## Sparse Architectures

## ISCA Tutorial (2019)

Website: http://eyeriss.mit.edu/tutorial.html
Joel Emer, Vivienne Sze, Yu-Hsin Chen

## Motivation

- Leverage CNN sparsity to improve energy-efficiency



## Tensor Data



- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank K has coordinates 0, 1, 2
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point".


## Tree-based Tensor Representation



## Tree-based Tensor Representation



## Tree-based Tensor Representation



## Rank-based Tensor Representation



## Rank-based Tensor Representation



## Rank-based Tensor Representation



## Sparse Tensor Representation

| N |  |  |  |
| :---: | :---: | :---: | :---: |
| Ka  c 0 <br>     <br> 1    <br> g h   <br> 0 1 2  |  |  |  |



Ilifie

## Sparse Tensor Representation



## Information in a Fiber

- Each fiber has set of (coordinate, "payload") tuples



## Information in a Fiber

## Method: payload = fiber.lookup(coordinate)



## Fiber Representation Choices

## Each fiber has set of (coordinate, "payload") tuples

- Implicit Coordinates
- Uncompressed (no meta-data required)
- Compressed - e.g., run length encoded
- Explicit Coordinates
- E.g., coordinate list
- Space efficiency of a representation depends on sparsity
- Compressed format can have overhead relative to uncompressed format for dense data


## Compressed Implicit Coordinate Representations

- "Empty" coordinate compression via zero-run encoding
- Run-length coding (RLE)
- (run-length of zeros, non-zero payload)...
- Significance map coding
- (flag to indicate if non-zero, non-zero payload)...
- Payload encoding
- Fixed length payload
- Variable length payload
- E..g., Huffman coding
- Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...


## Uncompressed/Compressed Representation



Illit

## Uncompressed/Compressed Representation



Illit

## Uncompressed/Compressed Representation



## Uncompressed/Compressed Representation



Position

## Uncompressed/Compressed Representation



Position

## Uncompressed/Compressed Representation



Position

## Uncompressed/Compressed Representation



Position

## Compressed Sparse Row (CSR)



## Compression Overhead

Index (non-zero position info - e.g., IA and JA for CSR) accounts for approximately half of storage for fine grained pruning

[Han et al., ICLR 2016]

## Explicit Coordinate Representations

- Coordinate/Payload list
- (coordinate, non-zero payload)...
- Hash table (per fiber)
- (coordinate -> payload) mapping
- Hash table (per rank)
- (fiber_id, coordinate -> payload) mapping
- Bit vector of non-zero coordinates
- Uncompressed payload


## Per Rank Tensor Representations

- Uncompressed [U]
- 
- Run-length Encoded [R]
- 
- Coordinate/Payload List [C] -
- Hash Table (per rank) $\left[H_{r}\right]$
- Hash Table (per fiber) $\left[H_{f}\right]$

Inspired by collaboration with Kjolstad

## Payload Needed to Find Fiber in a Rank

- Uncompressed [U]
- Payload*: None
- Run-length Encoded [R]
- Payload*: Pointer to fiber data structure
- Coordinate/Payload List [C]
- Payload*: Pointer to fiber data structure
- Hash Table (per rank) $\left[\mathrm{H}_{\mathrm{r}}\right]$
- Payload*: fiber_id
- Hash Table (per fiber) $\left[H_{f}\right]$
- Payload*: Pointer to fiber data structure


## Notation for CSR


Coordinate/Payload


## Representation of Order of Ranks

Tensor-UC/KN -> CSR


Tensor-UC/NK -> CSC


Ilite

## Traversal Efficiency

Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...

- Operations:
- payload = Tensor.Locate(coordinate... | point)
- (coordinate, payload) = Tensor.Next(rank_traversal_order)

Tensor.next() is a very common operation and its efficiency is highly dependent on representation, both order of ranks and representation of each rank....

## Concordant traversal orders

CSR and CSC each has a natural (or "concordant"*) traversal order

Row-major order
Processing
Order

Original
Matrix



Compressed Sparse Row (CSR)

Column-major order


Compressed Sparse Column (CSC)


* Term from Michael Pellauer


## Example Traversal Efficiency

- Locate efficiency:
- Uncompressed - direct reference - O(1)
- Run length encoded - linear search - O(n)
- Hash table - multiple references and compute - O(1)
- Coordinate/Payload list - binary search - O(log n)
- Next efficiency (concordant traversal)
- Uncompressed - sequential reference, good spatial locality - O(1)
- Run length encoded - sequential reference - O(1)
- Coordinate/Payload list - same as uncompressed
- Next efficiency (discordant traversal)
- Essentially as good (or bad) as locate....


