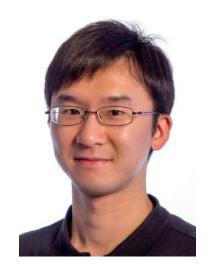
Efficient Image Processing with Deep Neural Networks

Vivienne Sze, Tien-Ju Yang

Massachusetts Institute of Technology

Contributors 2



Vivienne Sze

Professor MIT

Tien-Ju Yang

PhD Candidate MIT

Joel Emer

Senior Distinguished **Research Scientist**

NVIDIA

Professor

MIT

Yu-Hsin Chen PhD Graduate MIT

Outline of Tutorial

- Brief overview of Deep Neural Networks (DNN)
- **Part 1: Hardware Platforms for DNNs** (e.g., CPU, GPU, • FPGA, ASIC) and metrics for evaluating the efficiency of DNNs
- Part 2: Co-design algorithms and hardware for efficient DNNs (e.g., precision, sparsity, network architecture design, network architecture search, designing networks with hardware in the loop)
- Part 3: Application of efficient DNNs on a wide range of image processing and computer vision tasks (e.g., image classification, depth estimation, image segmentation, super-resolution)

Additional Resources

Overview Paper

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, Dec. 2017 Book Coming Soon!

More info about **Tutorial on DNN Architectures** <u>http://eyeriss.mit.edu/tutorial.html</u>

Efficient Processing of Deep Neural Networks: A Tutorial and Survey System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond

Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Futur Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

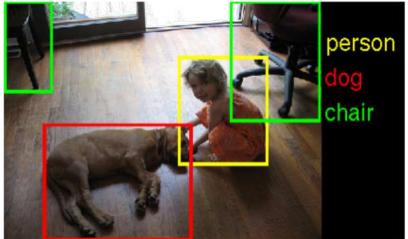
MIT Professional Education Course on "Designing Efficient Deep Learning Systems" <u>http://professional-education.mit.edu/deeplearning</u>

For updates **Y** Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

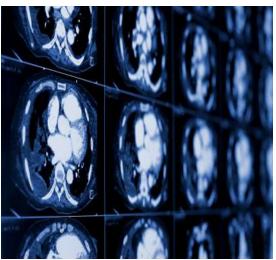
Example Applications of Deep Learning

Computer Vision



Speech Recognition

Medical



Compute Demands for Deep Learning

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger)

Human life (avg. 1 year)

American life (avg. 1 year)

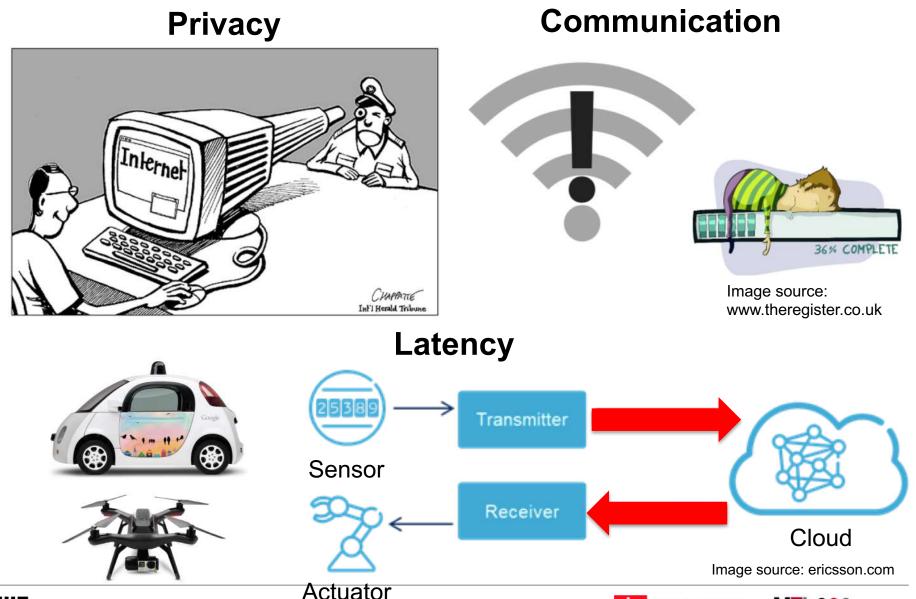
US car including fuel (avg. 1 lifetime)

Transformer (213M parameters) w/ neural architecture search

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

626,155

Processing at "Edge" instead of the "Cloud"



RESEARCH LABORATORY OF ELECTRONICS AT MIT

tems technology laboratories

Deep Learning for Self-Driving Cars

JACK STEWART TRANSPORTATION 02.06.18 08:00 AM

SELF-DRIVING CARS USE CRAZY AMOUNTS OF POWER, AND IT'S BECOMING A PROBLEM

Shelley, a self-driving Audi TT developed by Stanford University, uses the brains in the trunk to speed around a racetrack autonomously.

Cameras and radar generate ~6 gigabytes of data every 30 seconds.

Prototypes use around 2,500 Watts. Generates wasted heat and some prototypes need water-cooling!

R NIKKI KAHN/THE WASHINGTON POST/GETTY IMAGES

Existing Processors Consume Too Much Power

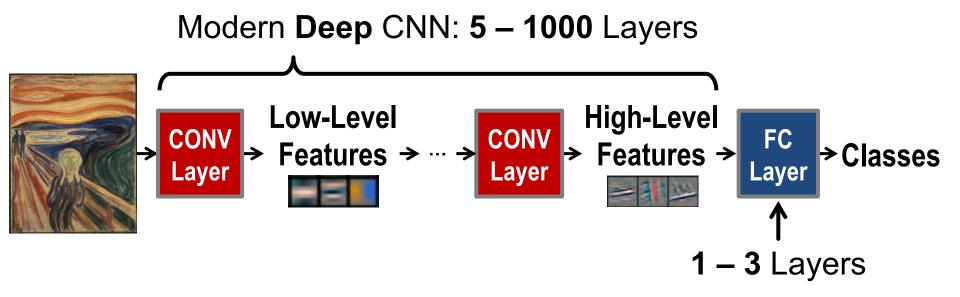


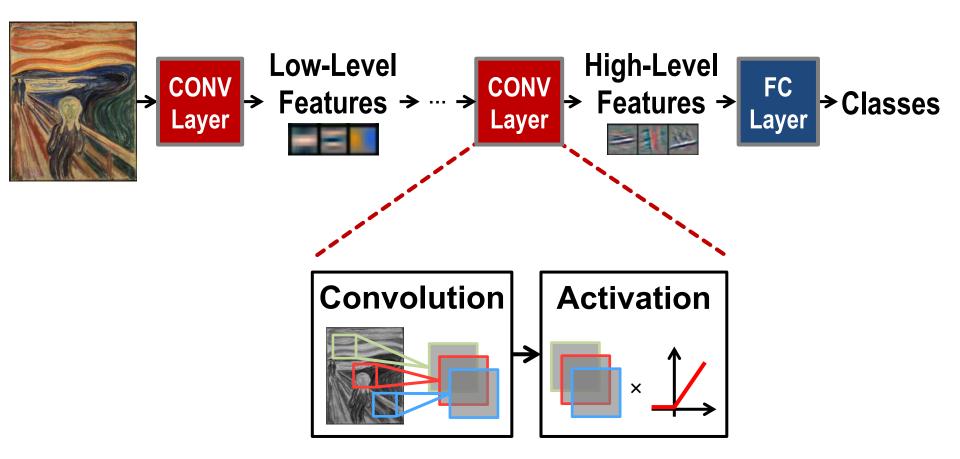
< 1 Watt

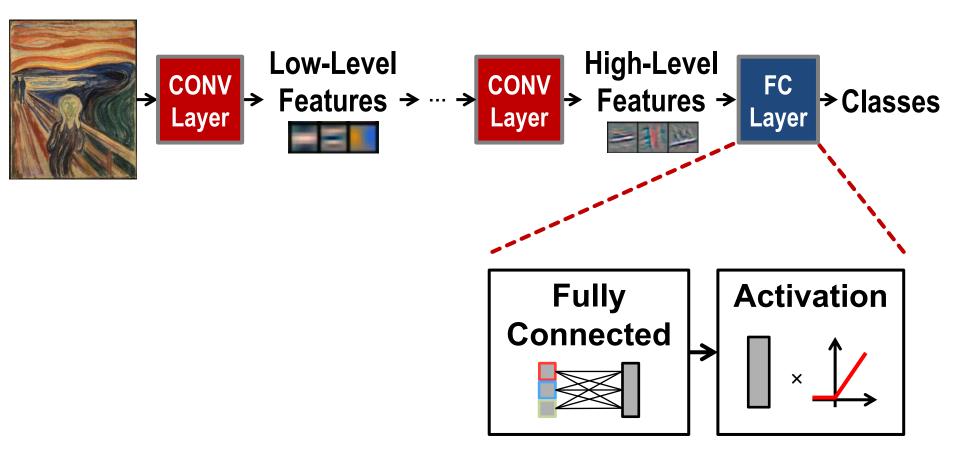
> 10 Watts

Overview of Deep Neural Networks

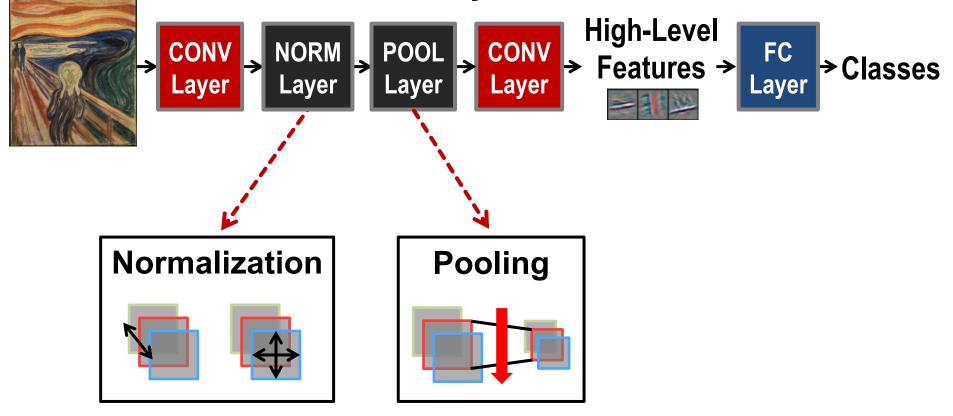
1411

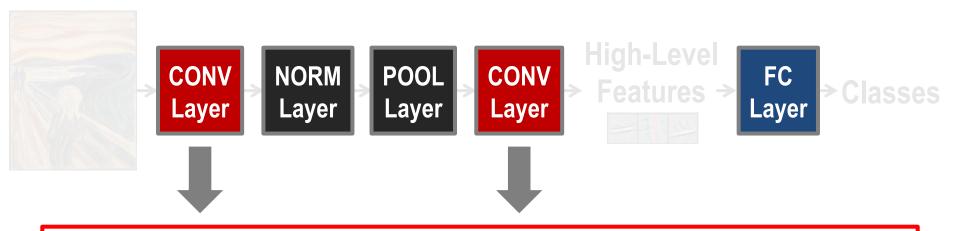


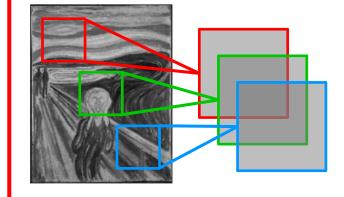




Optional layers in between CONV and/or FC layers





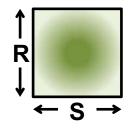


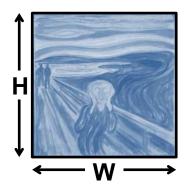
Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

¹⁶ Convolution (CONV) Layer

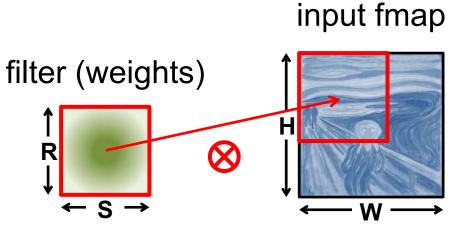
a plane of input activations a.k.a. **input feature map (fmap)**

filter (weights)



