Sparse Architectures

ISCA Tutorial (2019)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

Motivation

Leverage CNN sparsity to improve energy-efficiency

Tensor Data

- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank K has coordinates 0, 1, 2
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point".

Tree-based Tensor Representation

Tree-based Tensor Representation

Tree-based Tensor Representation

Rank-based Tensor Representation

Rank-based Tensor Representation

Rank-based Tensor Representation

Sparse Tensor Representation

Sparse Tensor Representation

Information in a Fiber

• Each fiber has set of (coordinate, "payload") tuples

Information in a Fiber

Fiber Representation Choices

Each fiber has set of (coordinate, "payload") tuples

- Implicit Coordinates
 - Uncompressed (no meta-data required)
 - Compressed e.g., run length encoded
- Explicit Coordinates
 - E.g., coordinate list
- Space efficiency of a representation depends on sparsity
 - Compressed format can have overhead relative to uncompressed format for dense data

Compressed Implicit Coordinate Representations

- "Empty" coordinate compression via zero-run encoding
 - Run-length coding (RLE)
 - (run-length of zeros, non-zero payload)...
 - Significance map coding
 - (flag to indicate if non-zero, non-zero payload)...
- Payload encoding
 - Fixed length payload
 - Variable length payload
 - E..g., Huffman coding
- Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...

Compressed Sparse Row (CSR)

Compression Overhead

Index (non-zero position info – e.g., **IA** and **JA** for CSR) accounts for approximately half of storage for fine grained pruning

[Han et al., ICLR 2016]

Explicit Coordinate Representations

- Coordinate/Payload list
 - (coordinate, non-zero payload)...
- Hash table (per fiber)

– (coordinate -> payload) mapping

- Hash table (per rank)
 - (fiber_id, coordinate -> payload) mapping
- Bit vector of non-zero coordinates
 - Uncompressed payload

Per Rank Tensor Representations

- Uncompressed [U]
- Run-length Encoded [R]
 •
- Coordinate/Payload List [C]
- Hash Table (per rank) [H_r]
- Hash Table (per fiber) $[H_f]$

Payload Needed to Find Fiber in a Rank

- Uncompressed [U]
 - Payload*: None
- Run-length Encoded [R]
 - Payload*: Pointer to fiber data structure
- Coordinate/Payload List [C]
 - Payload*: Pointer to fiber data structure
- Hash Table (per rank) [H_r]
 - Payload*: fiber_id
- Hash Table (per fiber) [H_f]
 - Payload*: Pointer to fiber data structure

*Payload needed in preceding rank to perform "lookup():"

Notation for CSR

Representation of Order of Ranks

Traversal Efficiency

Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...

- Operations:
 - payload = Tensor.Locate(coordinate... | point)
 - (coordinate, payload) = Tensor.Next(rank_traversal_order)

Tensor.next() is a very common operation and its efficiency is highly dependent on representation, both order of ranks and representation of each rank....

Concordant traversal orders

CSR and CSC each has a natural (or "concordant"*) traversal order

Example Traversal Efficiency

- Locate efficiency:
 - Uncompressed direct reference O(1)
 - Run length encoded linear search O(n)
 - Hash table multiple references and compute O(1)
 - Coordinate/Payload list binary search O(log n)
- Next efficiency (concordant traversal)
 - Uncompressed sequential reference, good spatial locality O(1)
 - Run length encoded sequential reference O(1)
 - Coordinate/Payload list same as uncompressed
- Next efficiency (discordant traversal)
 - Essentially as good (or bad) as locate....

Merging Ranks

Merging Ranks

- For efficiency one can form new representations where the data structure for two or more ranks are combined:
- Examples:
 - Tensor-(C²)

List of (coordinate tuple,payload) - COO

- Tensor-(H²)
 - Hash table with coordinate tuple as key
- Tensor-(U²)
 - Flattened array
 - Coordinates can be recovered with modulo arithmetic on "position"
- Tensor-(R²)
 - Flattened run-length encoded sequence

Fully-Connected (FC) Layer

Output-Stationary Operations

Output-Stationary Lists

Output-Stationary Intersection Lists

2-2 is the only "effectual" computation

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format (i.e., CSC format)
- Read relative column when input is non-zero

14112

Supports Fully Connected Layers Only

[Han et al., ISCA 2016]

PE Architecture

Impact of Representation on Dataflow

From SpMxV research

Sparse Accelerators

1-D Output-Stationary Convolution

What opportunity(ies) exist if some of the values are zero?

Can avoid reading operands, doing multiply and updating output

[†] Assuming: 'valid' style convolution

1-D Output-Stationary Convolution

Saved energy but not time

[†] Assuming: 'valid' style convolution

Eyeriss – Clock Gating

Compressed Weights

Compressed Storage of Weights

Uncompressed Weights

[†] Assuming: 'valid' style convolution

Compressed Storage of Weights

Uncompressed Weights

[†] Assuming: 'valid' style convolution

Compressed Weights 1-D Convolution

To Extend to Other Dimensions of DNN

- Need to add loop nests for:
 - 2-D input activations and filters
 - Multiple input channels
 - Multiple output channels
- Add parallelism...