## Merging Ranks

Tensor-CC/KN


Tensor-(C $\left.{ }^{2}\right) /(\mathrm{KN})$


## Merging Ranks

- For efficiency one can form new representations where the data structure for two or more ranks are combined:
- Examples:
- Tensor-(C²)

List of (coordinate tuple,payload) - COO

- Tensor-(H²)
- Hash table with coordinate tuple as key
- Tensor-( $\mathrm{U}^{2}$ )
- Flattened array
- Coordinates can be recovered with modulo arithmetic on "position"
- Tensor-( $\mathrm{R}^{2}$ )
- Flattened run-length encoded sequence


## Fully-Connected (FC) Layer

filters input fmaps


## Output-Stationary Operations



## Output-Stationary Lists

Filter


## Output-Stationary Intersection Lists

Filter

$2-2$ is the only "effectual" computation

## EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format (i.e., CSC format)
- Read relative column when input is non-zero


## Supports Fully Connected Layers Only



## PE Architecture



## Impact of Representation on Dataflow

## From SpMxV research

Compressed Sparse Row (CSR)




Output stationary

Compressed Sparse Column (CSC)
 $1++1++1+1$ Input stationary

CSC reduces memory bandwidth over CSR (when not $\mathbf{M} \gg \mathbf{N}$ ) For DNN, $\boldsymbol{M}=$ \# of filters, $\boldsymbol{N}=\#$ of weights per filter
[Dorrance et al., FPGA 2014]

## Sparse Accelerators

## 1-D Output-Stationary Convolution



```
int i[W]; # Input activations
int w[R]; # Filter weights
int o[E]; # Output activations
for (e = 0; e < E; e++) {
    for (r = 0; r< R; r++) {
    o[e] += i[e+r]*W[r];
}}
```

What opportunity(ies) exist if some of the values are zero?

Can avoid reading operands, doing multiply and updating output

## 1-D Output-Stationary Convolution



Saved energy but not time

## Eyeriss - Clock Gating



## Compressed Weights

## Compressed Storage of Weights

## Uncompressed Weights



## Compressed Storage of Weights

## Uncompressed Weights


† Assuming: 'valid’ style convolution

## Compressed Weights 1-D Convolution



## To Extend to Other Dimensions of DNN

- Need to add loop nests for:
-2-D input activations and filters
- Multiple input channels
- Multiple output channels
- Add parallelism...


## Compressed Inputs

## Multi-Input Channel 1-D Convolution

Weights


R

Inputs


W

```
int i[C][W];
int w[C][R];
int o[E];
```

for $(w=0 ; W<W ; W++)$ \{
for ( $r=0 ; r<R ; r++$ ) \{
parallel-for ( $c=0 ; c<C ; c++$ ) \{
$o[w-r]+=i[c][W]{ }^{W}[c][r] ;$
\}\}\}
\# Multi-input channel activations
\# Filter weights
\# Output activations

## Multi-Input Channel 1-D Convolution



Should we compress along C or W dimension?
Let's see

## Compressed Sparse W-dimension

Weights


R

Inputs

int iv[C][W], icw[C][W]; \# Compressed input activations int w[C][R];
\# Filter weights
int o[E];
\# Output activations
for $(w=0 ; W<W ; W++)$ \{
for $(r=0 ; r<R ; r++)$ \{
Running parallel
COMPRESSed w's
parallel-for ( $c=0 ; c<\bar{C} c++$ ) \{
break if !icw[c][w].valid;
$o[i c w[c][w]-r]+=\operatorname{iv}[c][w] * W[c][r] ;$
\}\}\}
The variation of these index values with different c's will prevent synchronized spatial sum

## Compressed Sparse C-dimension

Weights


R

Inputs


Compressed along channel (c) dimension
int iv[C][W], icc[C][W]; \# Compressed input activations int $w[C][R]$;
int o[E];
\# Filter weights
\# Output activations
for ( $r=0 ; r<R ; r++$ ) \{
for ( $w=0$; $w<W$; $w++$ ) \{

Running parallel COMPRESSed c's
parallel-for ( $c=0$; c < C; c++) \{
break if !icc[c][w].valid;
$\circ[w-r]+=i v[c][w]_{w}[i c c[c][w]][r]$;
\}\}\}

Note we now have a synchronized spatial sum

## Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49\% area overhead)
- Speed up of $1.37 x$ ( $1.52 x$ with activation pruning)




## Compressing Inputs + Weights

## Output Stationary - Sparse W\&I



How often is work done in inner loop? Not very much!

## Flattened Inputs \& Weights

```
int i[C][W*H];
int w[C][M*R*S];
int o[M][E][F];
```

for mrs2 = [0..MRS2) \{
for $c 2=[0 . . C)$ \{
for wh1 = [0..WH1) \{
for mrs1 = [0..MRS1) \{
parallel-for who $=$ [0..WH0) $x$
mrs0 = [0..MRS0) \{
$m=$ Mcoord(mrs2, mrs1, mrse);
e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
$f=$ Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
o[m][e][f] += i[c2][wh1*WH0+wh0]
* w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrse];
\}\}\}\}

## Any opportunity for spatial sum?

## Sparse CNN (SCNN)

- Architecture to exploit sparsity


## Intuition behind SCNN

## Forget the sliding windows based convolution

Observation<br>Each non-zero activation must be multiplied by each non-zero weight