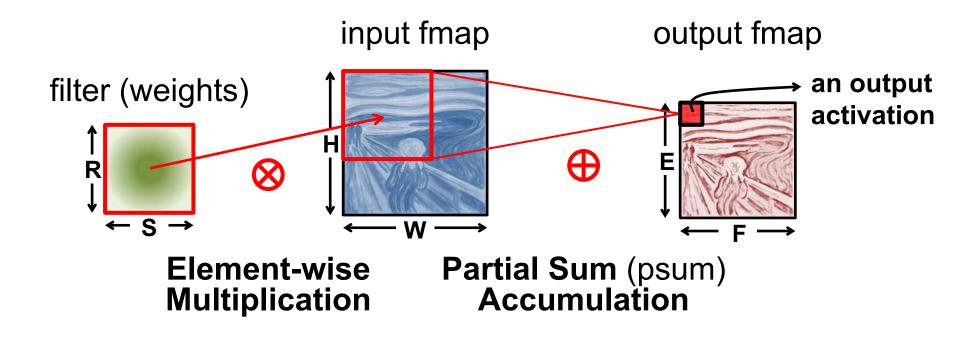


Convolution (CONV) Layer

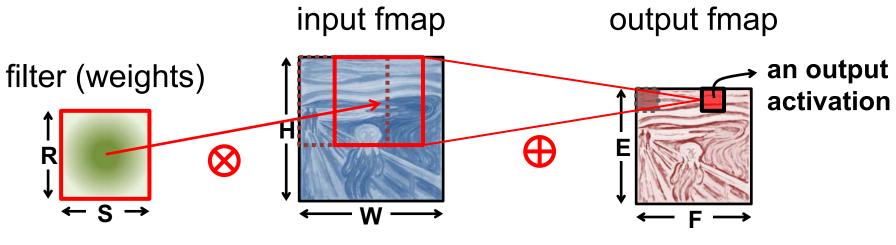


Element-wise Multiplication

Convolution (CONV) Layer

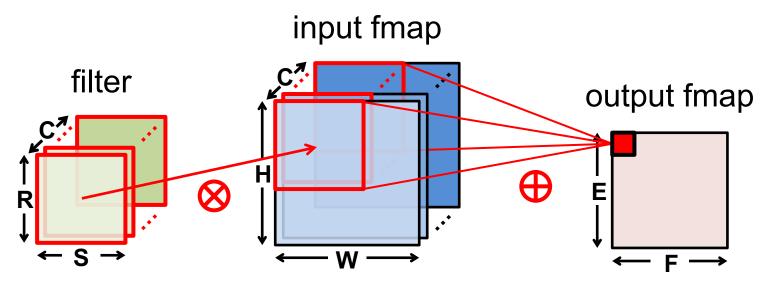


¹⁹ Convolution (CONV) Layer



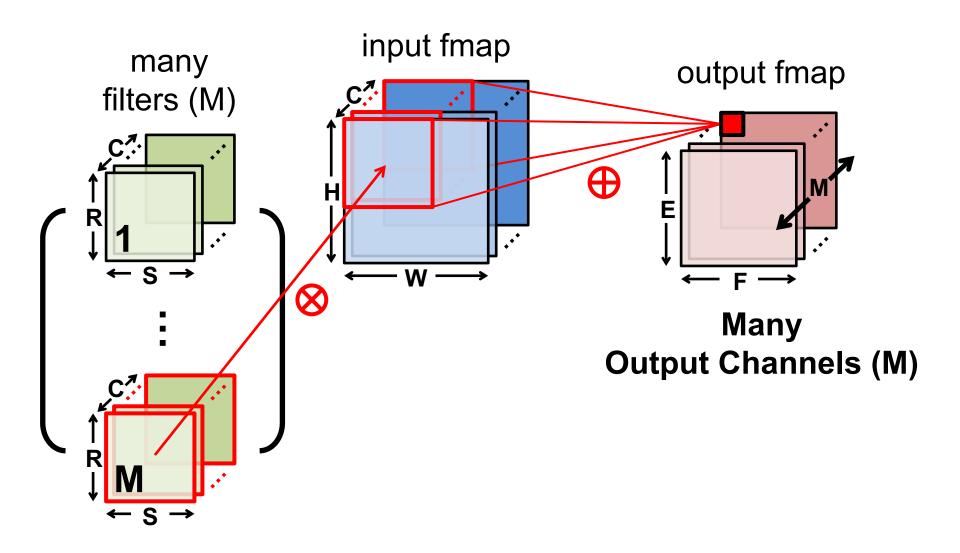
Sliding Window Processing

²⁰ Convolution (CONV) Layer

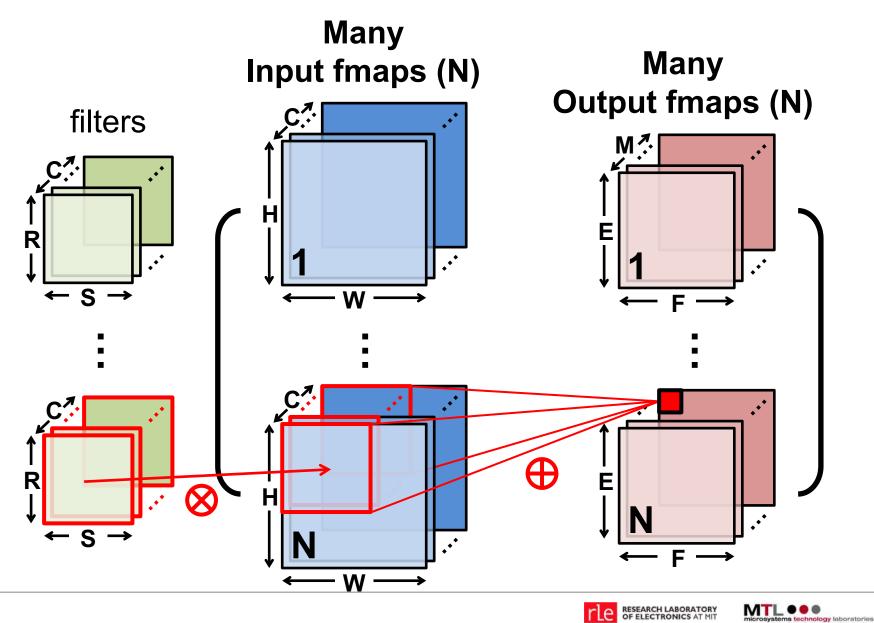


Many Input Channels (C)

²¹ Convolution (CONV) Layer



22 Convolution (CONV) Layer



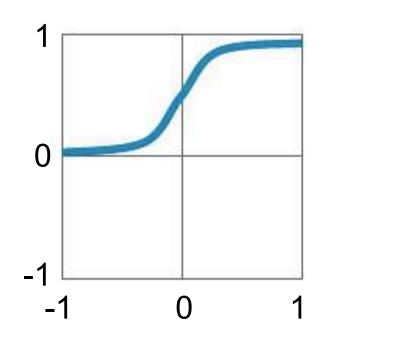
14117

²³ CNN Decoder Ring

- N Number of input fmaps/output fmaps (batch size)
- C Number of 2-D input fmaps /filters (channels)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of 2-D filter (weights)
- S Width of 2-D filter (weights)
- M Number of 2-D output fmaps (channels)
- E Height of output fmap (activations)
- F Width of output fmap (activations)

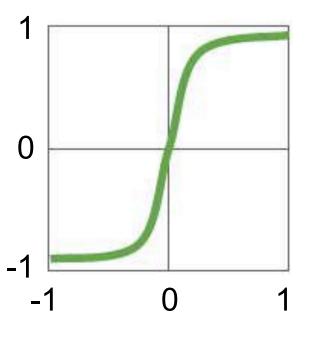
²⁴ Traditional Activation Functions

Sigmoid



y=1/(1+e^{-x})

Hyperbolic Tangent



²⁵ Modern Activation Functions

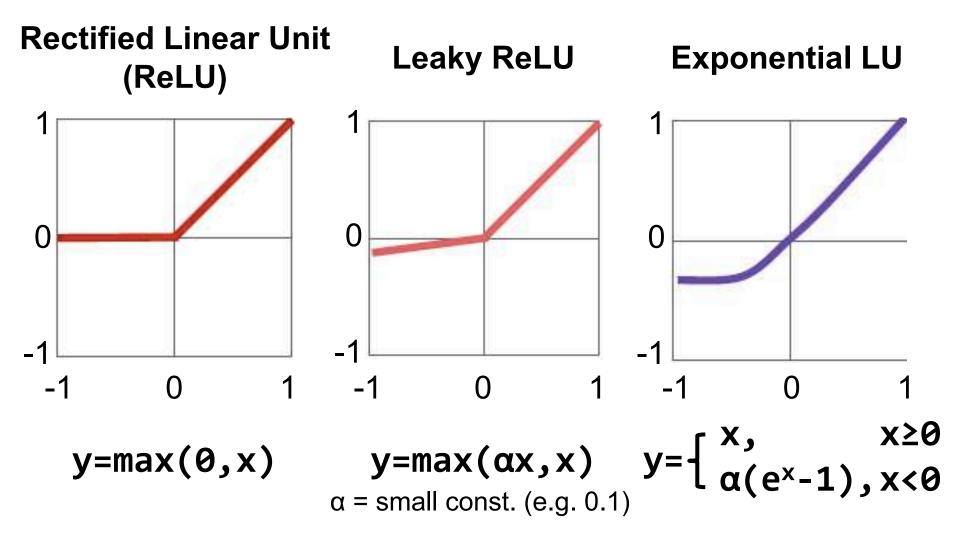
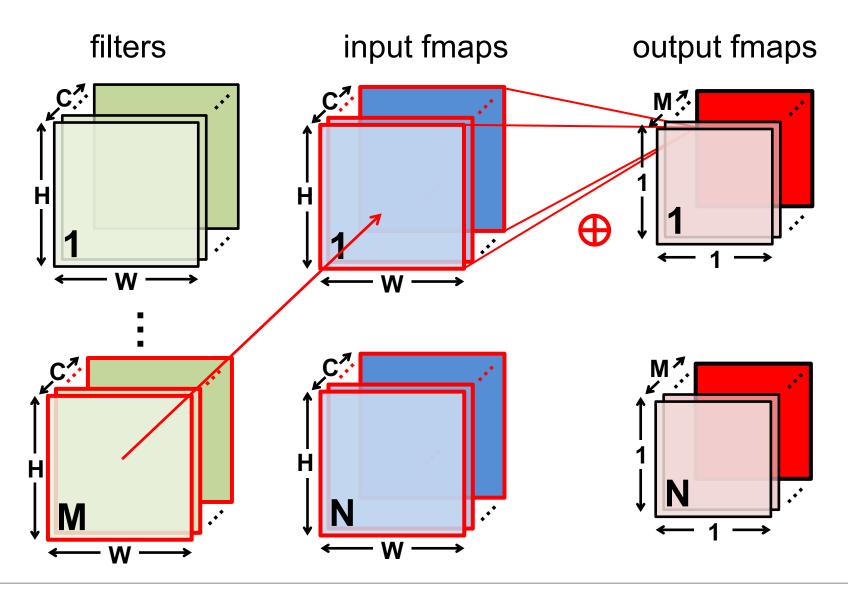


Image Source: Caffe Tutorial

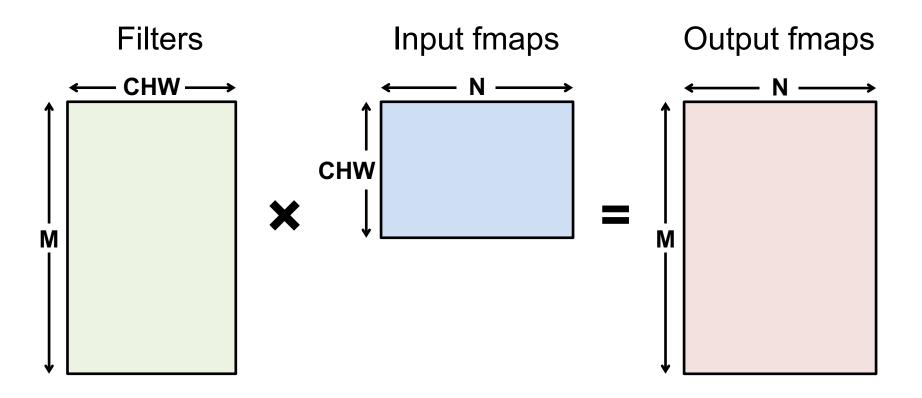
²⁶ FC Layer – from CONV Layer POV



14117

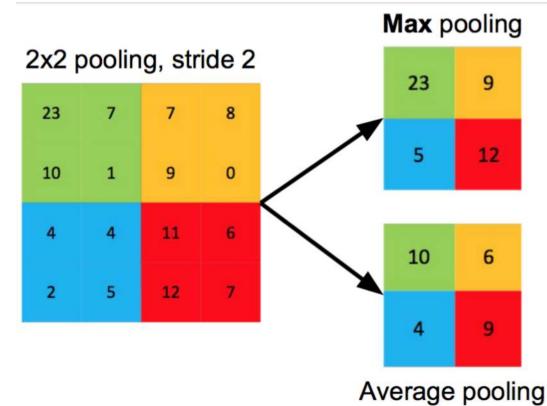
²⁷ Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 (E = F = 1)
- Filters as large as input fmaps (R = H, S = W)
- Implementation: Matrix Multiplication



²⁸ Pooling (POOL) Layer

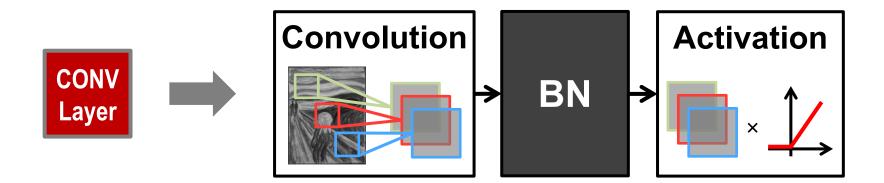
- Reduce resolution of each channel independently
- Overlapping or non-overlapping \rightarrow depending on stride



Increases translation-invariance and noise-resilience

²⁹ Normalization (NORM) Layer

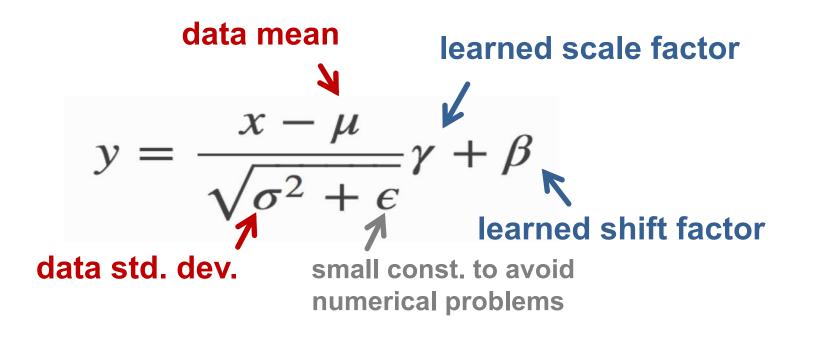
- Batch Normalization (BN)
 - Normalize activations towards mean=0 and std. dev.=1 based on the statistics of the training dataset
 - put in between CONV/FC and Activation function



Believed to be key to getting high accuracy and faster training on very deep neural networks.

30 BN Layer Implementation

• The normalized value is further scaled and shifted, the parameters of which are learned from training



Relevant Components for this Tutorial

- Typical operations that we will discuss:
 - Convolution (CONV)
 - Fully-Connected (FC)
 - Max Pooling
 - ReLU

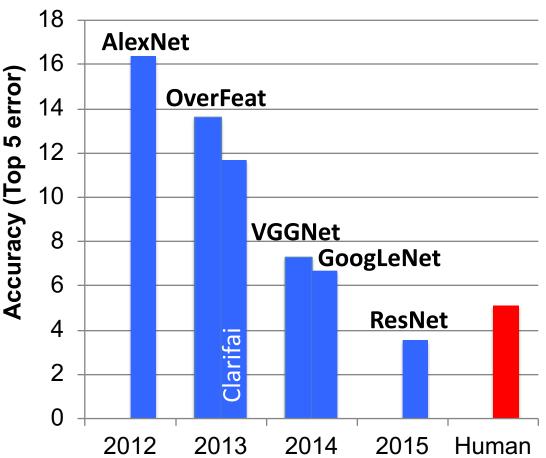
Popular DNN Models

33 Popular DNNs

• LeNet (1998)

- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

ImageNet: Large Scale Visual Recognition Challenge (ILSVRC)



[O. Russakovsky et al., IJCV 2015]

³⁴ ImageNet

IM GENET

Image Classification

~256x256 pixels (color) 1000 Classes 1.3M Training 100,000 Testing (50,000 Validation)

For ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

accuracy of classification task reported based on top-1 and top-5 error

Image Source: http://karpathy.github.io/

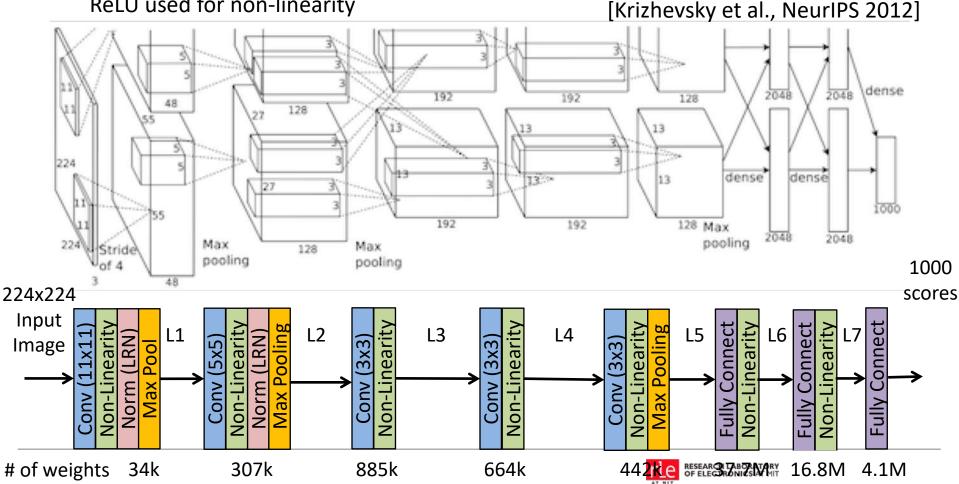
http://www.image-net.org/challenges/LSVRC/

35 AlexNet

CONV Layers: 5 Fully Connected Layers: 3 Weights: 61M MACs: 724M ReLU used for non-linearity

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

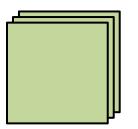


Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

Layer	Filter Size (RxS)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

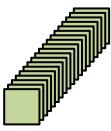
Layer 1



34k Params 105M MACs Layer 2

307k Params 224M MACs

Layer 3



885k Params 150M MACs

[Krizhevsky et al., NeurIPS 2012]

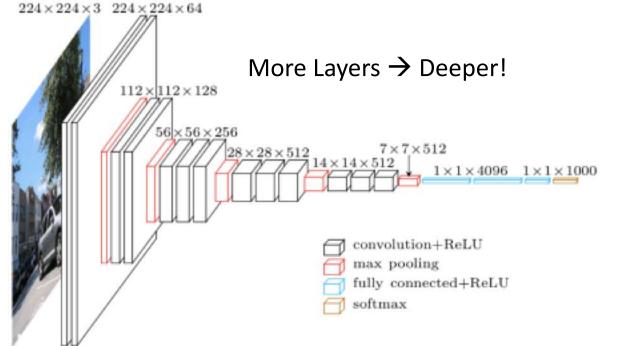
³⁷ VGG-16

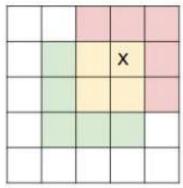
CONV Layers: 13 Fully Connected Layers: 3 Weights: 138M MACs: 15.5G

Also, 19 layer version

Reduce # of weights

stack 2 3x3 conv





for a 5x5 receptive field

[figure credit A. Karpathy]

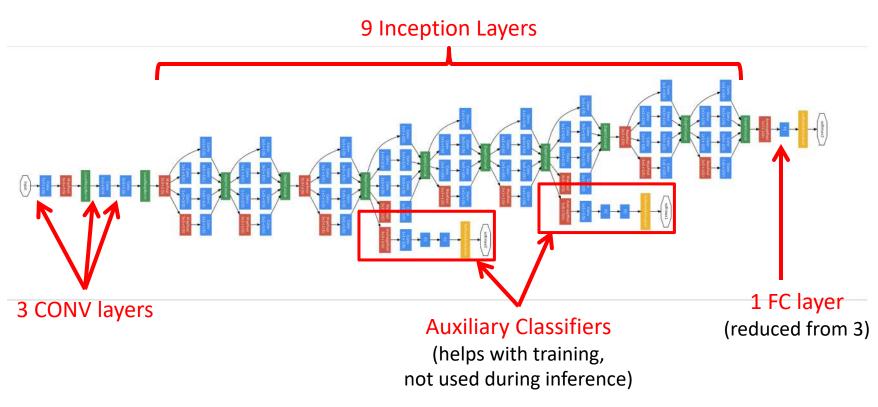
Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

|'|iT

[Simonyan et al., arXiv 2014, ICLR 2015] rie RESEARCH LABOR

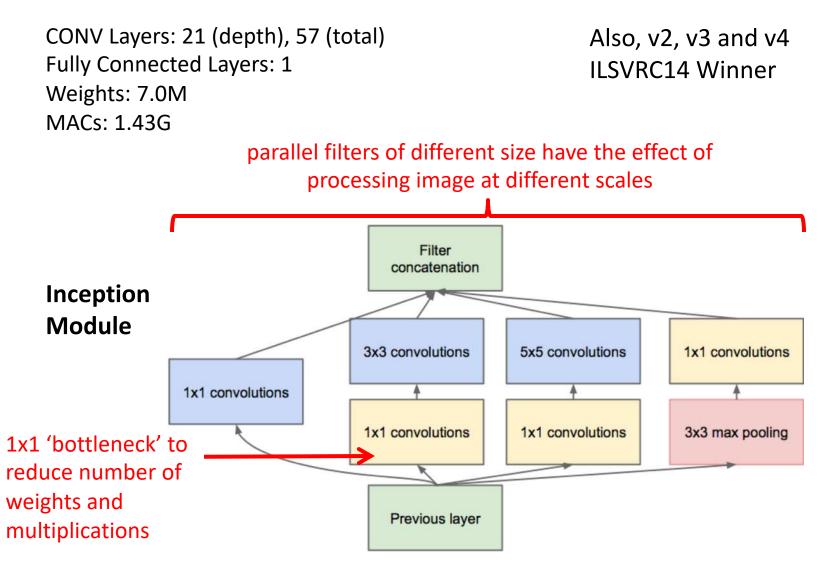
38 GoogLeNet/Inception (v1)

CONV Layers: 21 (depth), 57 (total) Fully Connected Layers: 1 Weights: 7.0M MACs: 1.43G Also, v2, v3 and v4 ILSVRC14 Winner

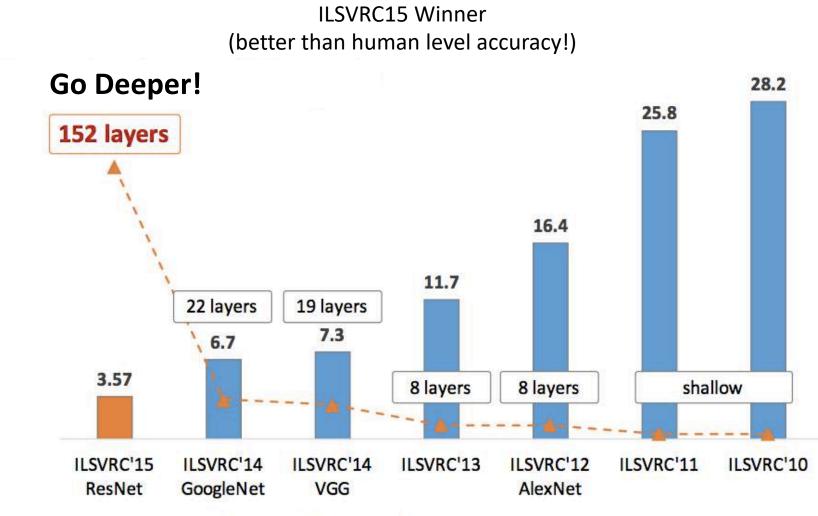


[Szegedy et al., arXiv 2014, CVPR 2015]

³⁹ GoogLeNet/Inception (v1)



[Szegedy et al., arXiv 2014, CVPR 2015]



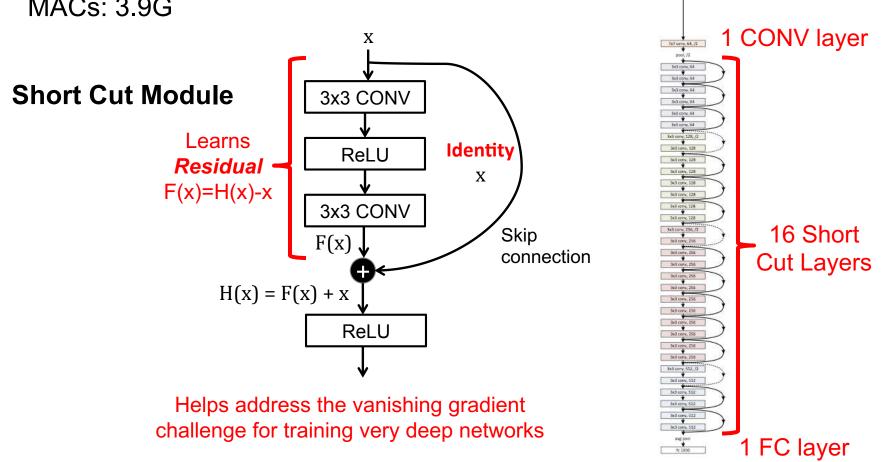
ImageNet Classification top-5 error (%)

Image Source: <u>http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf</u>

⁴¹ ResNet-50

CONV Layers: 49 Fully Connected Layers: 1 Weights: 25.5M MACs: 3.9G

Also, 34,**152** and 1202 layer versions ILSVRC15 Winner



[He et al., arXiv 2015, CVPR 2016]

ResNet-34

42 Summary of Popular CNNs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G

CONV Layers increasingly important!

43 Summary of Popular CNNs

• AlexNet

- First CNN Winner of ILSVRC
- Uses LRN (deprecated after this)

• VGG-16

- Goes Deeper (16+ layers)
- Uses only 3x3 filters (stack for larger filters)

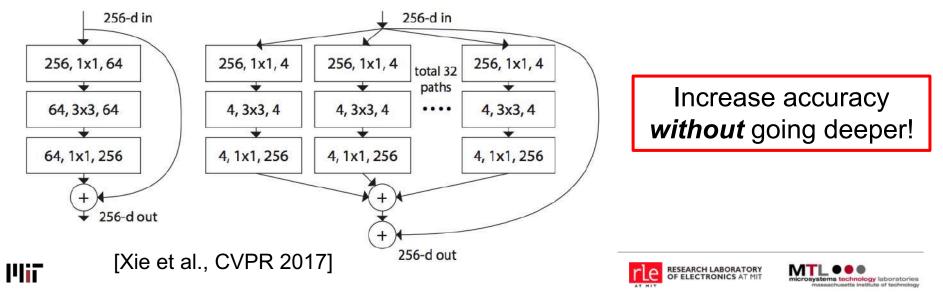
• GoogLeNet (v1)

- Reduces weights with Inception and only one FC layer
- Inception: 1x1 and DAG (parallel connections)
- Batch Normalization
- ResNet
 - Goes Deeper (24+ layers)
 - Shortcut connections

Beyond ResNet

ResNeXt

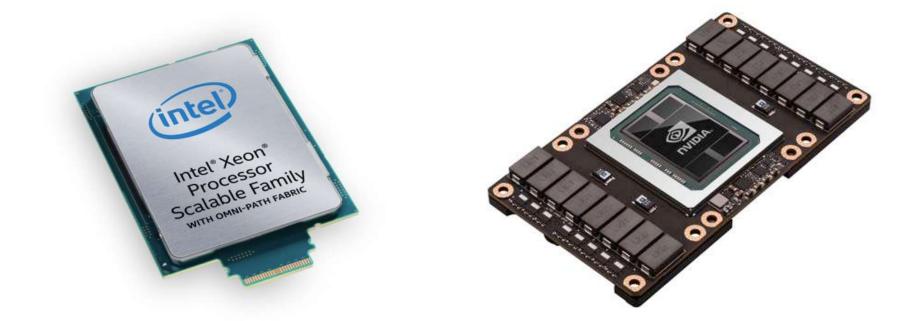
[Zagoruyko et al., BMVC 2016]



Part 1: Hardware Platforms for DNN Processing

46 GPUs and CPUs Targeting Deep Learning

Intel Xeon Scalable CPU (2019) Nvidia's V100 GPU (2018)

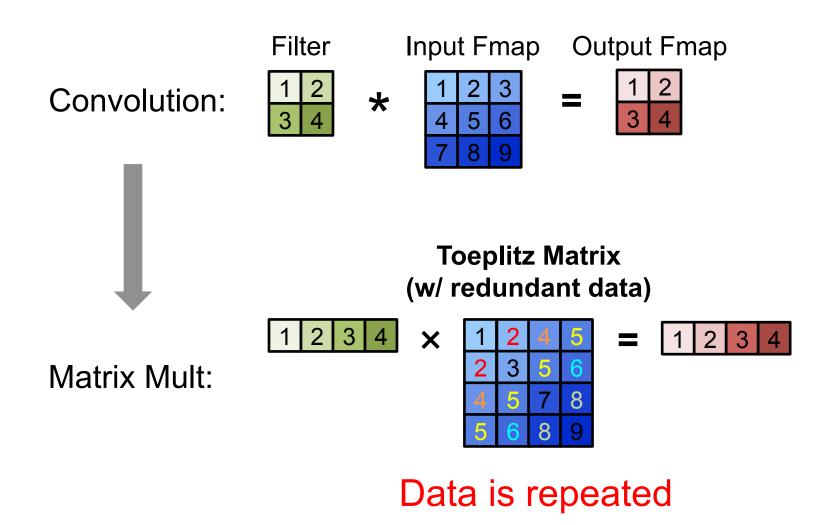


Use matrix multiplication libraries on CPUs and GPUs

47 Matrix Multiplication Libraries

- Implementation: Matrix Multiplication (GEMM)
 - CPU: OpenBLAS, Intel MKL, etc
 - GPU: cuBLAS, cuDNN, etc
- Library will note shape of the matrix multiply and select implementation optimized for that shape.
- Optimization usually involves proper tiling to storage hierarchy

Map DNN to a Matrix Multiplication



Goal: Reduced number of operations to increase throughput

48

Analogy: Gauss's Multiplication Algorithm

$$(a+bi)(c+di) = (ac-bd) + (bc+ad)i.$$

4 multiplications + 3 additions

$$k_{1} = c \cdot (a + b)$$

$$k_{2} = a \cdot (d - c)$$

$$k_{3} = b \cdot (c + d)$$

Real part = $k_{1} - k_{3}$
Imaginary part = $k_{1} + k_{2}$.