Compressed Inputs

Multi-Input Channel 1-D Convolution

Multi-Input Channel 1-D Convolution

Should we compress along C or W dimension? Let's see

[†] Assuming: 'valid' style convolution

Compressed Sparse W-dimension

c's will prevent synchronized spatial sum

Compressed Sparse C-dimension

Note we now have a synchronized spatial sum

Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

Compressing Inputs + Weights

Output Stationary – Sparse W&I

Weights	Inputs	Outputs			
806 *	4000300802	= 1/3 0/3 1/3 0/3			
R	W	E = W-ceil(R/2) [†]			
<pre>int i[W];</pre>	# Input	activations			
<pre>int w[R];</pre>	# Filter	weights			
<pre>int o[E];</pre>	# Output	activations			
<pre>for (e = 0; e < E; e++) {</pre>					
parallel-for ($r = 0$; $r < R$; $r++$) {					
<pre>next if w[r] == 0;</pre>					
next if $i[e+r] == 0;$					
	<pre>o[e] += i[e+r] * w[r</pre>];			
}}	and the second of the				

How often is work done in inner loop? Not very much!

Flattened Inputs & Weights

Sparse CNN (SCNN)

• Architecture to exploit sparsity

Forget the sliding windows based convolution

Observation Each non-zero activation must be multiplied by each non-zero weight

Forget the sliding windows based convolution

Observation Each non-zero activation must be multiplied by each non-zero weight

Forget the sliding windows based convolution

Observation Each non-zero activation must be multiplied by each non-zero weight

Forget the sliding windows based convolution

Observation Each non-zero activation must be multiplied by each non-zero weight

Forget the sliding windows based convolution

Observation Each non-zero activation must be multiplied by each non-zero weight

Sparse CNN (SCNN)

Supports Convolutional Layers

PE frontend

PE backend

Input Stationary Dataflow

[Parashar et al., ISCA 2017]

SCNN PE microarchitecture

[Parashar et al., ISCA 2017]

Flattened Inputs & Weights

```
int iv[C][W*H] iiw[C][W*H], iih[C][W*H];
int wv[C][M*R*S], wim[C][M*R*S], wir[C][M*R*S], wis[C][M*R*S];
int o[M][E][F];
```

```
for mrs2 = [0..MRS2) {
  for c_2 = [0...C) {
    for wh1 = [0..WH1) {
      for mrs1 = [0..MRS1) {
        parallel-for wh0 = [0..WH0) \times
                     mrs0 = [0..MRS0) {
          break if !ii[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0].v;
          break if !wi[c2][wh1*WH0+wh0].v;
          m = Mcoord(mrs2, mrs1, mrs0);
          e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
          f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
          o[m][e][f] += i[c2][wh1*WH0+wh0]
                       * w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0];
}}}
```

SCNN Energy Versus Density

[Parashar et al., ISCA 2017]

SCNN Latency Versus Density

[Parashar et al., ISCA 2017]

Eyeriss – V2

Architecture to accommodate variety sparsity

Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports

- Wide range of filter shapes
 - Large and Compact
- Different Layers
 - CONV, FC, depth wise, etc.
- Wide range of sparsity
 - Dense and Sparse
- Scalable architecture

v1.5 & MobileNet v2 & MobileNet v2 & sparse MobileNet

Speed up over Eyeriss v1 scales with number of PEs

# of PEs	256	1024	16384
AlexNet	17.9x	71.5x	1086.7x
GoogLeNet	10.4x	37.8x	448.8x
MobileNet	15.7x	57.9x	873.0x

[Chen et al., JETCAS 2019]

Over an order of magnitude faster and more energy efficient than Eyeriss v1

Eyeriss v2: Processing In PE

- **M0** : # of output channels processed in a PE **S** : filter width ٠
- **C0** : # of input channels processed in a PE **U** : stride ullet

74

Eyeriss v2: Compressed Data Format

CSC Compressed Data:

data vector:{a, b, c, d, e, f, g, h, i, j, k, l}count vector:{1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0}address vector:{0, 2, 5, 6, 6, 7, 9, 9, 12}

Eyeriss v2: PE Architecture

Decision Tree in Eyeriss v2 PE

- If the iact is zero, the CSC format will ensure that it is not read from the spad and therefore no cycles are wasted.
- If the iact is not zero, its value will be fetched from the iact data SPad and passed to the next pipeline stage.
 - If there are non-zero weights corresponding to the non-zero iacts, they will be passed down the pipeline for computation. The zero weights will be skipped since the weights are also encoded with the CSC format.
 - If there are no non-zero weights corresponding to the non-zero iacts, the non-zero iacts will not be further passed down in the pipeline.

Summary

- Processing Irregular (Gather-Scatter)
 - If weights and inputs compressed to dense (gather); output scatter
 - If weights and inputs uncompressed sparse (scatter); output gather
- Overhead (must not exceed benefits of sparsity)
 - Storage of location information for compressed data
 - Logic for checking if either inputs are zero
- Underutilization
 - Number of parallel cores (tiling) → maximize parallelism, but minimize underutilization
 - Flatten to 1-D avoid fragmentation from limits of each dimension
- Workload Imbalance
- Lots of challenges in sparse deep neural network acceleration!