## Intuition behind SCNN

## Forget the sliding windows based convolution

Observation<br>Each non-zero activation must be multiplied by each non-zero weight



## Intuition behind SCNN

## Forget the sliding windows based convolution

Observation<br>Each non-zero activation must be multiplied by each non-zero weight



## Intuition behind SCNN

## Forget the sliding windows based convolution

Observation<br>Each non-zero activation must be multiplied by each non-zero weight



## Intuition behind SCNN

## Forget the sliding windows based convolution

Observation<br>Each non-zero activation must be multiplied by each non-zero weight

|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | a | b |  |  |  |  |  | $c$ |  |  |
|  |  |  |  | $d$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  | $e$ |  |  |  |  |  |  | $f$ |  |
|  |  |  |  |  |  |  |  |  |  |  |



## Sparse CNN (SCNN)

## Supports Convolutional Layers



Input Stationary Dataflow
[Parashar et al., ISCA 2017]

## SCNN PE microarchitecture


[Parashar et al., ISCA 2017]

## Flattened Inputs \& Weights

```
int iv[C][W*H] iiw[C][W*H], iih[C][W*H];
int wv[C][M*R*S], wim[C][M*R*S], wir[C][M*R*S], wis[C][M*R*S];
int O[M][E][F];
for mrs2 = [0..MRS2) {
    for c2 = [0..C) {
    for wh1 = [0..WH1) {
    for mrs1 = [0..MRS1) {
        parallel-for wh0 = [0..WH0) x
                        mrs0 = [0..MRS0) {
        break if !ii[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0].v;
        break if !wi[c2][wh1*WH0+wh0].v;
        m = Mcoord(mrs2, mrs1, mrs0);
        e = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
        f = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);
        o[m][e][f] += i[c2][wh1*WH0+wh0]
        * w[c2][mrs2*MRS1*MRS0+mrs1*MRS0+mrs0];
```


## SCNN Energy Versus Density


[Parashar et al., ISCA 2017]

## SCNN Latency Versus Density


[Parashar et al., ISCA 2017]

## Eyeriss - V2

- Architecture to accommodate variety sparsity


## Eyeriss v2: Balancing Flexibility and Efficiency

## Efficiently supports

- Wide range of filter shapes
- Large and Compact
- Different Layers
- CONV, FC, depth wise, etc.
- Wide range of sparsity
- Dense and Sparse
- Scalable architecture
- v1.5 \& MobileNet $\quad$ v2 \& MobileNet v2 \& sparse MobileNet


Speed up over Eyeriss v1 scales with number of PEs

| \# of PEs | $\mathbf{2 5 6}$ | $\mathbf{1 0 2 4}$ | $\mathbf{1 6 3 8 4}$ |
| :---: | :---: | :---: | :---: |
| AlexNet | 17.9 x | 71.5 x | 1086.7 x |
| GoogLeNet | 10.4 x | 37.8 x | 448.8 x |
| MobileNet | 15.7 x | 57.9 x | 873.0 x |

[Chen et al., JETCAS 2019]

# Over an order of magnitude faster and more energy efficient than Eyeriss v1 

## Eyeriss v2: Processing In PE

Sliding Window $\boldsymbol{i}$
Input Activations

Sliding Window i+1


- M0 : \# of output channels processed in a PE
- C0 : \# of input channels processed in a PE
- S : filter width
- U : stride


## Eyeriss v2: Compressed Data Format

Weight Matrix


CSC Compressed Data:
data vector: $\quad\{\mathbf{a}, \mathrm{b}, \mathbf{c}, \mathrm{d}, \mathrm{e}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathrm{i}, \mathbf{j}, \mathrm{k}, \mathrm{l}\}$ count vector: $\quad\{1,0,0,0,1,2,3,1,1,0,0,0\}$ address vector: $\{0,2,5,6,6,7,9,9,12\}$

## Eyeriss v2: PE Architecture



## Decision Tree in Eyeriss v2 PE



- If the iact is zero, the CSC format will ensure that it is not read from the spad and therefore no cycles are wasted.
- If the iact is not zero, its value will be fetched from the iact data SPad and passed to the next pipeline stage.
- If there are non-zero weights corresponding to the non-zero iacts, they will be passed down the pipeline for computation. The zero weights will be skipped since the weights are also encoded with the CSC format.
- If there are no non-zero weights corresponding to the non-zero iacts, the non-zero iacts will not be further passed down in the pipeline.


## Summary

- Processing Irregular (Gather-Scatter)
- If weights and inputs compressed to dense (gather); output scatter
- If weights and inputs uncompressed sparse (scatter); output gather
- Overhead (must not exceed benefits of sparsity)
- Storage of location information for compressed data
- Logic for checking if either inputs are zero
- Underutilization
- Number of parallel cores (tiling) $\rightarrow$ maximize parallelism, but minimize underutilization
- Flatten to 1-D avoid fragmentation from limits of each dimension
- Workload Imbalance
- Lots of challenges in sparse deep neural network acceleration!