3 multiplications + 5 additions

Reduce number of multiplications, but **increase** number of additions

l'liiT

49

Reduce Operations in Matrix Multiplication

- Fast Fourier Transform [Mathieu, ICLR 2014]
 - **Pro:** Direct convolution $O(N_o^2 N_f^2)$ to $O(N_o^2 \log_2 N_o)$
 - Con: Increase storage requirements
- Strassen [Cong, ICANN 2014]
 - Pro: O(N³) to (N^{2.807})
 - Con: Numerical stability
- Winograd [Lavin, CVPR 2016]
 - Pro: 2.25x speed up for 3x3 filter
 - Con: Specialized processing depending on filter size

Specialized Hardware (Accelerators)

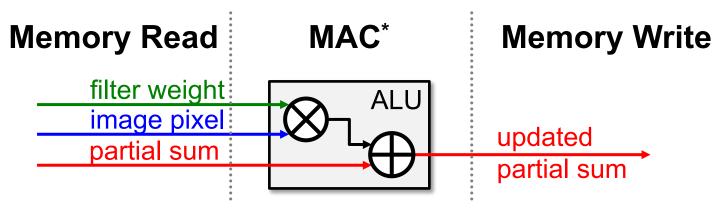
14117

Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

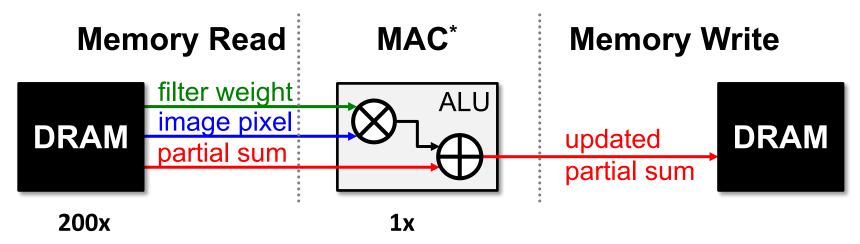
⁵³ Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck



Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck



Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NeurIPS 2012] has 724M MACs
 → 2896M DRAM accesses required

⁵⁵ Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Input data reuse opportunities (up to 500x)

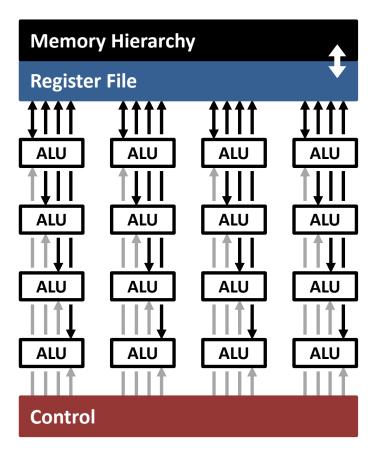
→ exploit **low-cost memory**



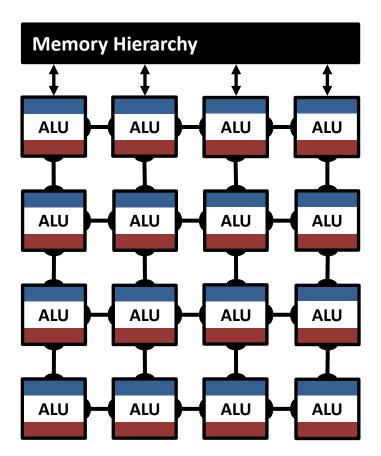
Images

⁵⁶ Highly-Parallel Compute Paradigms

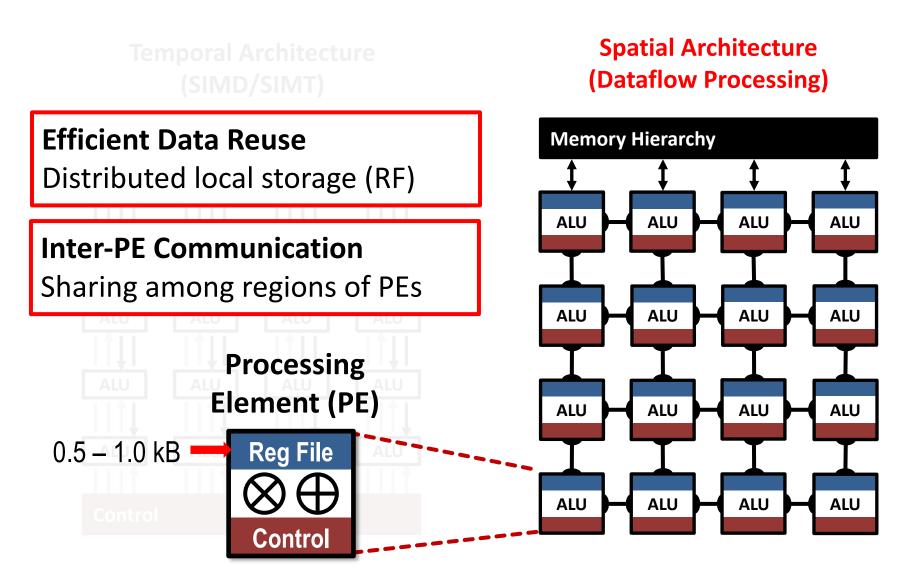
Temporal Architecture (SIMD/SIMT)



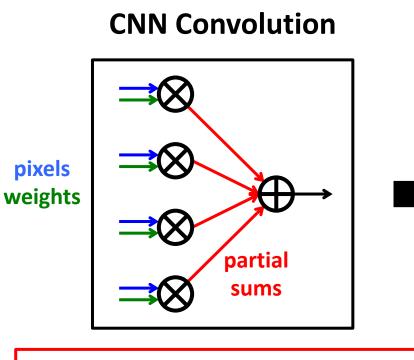
Spatial Architecture (Dataflow Processing)



Advantages of Spatial Architecture

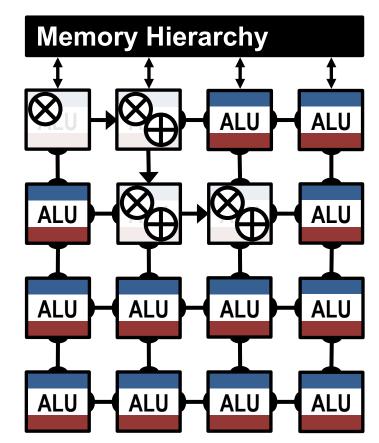


How to Map the Dataflow?



Goal: Increase reuse of input data (weights and pixels) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)

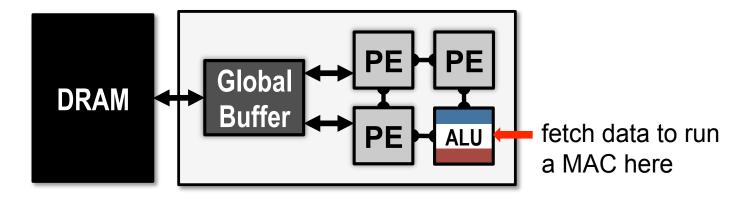


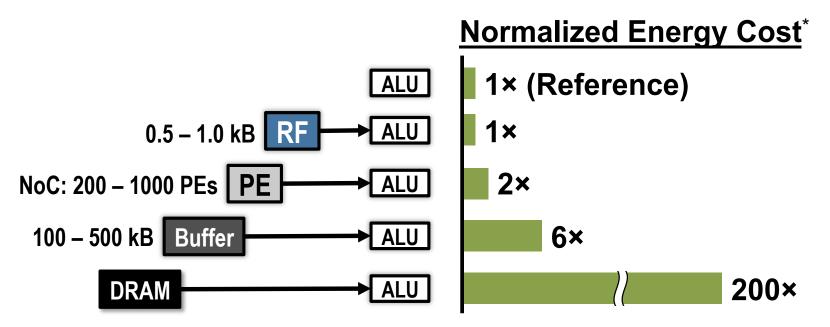
Energy-Efficient Dataflow

Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA 2016

|'|iT

Data Movement is Expensive

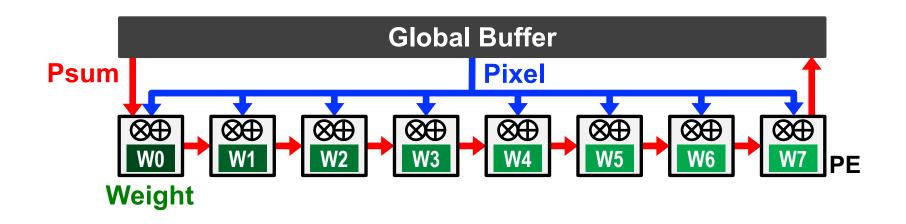




* measured from a commercial 65nm process

Maximize data reuse at low cost levels of hierarchy

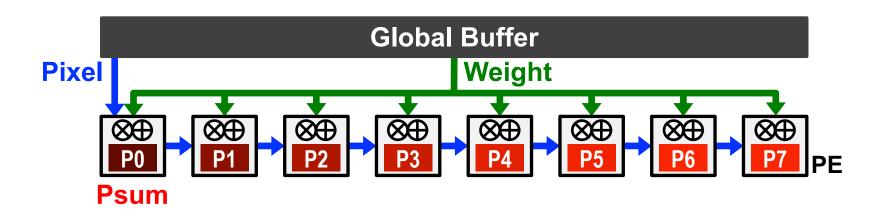
⁶¹ Weight Stationary (WS)



- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

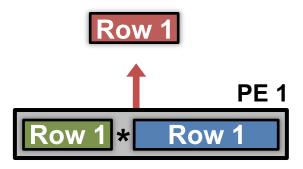
Output Stationary (OS)



- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

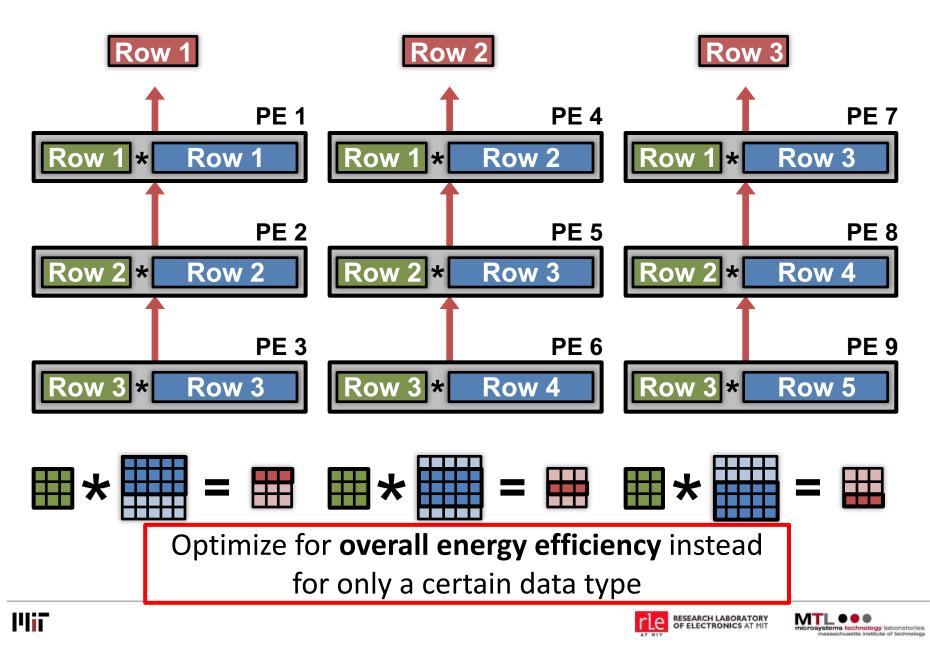
[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

Bow Stationary Dataflow



- Maximize row
 convolutional reuse in RF
 - Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF

Row Stationary Dataflow



Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

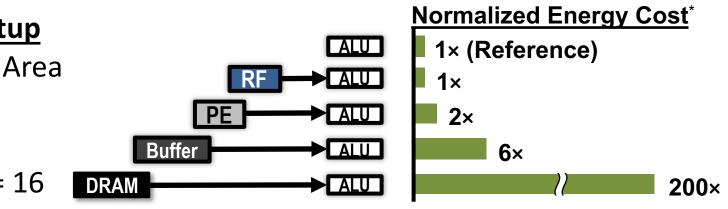
No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

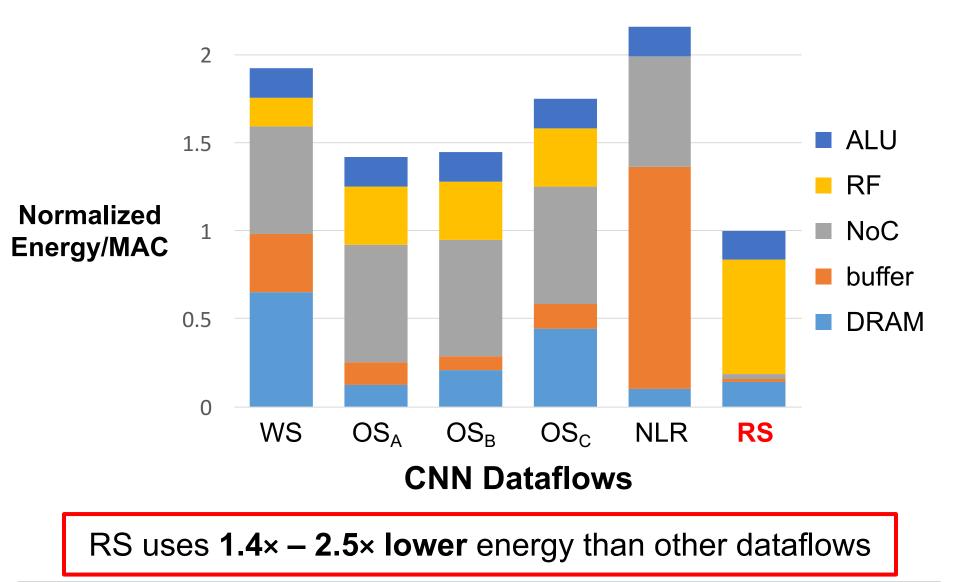
Row Stationary

Evaluation Setup

- Same Total Area
- AlexNet
- 256 PEs
- Batch size = 16



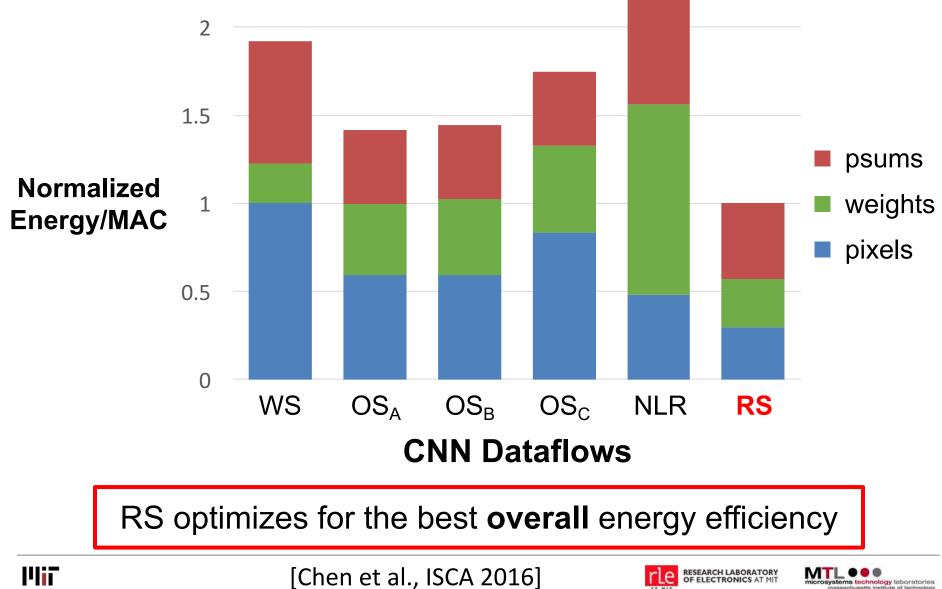
Dataflow Comparison: CONV Layers



[Chen et al., ISCA 2016]

