal patterns through the tensor 
is affected by encoding, e.g., finding the payload for a 
particular coordinate…

• Operations:

– payload = Tensor.Locate(coordinate… | point)

– (coordinate, payload) = Tensor.Next(rank_traversal_order)

Tensor.next() is a very common operation and its efficiency 
is highly dependent on representation, both order of ranks 
and representation of each rank….
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Concordant traversal orders
CSR and CSC each has a natural (or “concordant”*) 

traversal order 

Original 
Matrix

Compressed 
Sparse Column 

(CSC)
Compressed 
Sparse Row 

(CSR)

Processing 
Order

* Term from Michael Pellauer
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Example Traversal Efficiency

• Locate efficiency:

– Uncompressed – direct reference - O(1)

– Run length encoded – linear search – O(n)

– Hash table – multiple references and compute – O(1)

– Coordinate/Payload list – binary search – O(log n)

• Next efficiency (concordant traversal)

– Uncompressed – sequential reference, good spatial locality  - O(1)

– Run length encoded – sequential reference – O(1)

– Coordinate/Payload list - same as uncompressed

• Next efficiency (discordant traversal)

– Essentially as good (or bad) as locate….
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Merging Ranks

Tensor-CC/KN  
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Merging Ranks
• For efficiency one can form new representations where the 

data structure for two or more ranks are combined:

• Examples:
– Tensor-(C2)

List of (coordinate tuple,payload)   - COO

– Tensor-(H2)
• Hash table with coordinate tuple as key

– Tensor-(U2)
• Flattened array 
• Coordinates can be recovered with modulo arithmetic on “position”

– Tensor-(R2)
• Flattened run-length encoded sequence
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Output-Stationary Operations
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Output-Stationary Lists
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Output-Stationary Intersection Lists
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EIE: A Sparse Linear Algebra Engine
• Process Fully Connected Layers (after Deep Compression)
• Store weights column-wise in Run Length format (i.e., CSC format)
• Read relative column when input is non-zero
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[Han et al., ISCA 2016]

Input

Weights

Output Dequantize Weight

Keep track of location

Output Stationary Dataflow 

Supports Fully Connected Layers Only
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PE Architecture
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Impact of Representation on Dataflow

[Dorrance et al., FPGA 2014]

Compressed Sparse Column (CSC) Compressed Sparse Row (CSR) 

CSC reduces memory bandwidth over CSR 
(when not M >> N)

For DNN, M = # of filters, 
N = # of weights per filter

M

N

Output stationary

Input stationary

From SpMxV research

weights inputs outputs weights inputs outputs
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Sparse Accelerators
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1-D Output-Stationary Convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[W];     # Input activations
int w[R];     # Filter weights
int o[E];     # Output activations

for (e = 0; e < E; e++) {
for (r = 0; r < R; r++) {

o[e] += i[e+r]*w[r];
}}

† Assuming: ‘valid’ style convolution

What opportunity(ies) exist if  
some of the values are zero?

Can avoid reading operands, doing 
multiply and updating output
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1-D Output-Stationary Convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[W];     # Input activations
int w[R];     # Filter weights
int o[E];     # Output activations

for (e = 0; e < E; e++) {
for (r = 0; r < R; r++) {

o[e] += i[e+r]*w[r];
}}

† Assuming: ‘valid’ style convolution

if (!w[r]) o[e] += i[e+r]*w[r];

Saved energy but not time

8  0 6
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Eyeriss – Clock Gating

Filter 
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage 
pipelined 
multiplier

Output
Psum  

0

Accumulate
Input Psum

1

0

== 0 Zero 
Buffer

Enable

Image
Scratch Pad 

(12x16b REG)

0
1

Skip mult and mem reads
when image data is zero.

Reduce PE power by 45%
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Compressed Weights
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R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Compressed Weights

8  0 6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Uncompressed Weights

Compressed Storage of Weights

† Assuming: ‘valid’ style convolution

8 6

X
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8  6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Compressed Weights

8  0 6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

Uncompressed Weights

Compressed Storage of Weights

† Assuming: ‘valid’ style convolution

Coordinate value in 
uncompressed storage 

0   2
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Compressed Weights 1-D Convolution

int i[W];             # Input activations
int wv[R], wc[R];     # Compressed filter weights
int o[E];             # Output activations

for (e = 0; e < E; e++) {
for (r = 0; r < R; r++) {

o[e] += i[e+rcc] * wv[r];
}}

8  6

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =
0   2

Weight values (wv)