ns technology laboratories

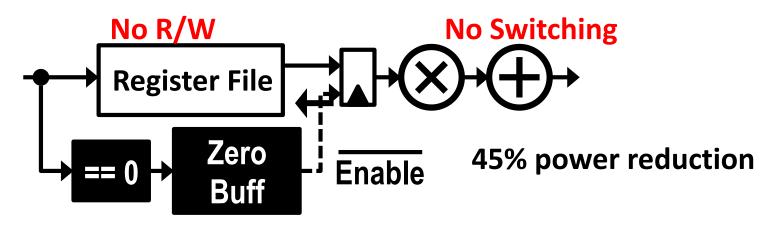
Dataflow Comparison: CONV Layers 67



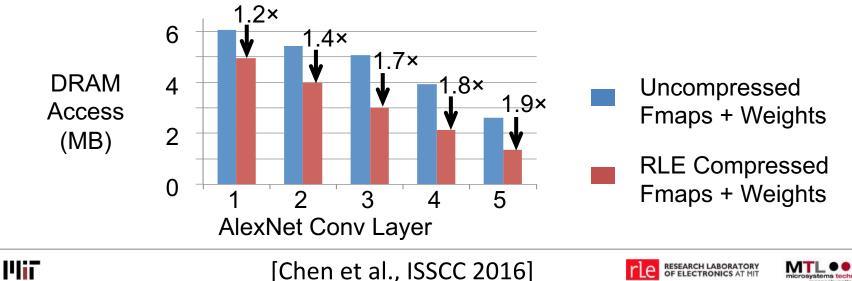
ns technology laboratories

Exploit Sparsity

Method 1. Skip memory access and computation

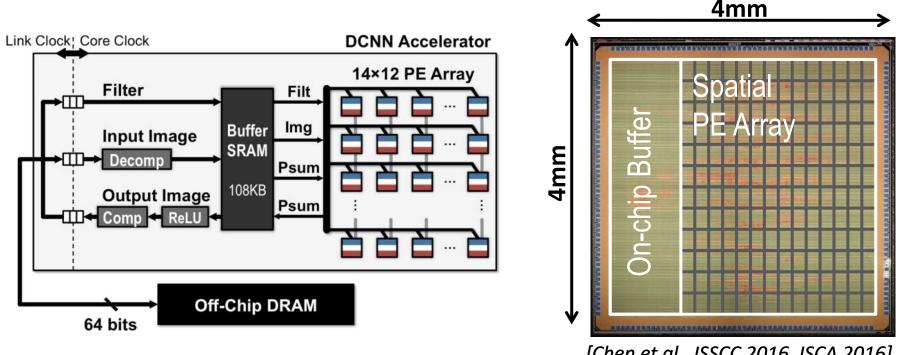


<u>Method 2</u>. Compress data to reduce storage and data movement



nicrosystems technology laboratories massachusetts institute of technology

Eyeriss: Deep Neural Network Accelerator



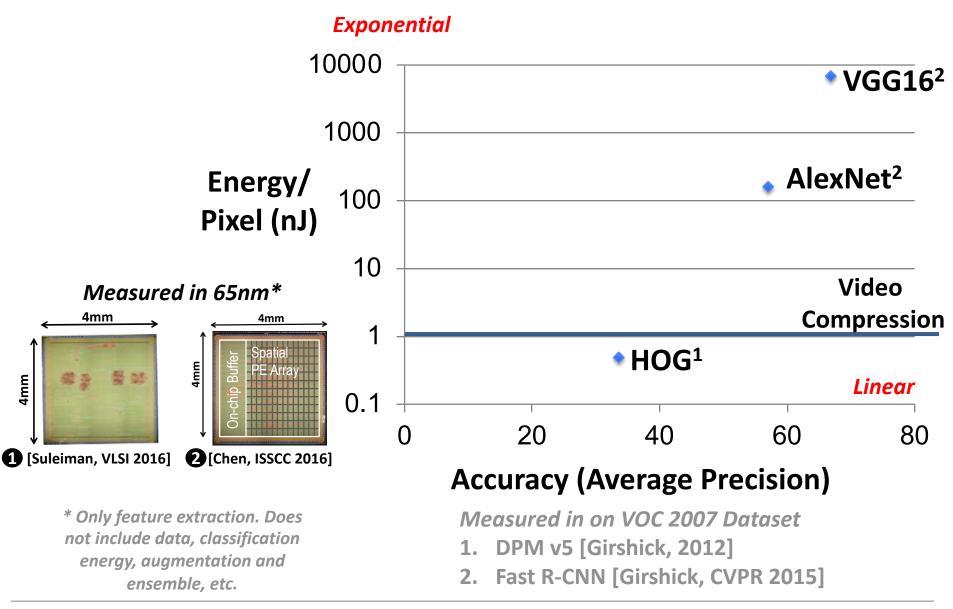
[Chen et al., ISSCC 2016, ISCA 2016]

Exploits data reuse for **100x** reduction in memory accesses from global buffer and **1400x** reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Results for AlexNet

⁷⁰ Features: Energy vs. Accuracy



[Suleiman et al., ISCAS 2017]

l'liiT

RESEARCH LABORATORY OF ELECTRONICS AT MIT

hicrosystems technology laboratories massachusetts institute of technology

Benchmarking Metrics for DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,

"Efficient Processing of Deep Neural Networks: A Tutorial and Survey,"

Proceedings of the IEEE, Dec. 2017

72 Metrics for DNN Hardware

• Accuracy

Quality of result for a given task

Throughput

- Analytics on high volume data
- Real-time performance (e.g., video at 30 fps)

• Latency

- For interactive applications (e.g., autonomous navigation)

• Energy and Power

- Edge and embedded devices have limited battery capacity
- Data centers have stringent power ceilings due to cooling costs

• Hardware Cost

- \$\$\$

73 Specifications to Evaluate Metrics

• Accuracy

Difficulty of dataset and/or task should be considered

Throughput

- Number of cores (include utilization along with peak performance)
- Runtime for running specific DNN models

• Latency

Include batch size used in evaluation

• Energy and Power

- Power consumption for running specific DNN models
- Include external memory access

• Hardware Cost

On-chip storage, number of cores, chip area + process technology

Example: Metrics of Eyeriss Chip

ASIC Specs	Input	Metric	Units	loout
Process Technology	65nm LP TSMC (1.0V)	Name of CNN Model	Text	Input AlexNet
Total Core Area (mm ²)	12.25	Top-5 error classification on ImageNet	#	19.8
Total On-Chip Memory (kB)	192	Supported Layers		All CONV
	169	Bits per weight	#	16
Number of Multipliers	168	Bits per input activation	#	16
Clock Frequency (MHz)	200	Batch Size	#	4
Core area (mm ²)	0.073	Runtime	ms	115.3
/multiplier		Power	mW	278
On-Chip memory (kB) / multiplier	1.14	Off-chip Access per Image Inference	MBytes	3.85
Measured or Simulated	Measured	Number of Images Tested	#	100

75 Comprehensive Coverage

- All metrics should be reported for fair evaluation of design tradeoffs
- Examples of what can happen if certain metric is omitted:
 - Without the accuracy given for a specific dataset and task, one could run a simple DNN and claim low power, high throughput, and low cost – however, the processor might not be usable for a meaningful task
 - Without reporting the off-chip bandwidth, one could build a processor with only multipliers and claim low cost, high throughput, high accuracy, and low chip power – however, when evaluating system power, the off-chip memory access would be substantial
- Are results measured or simulated? On what test data?

TEVALUATION Process

The evaluation process for whether a DNN system is a viable solution for a given application might go as follows:

- **1.** Accuracy determines if it can perform the given task
- **2. Latency and throughput** determine if it can run fast enough and in real-time
- **3. Energy and power consumption** will primarily dictate the form factor of the device where the processing can operate
- **4. Cost**, which is primarily dictated by the chip area, determines how much one would pay for this solution

Part 2: Co-Design of Algorithms and Hardware for DNNs

l'liī

78 Approaches

<u>Reduce size</u> of operands for storage/compute

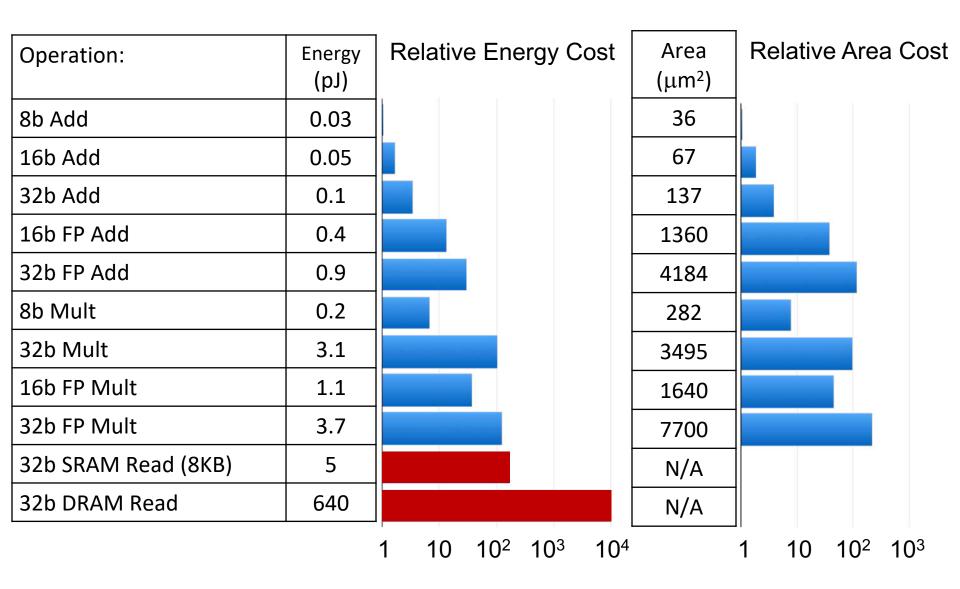
- Floating point \rightarrow Fixed point
- Bit-width reduction
- Non-linear quantization

• <u>Reduce number</u> of operations for storage/compute

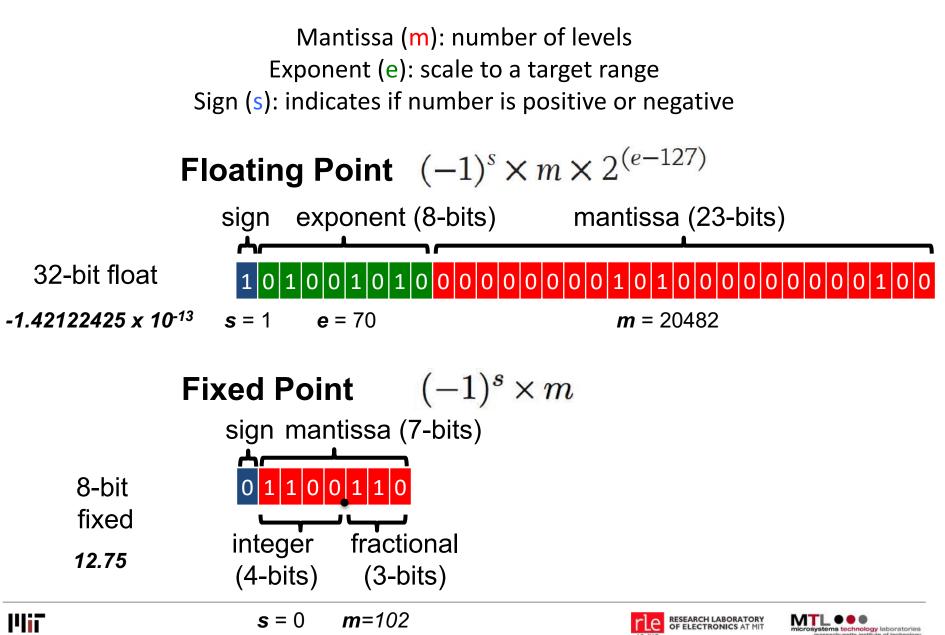
- Exploit Activation Statistics (Compression)
- Network Pruning
- Compact Network Architectures

Reduced Precision

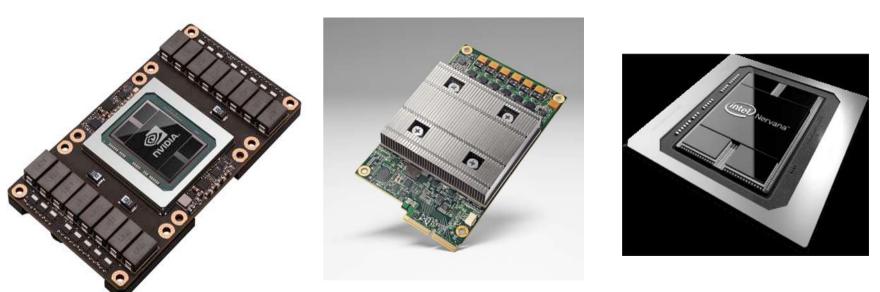
Cost Per Operation



⁸¹ Floating Point \rightarrow Fixed Point

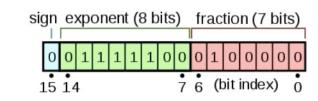


⁸² Commercial Products Support Reduced Precision



Intel's NNP-L (2019)

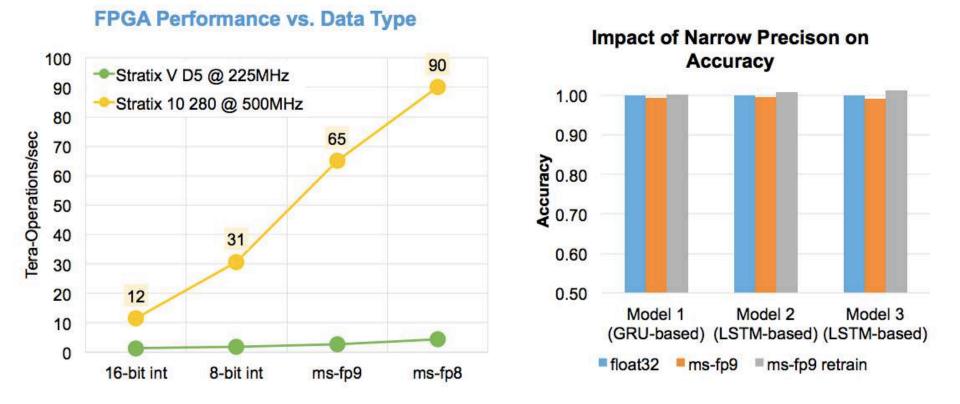
Nvidia's Pascal (2016)



8-bit Inference & bfloat16 for Training

⁸³ Microsoft BrainWave

Narrow Precision for Inference



Custom 8-bit floating point format ("ms-fp8")

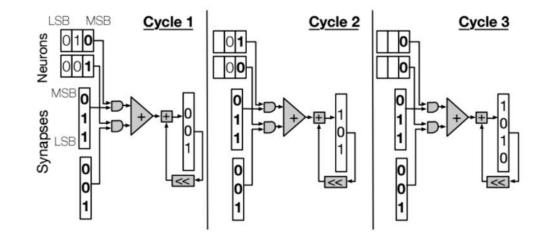
[Chung et al., Hot Chips 2017] re

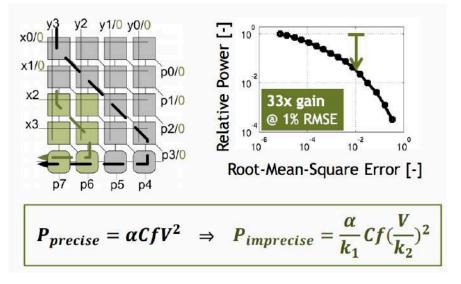
Reduced Precision Hardware

Stripes

[Judd et al., MICRO 2016]

Bit-serial processing for speed





KU Leuven

[Moons et al., VLSI 2016]

Voltage scaling for energy savings

Binary Connect (BC)

- Weights {-1,1}, Activations 32-bit float
- MAC \rightarrow addition/subtraction
- Accuracy loss: 19% on AlexNet

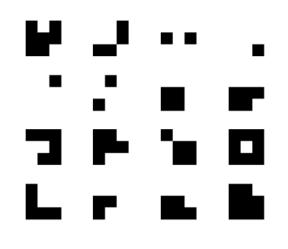
[Courbariaux, NeurIPS 2015]

• Binarized Neural Networks (BNN)

- Weights {-1,1}, Activations {-1,1}
- MAC \rightarrow XNOR
- Accuracy loss: 29.8% on AlexNet

[Courbariaux, arXiv 2016]

Binary Filters



Scale the Weights and Activations

Binary Weight Nets (BWN)

- Weights $\{-\alpha, \alpha\} \rightarrow$ except first and last layers are 32-bit float
- Activations: 32-bit float
- α determined by the I₁-norm of all weights in a filter
- Accuracy loss: 0.8% on AlexNet

XNOR-Net

- Weights $\{-\alpha, \alpha\}$

Hardware needs to support both activation precisions

- Activations $\{-\beta_i, \beta_i\} \rightarrow$ except first and last layers are 32-bit float
- β_i determined by the I₁-norm of all activations across channels
 for given position i of the input feature map
- Accuracy loss: 11% on AlexNet

Scale factors (α , β_i) can change per filter or position in filter

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

87 Ternary Nets

- Allow for weights to be zero
 - Increase sparsity, but also increase number of bits (2-bits)
- Ternary Weight Nets (TWN) [Li et al., arXiv 2016]
 - Weights {-w, 0, w} \rightarrow except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 3.7% on AlexNet
- Trained Ternary Quantization (TTQ) [Zhu et al., ICLR 2017]
 - Weights $\{-w_1, 0, w_2\} \rightarrow$ except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 0.6% on AlexNet

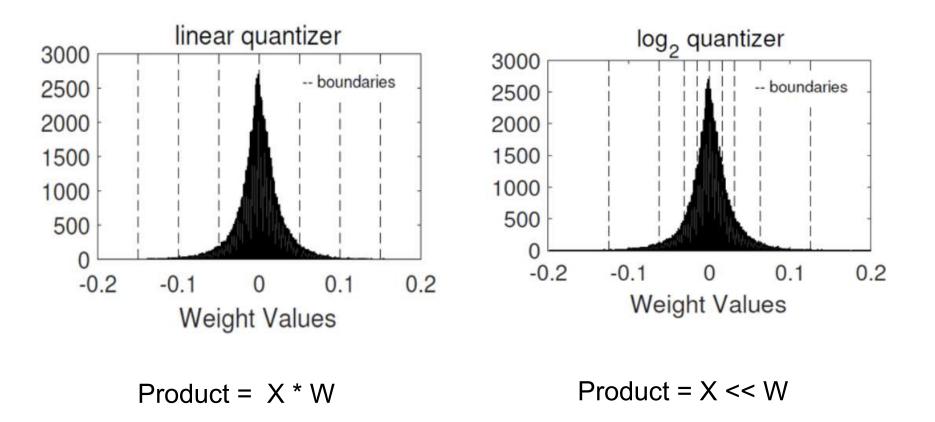
88 Non-Linear Quantization

- Precision refers to the number of levels
 - Number of bits = log_2 (number of levels)
- Quantization: mapping data to a smaller set of levels
 - Linear, e.g., fixed-point
 - Non-linear
 - Computed
 - Table lookup

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Computed Non-linear Quantization

Log Domain Quantization

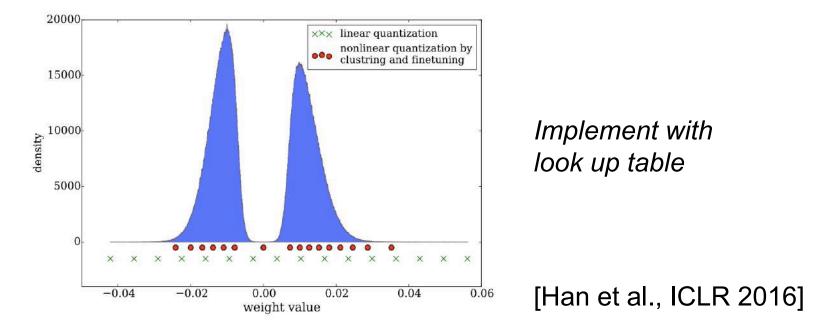


[Lee et al., LogNet, ICASSP 2017]

RESEARCH LABORATORY OF ELECTRONICS AT MIT

90 Reduce Precision Overview

• Learned mapping of data to quantization levels (e.g., k-means)

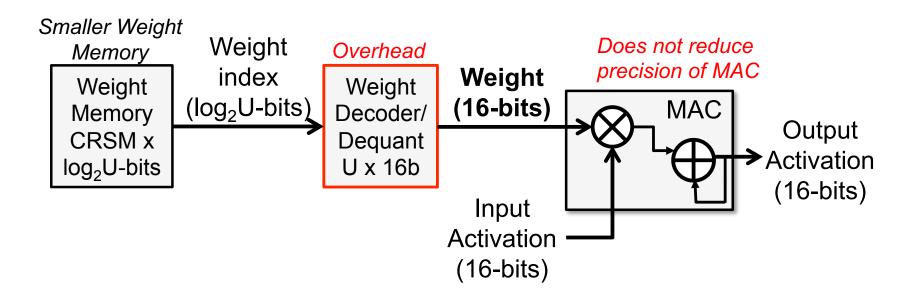


- Additional Properties
 - Fixed or Variable (across data types, layers, channels, etc.)

⁹¹ Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering to reduce number of unique weights *per layer* (weight sharing)

Example: AlexNet (no accuracy loss)256 unique weights for CONV layer16 unique weights for FC layer



Consequences: Narrow weight memory and second access from (small) table

1411

Summary of Reduce Precision

92

Category	Method	Weights (# of bits)	Activations (# of bits)	Accuracy Loss vs. 32-bit float (%)
Dynamic Fixed Point	w/o fine-tuning	8	10	0.4
	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2*	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Linear	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0

* first and last layers are 32-bit float

93 Approaches

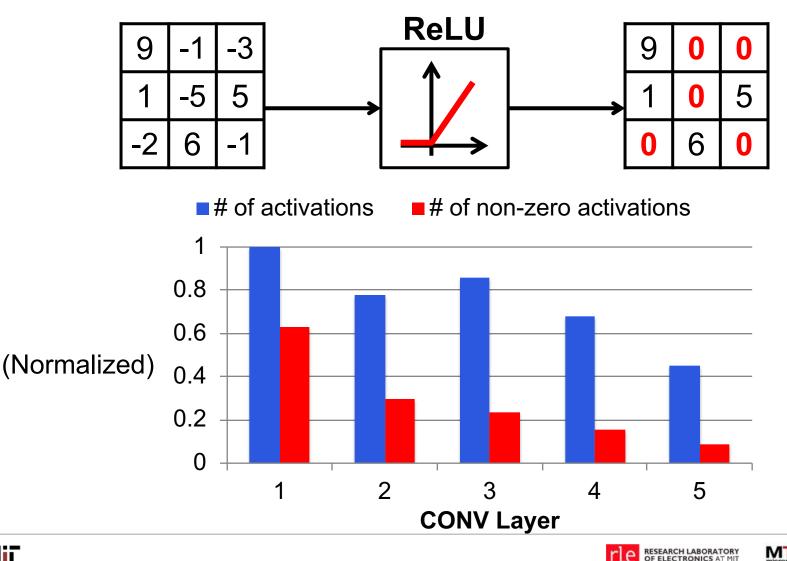
<u>Reduce size</u> of operands for storage/compute

- Floating point \rightarrow Fixed point
- Bit-width reduction
- Non-linear quantization
- <u>Reduce number</u> of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

Exploit Sparsity

Sparsity in Feature Maps

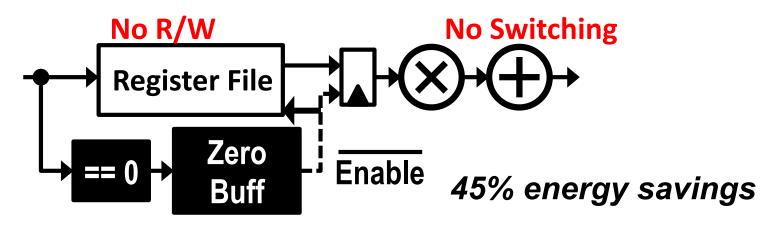
Many zeros in output fmaps after ReLU



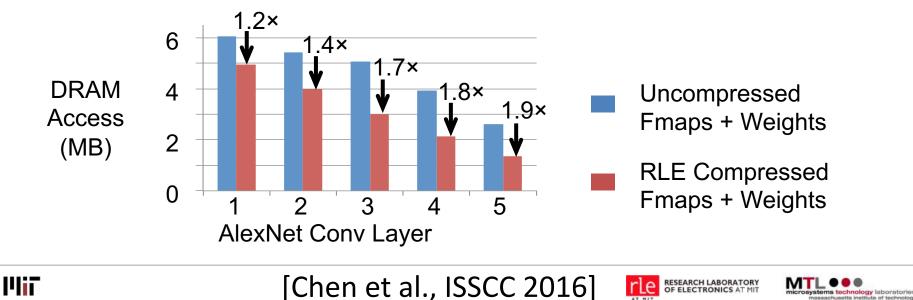
ms technology laboratories

Exploit Sparsity

Method 1: Skip memory access and computation



<u>Method 2</u>: Compress data to reduce storage and data movement

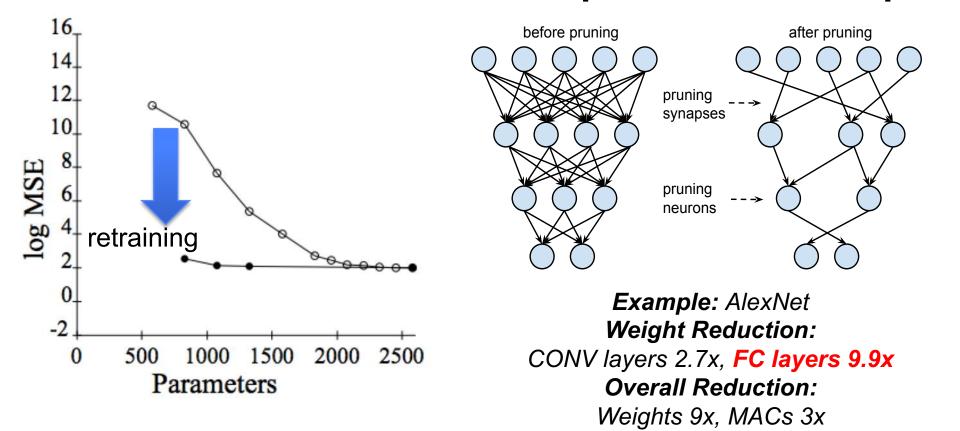


Pruning – Make Weights Sparse

Optimal Brain Damage

[Lecun et al., NeurIPS 1989]

Prune DNN based on *magnitude* of weights [Han et al., NeurIPS 2015]

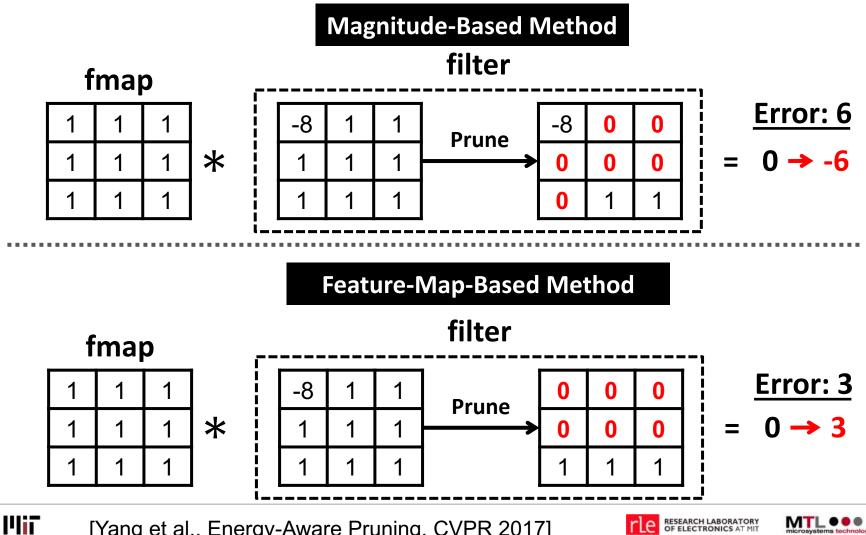


97

Pruning – Make Weights Sparse

98

Remove the weights with the **smallest joint impact** on the output feature map instead of that with the smallest magnitude

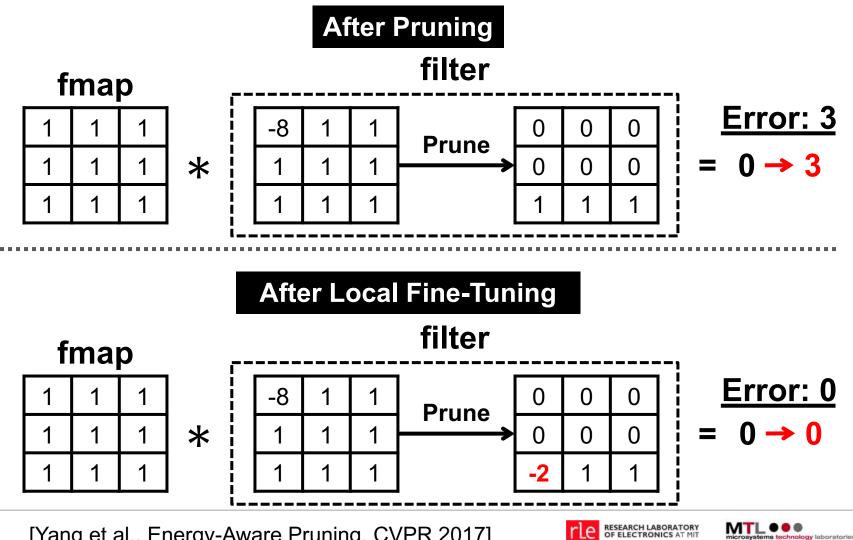


[Yang et al., Energy-Aware Pruning, CVPR 2017]