Weight indices (wi) Big enough to hold worst case size

// Anything needed here?
o[e] += i[e+wc[r]] * wv[r];

Is this right?Table lookup of
weight index No Direct access into 

compressed buffer

break if !wi[r].valid;

or pre-computed length
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To Extend to Other Dimensions of DNN

• Need to add loop nests for:
– 2-D input activations and filters
– Multiple input channels
– Multiple output channels

• Add parallelism… 
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Compressed Inputs
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Multi-Input Channel 1-D Convolution

† Assuming: ‘valid’ style convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[C][W];          # Multi-input channel activations
int w[C][R];          # Filter weights
int o[E];             # Output activations

for (w = 0; w < W; w++) {
for (r = 0; r < R; r++) {

for (c = 0; c < C; c++) {
o[w-r] += i[c][w]*w[c][r];

}}}

parallel-for (c = 0; c < C; c++) {

Note opportunity for 
spatial sum
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Multi-Input Channel 1-D Convolution

† Assuming: ‘valid’ style convolution

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int iv[C][W], ic[C][W];   # Compressed input activations
int w[C][R];              # Filter weights
int o[E];                 # Output activations

Should we compress along C or W dimension? Let’s see

Input values and indices 
are now 2D

Input values and 
coordinates are now 2D

C
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Compressed Sparse W-dimension

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int iv[C][W], icw[C][W];  # Compressed input activations
int w[C][R];              # Filter weights
int o[E];                 # Output activations

for (w = 0; w < W; w++) {
for (r = 0; r < R; r++) {

parallel-for (c = 0; c < C; c++) {
break if !icw[c][w].valid;
o[icw[c][w]-r] += iv[c][w]*w[c][r];

}}}

Compressed along input (w) dimension

Running parallel 
COMPRESSed w’s

The variation of these index values with different 
c’s will prevent synchronized spatial sum

C
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Compressed Sparse C-dimension

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int iv[C][W], icc[C][W];  # Compressed input activations
int w[C][R];              # Filter weights
int o[E];                 # Output activations

for (r = 0; r < R; r++) {
for (w = 0; w < W; w++) {

parallel-for (c = 0; c < C; c++) {
break if !icc[c][w].valid;
o[w-r] += iv[c][w]*w[icc[c][w]][r];

}}}

Compressed along channel (c) dimension

Running parallel 
COMPRESSed c’s

Note we now have a 
synchronized spatial sum

C
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Cnvlutin
• Process Convolution Layers
• Built on top of DaDianNao (4.49% area overhead)
• Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]
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Compressing Inputs + Weights
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Output Stationary – Sparse W&I

int i[W];             # Input activations
int w[R];             # Filter weights
int o[E];             # Output activations

for (e = 0; e < E; e++) {
parallel-for (r = 0; r < R; r++) {

next if w[r] == 0;
next if i[e+r] == 0;
o[e] += i[e+r] * w[r];

}}

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =4  0  0  0 3  0  0  8 0 2 

How often is work done in inner loop? Not very much!

8  0  6 1/3 0/3 1/3 0/3
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Flattened Inputs & Weights
int i[C][W*H];        # Flattened input activations
int w[C][M*R*S];      # Flattened filter weights
int o[M][E][F];       # Output activations

for mrs2 = [0..MRS2) {
for c2 = [0..C) {

for wh1 = [0..WH1) {
for mrs1 = [0..MRS1) {
parallel-for wh0 = [0..WH0) x 

mrs0 = [0..MRS0) {
m = Mcoord(mrs2, mrs1, mrs0);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
o[m][e][f] += i[c2][wh1*WH0+wh0]

* w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0];
}}}}

At inner loop inputs are 
stationary across steps mrs1

Any opportunity for spatial sum? No
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Sparse CNN (SCNN)
• Architecture to exploit sparsity
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Intuition behind SCNN

* =
y

z

xx`

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight
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Intuition behind SCNN

* =
y
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xx`

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight
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Intuition behind SCNN

* =
y

z

x` y

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight
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Intuition behind SCNN

* =
z

x` y

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight
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Intuition behind SCNN

* =
y

z

x ?
a

d
c

f

b

e

Forget the sliding windows based convolution

Observation
Each non-zero activation must be multiplied by each non-zero weight
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Sparse CNN (SCNN)

Input Stationary Dataflow 

Supports Convolutional Layers

= 
x

a
b

d
e
f 

c y
z

xa * 
ya * 
za * 

xb * 
yb * 
zb * …

 