Fast Local Fine-Tuning

99

We then **locally fine-tune** the remaining weights, which is much faster than performing end-to-end training



l'liiT [Yang et al., Energy-Aware Pruning, CVPR 2017]

100 Compression of Weights & Activations

- Compress weights and activations between DRAM and accelerator
- Variable Length / Huffman Coding

Example:

Value: $16'b0 \rightarrow$ Compressed Code: $\{1'b0\}$

Value: $16'bx \rightarrow$ Compressed Code: $\{1'b1, 16'bx\}$

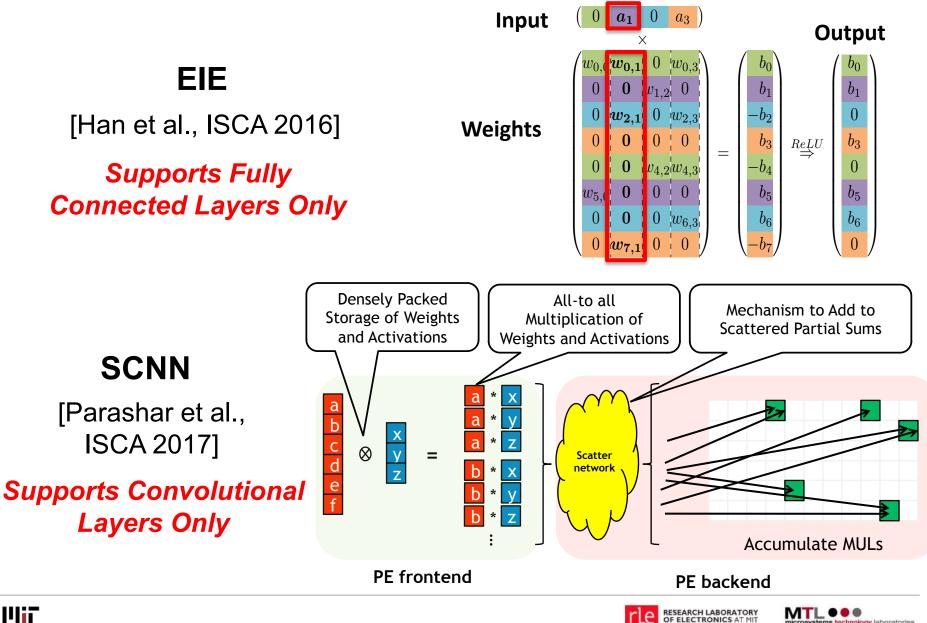
• Tested on AlexNet \rightarrow 2× overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffIO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)
General CNN	16 (0%) / 16 (0%)	1.0x		1.1	-	288	0.3
AlexNet 11	7 (21%) / 4 (29%)	1.17x / 1.3x	1 / 0.77	0.85	105	85	0.96
AlexNet 12	7 (19%) / 7 (89%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11%) / 9 (82%)	1.05x / 4.1x	6.5 / 2.8	0.92	150	77	0.7
AlexNet 14	9 (04%) / 8 (72%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04%) / 8 (72%)	1.00x / 2.9x	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	-		19.8 / 10	—	_	76	0.94
LeNet-5 11	3 (35%) / 1 (87%)	1.40x / 5.2x	0.003 / 0.001	0.7	0.3	25	1.07
LeNet-5 12	4 (26%) / 6 (55%)	1.25x / 1.9x	0.050 / 0.042	0.8	1.6	35	1.75
Total / avg.	-	_	0.053 / 0.043	_		33	1.6

IIII [M

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

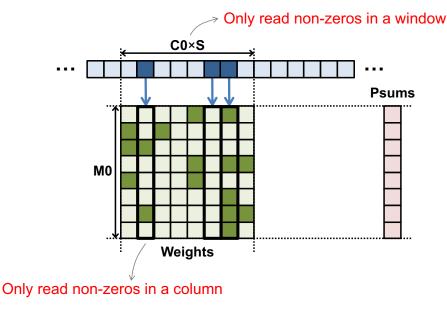
Sparse Hardware 101

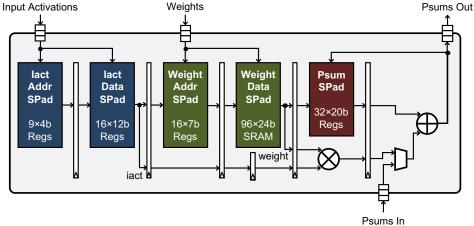


technology laboratories

¹⁰² Sparse Hardware – Eyeriss v2

Supports both Convolutional and Fully Connected Layers





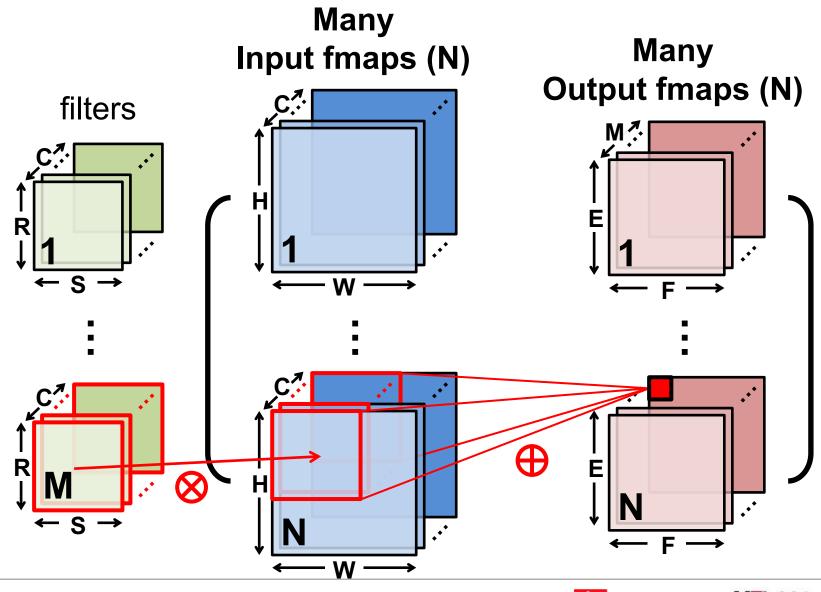
	AlexNet	sparse- AlexNet
GOPS	148.3	405.8
fps	102.4	280.1
Over v1	15.5×	42.5×
GOPS/W	277.9	1028.1
Inferences/J	191.8	709.7
Over v1	3.0×	11.3×

[Chen et al., JETCAS 2019]

Manual Network Architecture Design

¹⁰⁴ Simplify CONV Layers

14117



OF ELECTRONICS AT MIT

rL

¹⁰⁵ Simplify CONV Layers

filters R S R M

Methods can be roughly categorized by how the filters are simplified:

- Reduce spatial size (R, S): stacked filters
- Reduce channels (C): 1x1 convolution, group of filters
- Reduce filters (M): feature map reuse

¹⁰⁶ Simplify CONV Layers

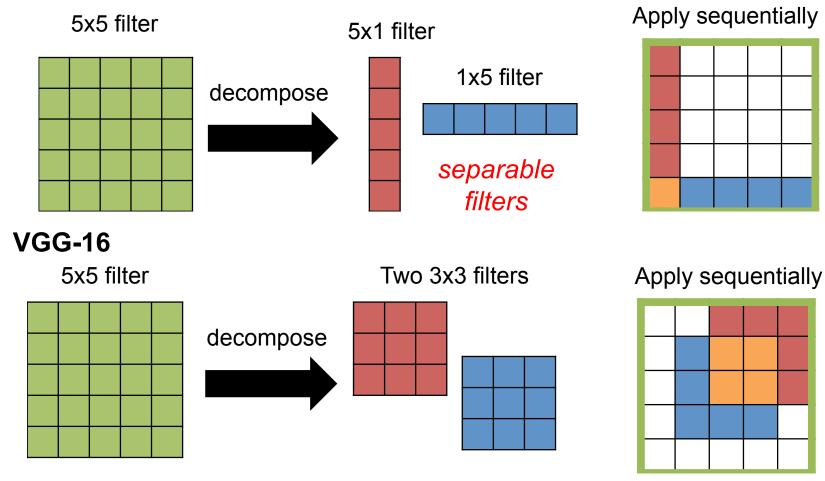
filters R S R Μ

Methods can be roughly categorized by how the filters are simplified:

- Reduce spatial size (R, S): stacked filters
- Reduce channels (C): 1x1 convolution, group of filters
- Reduce filters (M): feature map reuse

¹⁰⁷ Stacked Filters

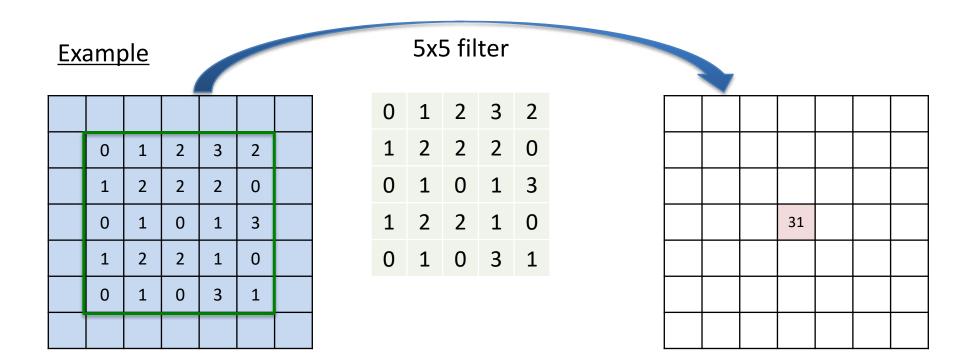
GoogleNet/Inception v3



Replace a large filter with a series of smaller filters

108 Stacked Filters

• Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights

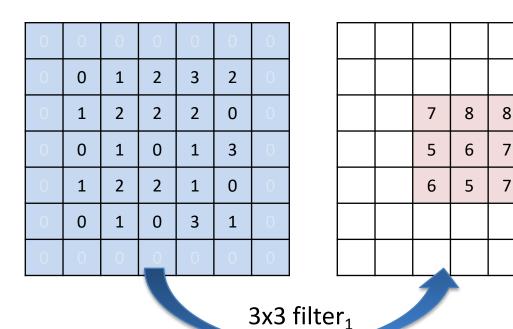


109 Stacked Filters

• Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights

filter (3x3)

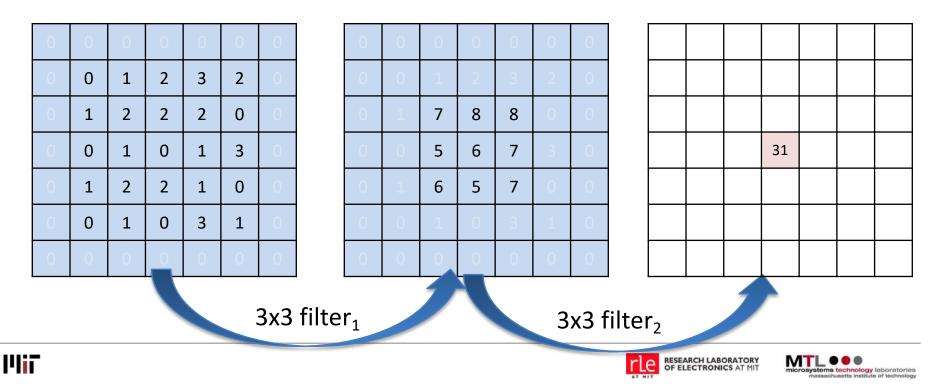
Example



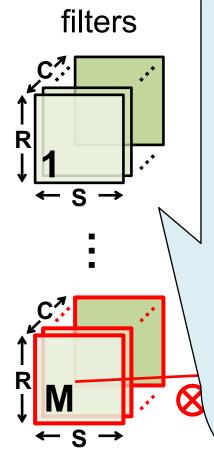
Stacked Filters

- Use stack of smaller filters (3x3) to cover the same receptive field with fewer filter weights
 filter (3x3)
 - 0 1 0 1 1 1 0 1 0

Example: 5x5 filter (25 weights) \rightarrow two 3x3 filters (18 weights)



¹¹¹ Simplify CONV Layers



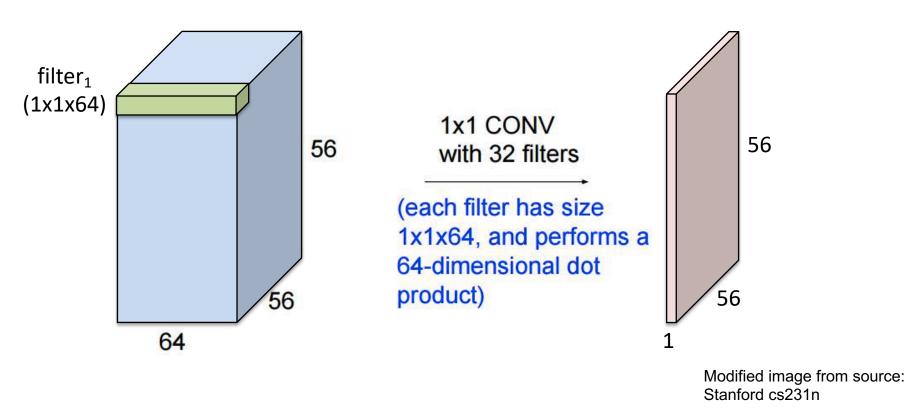
Methods can be roughly categorized by how the filters are simplified:

- Reduce spatial size (R, S): stacked filters
- Reduce channels (C): 1x1 convolution, group of filters

Reduce filters (M): feature map reuse

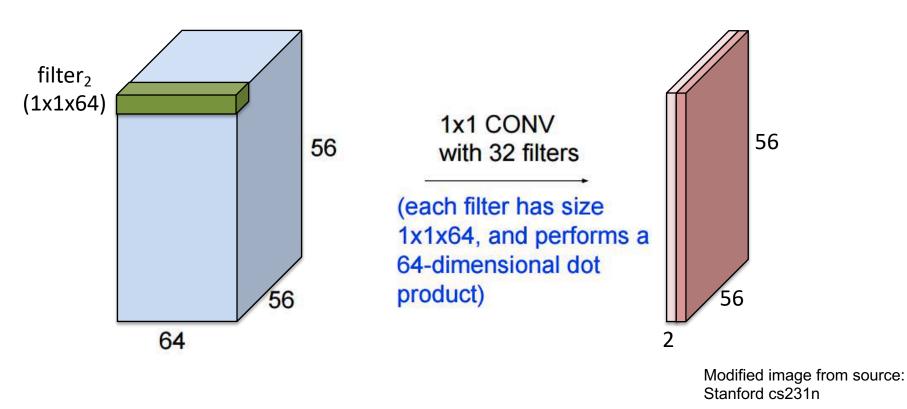
¹¹² 1x1 Convolution

Use **1x1 filter** to condense the cross-channel information.