Scatter 
network 

Accumulate MULs 

PE frontend PE backend 

Densely Packed 
Storage of Weights 

and Activations 

All-to all 
Multiplication of 

Weights and Activations 

Mechanism to Add to 
Scattered Partial Sums  

[Parashar et al., ISCA 2017]
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SCNN PE microarchitecture

Sparse-compressed 
frontend

[Parashar et al., ISCA 2017]

wv[C][M*R*S], 
wim[C][M*R*S], 
wir[C][M*R*S], 
wis[C][M*R*S];

iv[C][W*H]
iiw[C][W*H], 
iih[C][W*H];

m = Mcoord(mrs2, mrs1, mrs0);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);

MRS0 X WH0

Dense backend

o[M][E][F];

Flattened 
Weights

Flattened 
Input 

Activations
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Flattened Inputs & Weights
int iv[C][W*H] iiw[C][W*H], iih[C][W*H];      
int wv[C][M*R*S], wim[C][M*R*S], wir[C][M*R*S], wis[C][M*R*S]; 
int o[M][E][F];

for mrs2 = [0..MRS2) {
for c2 = [0..C) {
for wh1 = [0..WH1) {
for mrs1 = [0..MRS1) {
parallel-for wh0 = [0..WH0) x 

mrs0 = [0..MRS0) {
break if !ii[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0].v;
break if !wi[c2][wh1*WH0+wh0].v;
m = Mcoord(mrs2, mrs1, mrs0);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
o[m][e][f] += i[c2][wh1*WH0+wh0]

* w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0];
}}}}
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SCNN Energy Versus Density

[Parashar et al., ISCA 2017]
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SCNN Latency Versus Density

[Parashar et al., ISCA 2017]
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Eyeriss – V2
• Architecture to accommodate variety sparsity
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Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports
• Wide range of filter 

shapes 
– Large and Compact

• Different Layers 
– CONV, FC, depth wise, etc.

• Wide range of sparsity 
– Dense and Sparse

• Scalable architecture
[Chen et al., JETCAS 2019]

Over an order of magnitude faster and more  
energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

5.6
10.9
12.6
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Eyeriss v2: Processing In PE

• M0 
• C0

: # of output channels processed in a PE
: # of input channels processed in a PE

• S 
• U

: filter width
: stride

M0

Input Activations

Psums

C0×S

C0×U
…

Weights

Sliding Window i

Sliding Window i+1

…
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Eyeriss v2: Compressed Data Format

data vector: {a, b, c, d, e, f, g, h, i, j, k, l}
count vector: {1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0}
address vector: {0, 2, 5, 6, 6, 7, 9, 9, 12}

CSC Compressed Data:

a
b

c
d

e
f

g

h

i

j
k
l M0

C0×S

Weight Matrix
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Eyeriss v2: PE Architecture

Iact 
Addr
SPad

9×4b
Regs

Iact
Data
SPad

16×12b
Regs

Weight 
Addr
SPad

16×7b
Regs

Weight 
Data
SPad

96×24b
SRAM

Psum
SPad

32×20b
Regs

Input Activations

iact

weight

Weights

Psums In

Psums Out

×2

×2
96×24b

2 R/W ports

x2 for SIMD
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Decision Tree in Eyeriss v2 PE

• If the iact is zero, the CSC format will ensure that it is not read from 
the spad and therefore no cycles are wasted.

• If the iact is not zero, its value will be fetched from the iact data 
SPad and passed to the next pipeline stage.
– If there are non-zero weights corresponding to the non-zero iacts, 

they will be passed down the pipeline for computation. The zero weights 
will be skipped since the weights are also encoded with the CSC format.

– If there are no non-zero weights corresponding to the non-zero 
iacts, the non-zero iacts will not be further passed down in the pipeline. 

iact

zero

non-zero

No op

corresponding
weight

non-zero

zero No op

Compute (MAC)
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Summary

• Processing Irregular (Gather-Scatter)

– If weights and inputs compressed to dense (gather); output scatter

– If weights and inputs uncompressed sparse (scatter); output gather

• Overhead (must not exceed benefits of sparsity)

– Storage of location information for compressed data

– Logic for checking if either inputs are zero

• Underutilization

– Number of parallel cores (tiling) à maximize parallelism, but minimize 

underutilization

– Flatten to 1-D avoid fragmentation from limits of each dimension

• Workload Imbalance

• Lots of challenges in sparse deep neural network acceleration!