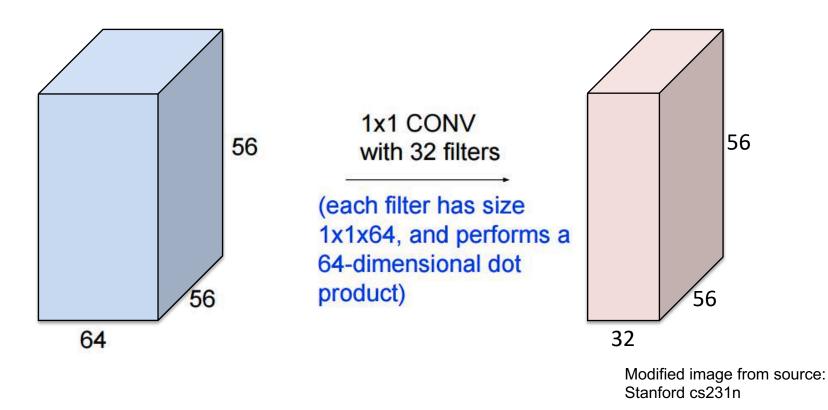
[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use **1x1 filter** to condense the cross-channel information.



[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

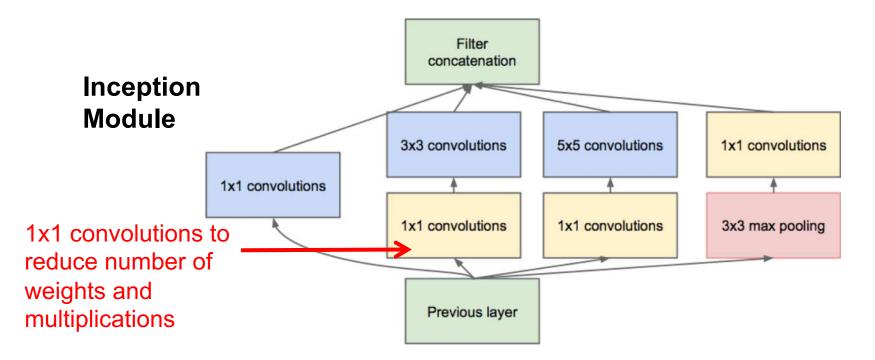
Use **1x1 filter** to condense the cross-channel information.



[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

II5 GoogLeNet:1x1 Convolution

Apply 1x1 convolution before 'large' convolution filters. Reduce weights such that **entire CNN can be trained on one GPU**. Number of multiplications reduced from 854M \rightarrow 358M

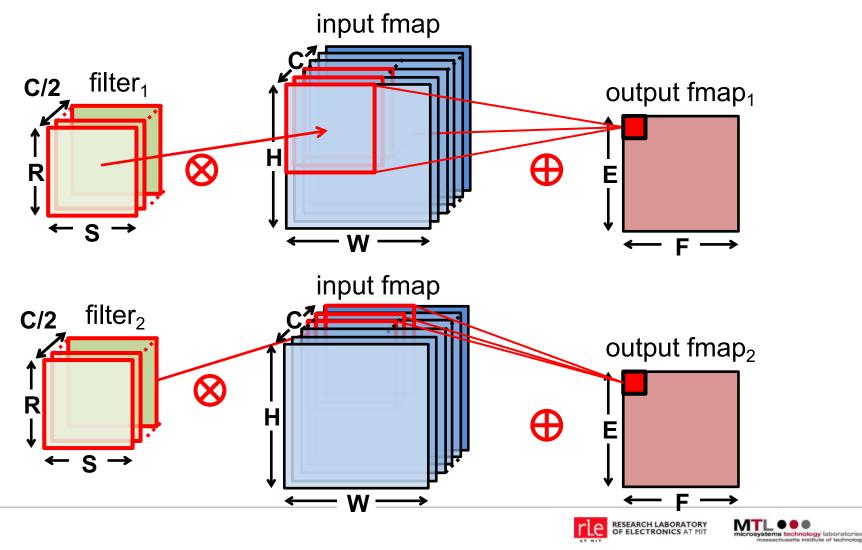


[Szegedy et al., arXiv 2014, CVPR 2015]

116 Group of Filters

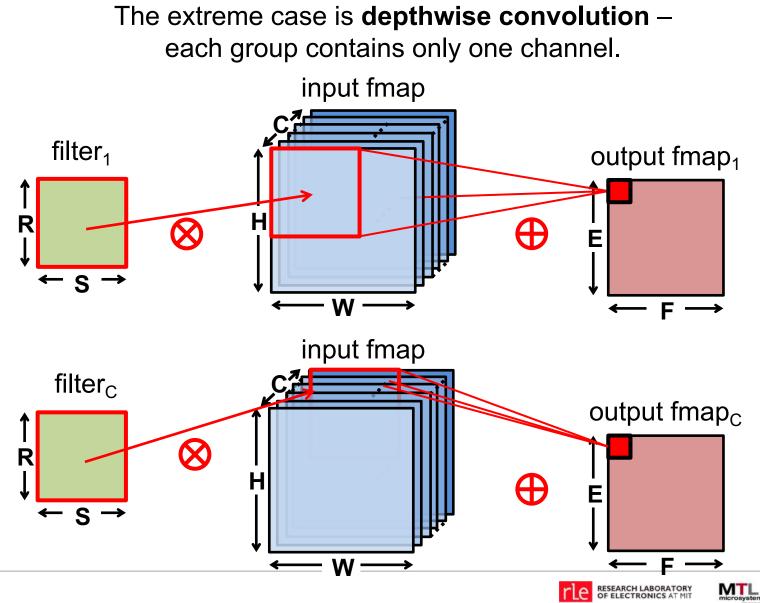
l'liiT

Idea: split filters and channels of feature map into different groups Example: 2 groups, each filter requires **2x fewer weights and multiplications**.



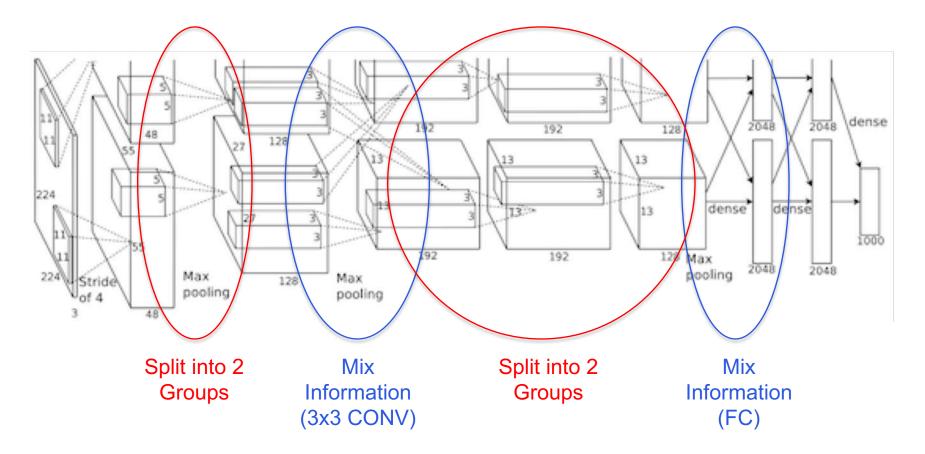
II7 Group of Filters

1411



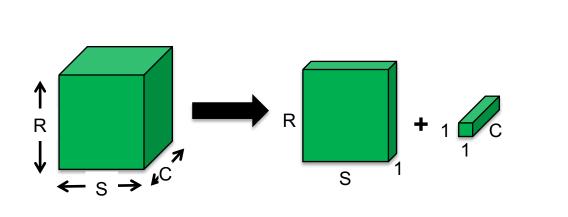
118 Group of Filters

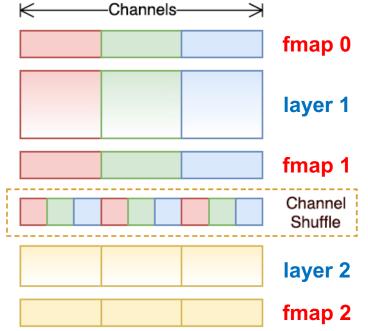
AlexNet uses group of filters to train on two separate GPUs (Drawback: correlation between channels of different groups is not used)



Group of Filters

Two ways of mixing information from groups





Pointwise (1x1) Convolution (Mix in one step) MobileNet Shuffle Operation (Mix in multiple steps) ShuffleNet

MobileNets: Comparison

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameter
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

 Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameter
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60



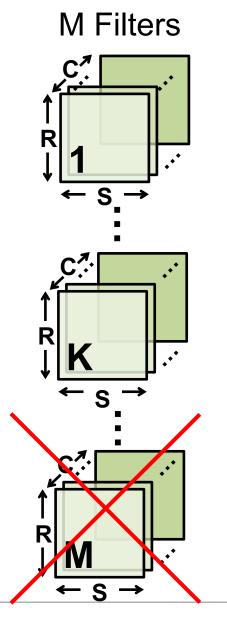
¹²¹ Simplify CONV Layers

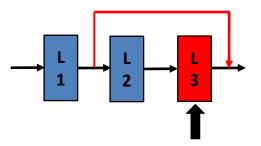


Methods can be roughly categorized by how the filters are simplified:

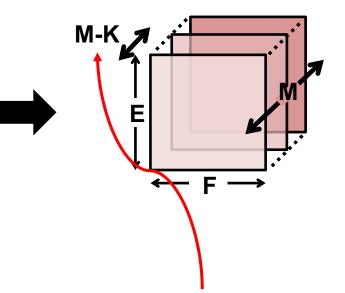
- Reduce spatial size (R, S): stacked filters
- Reduce channels (C): 1x1 convolution, group of filters
- Reduce filters (M): feature map reuse

122 Feature Map Reuse



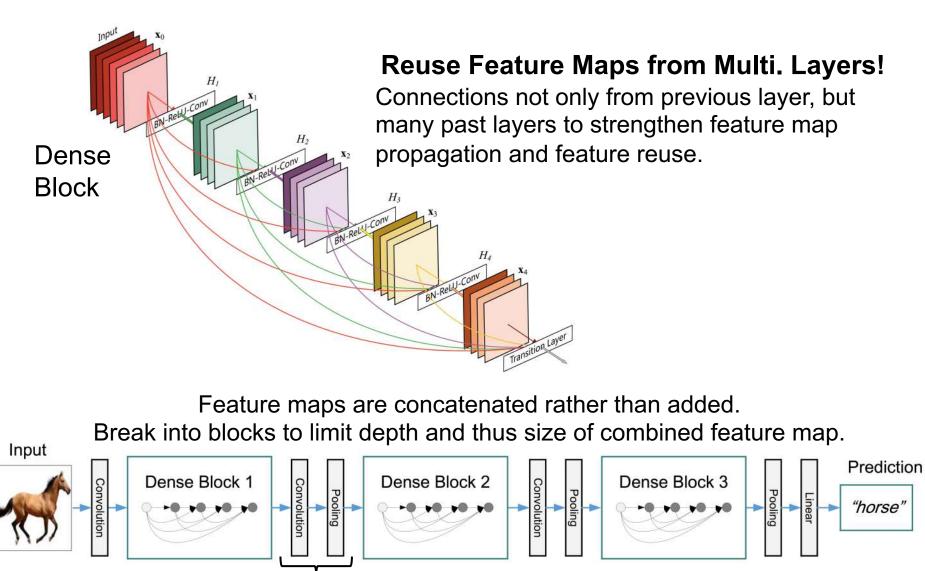


output fmap with M channels



Reuse (M-K) channels in feature maps from previously processed layers

Feature Map Reuse 123



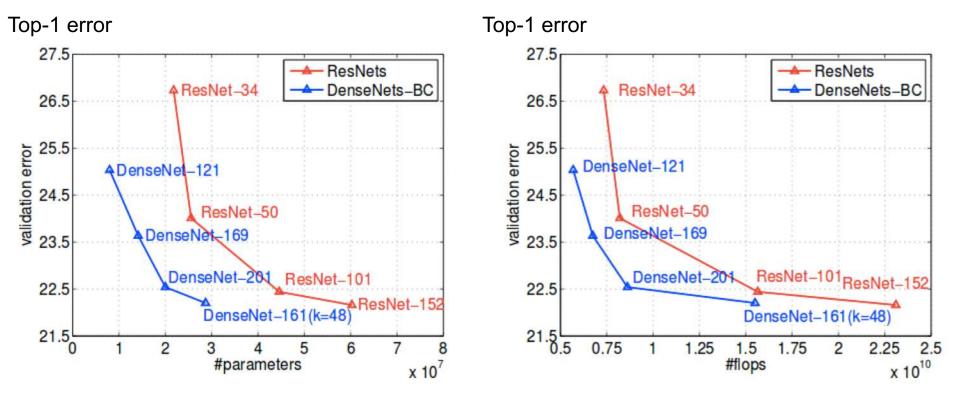
Transition layers

[Huang et al., CVPR 2017]

l'liiT

124 **DenseNet**

Higher accuracy than ResNet with fewer weights and multiplications

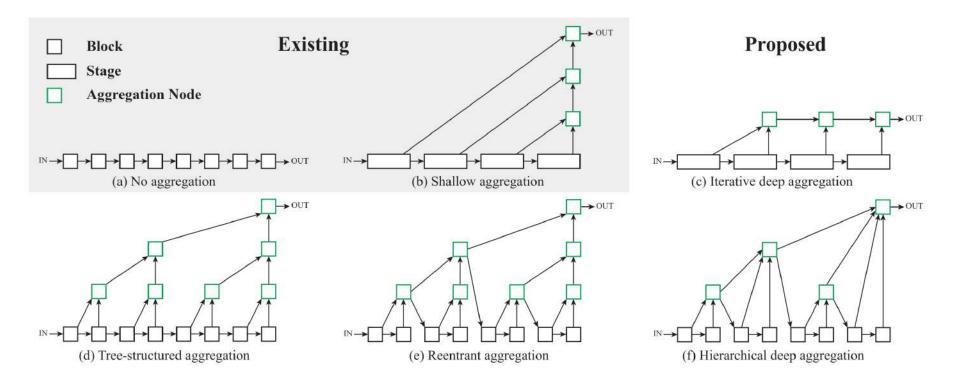


Note: 1 MAC = 2 FLOPS

[Huang et al., CVPR 2017]

125 Feature Map Reuse

More complicated layer aggregation



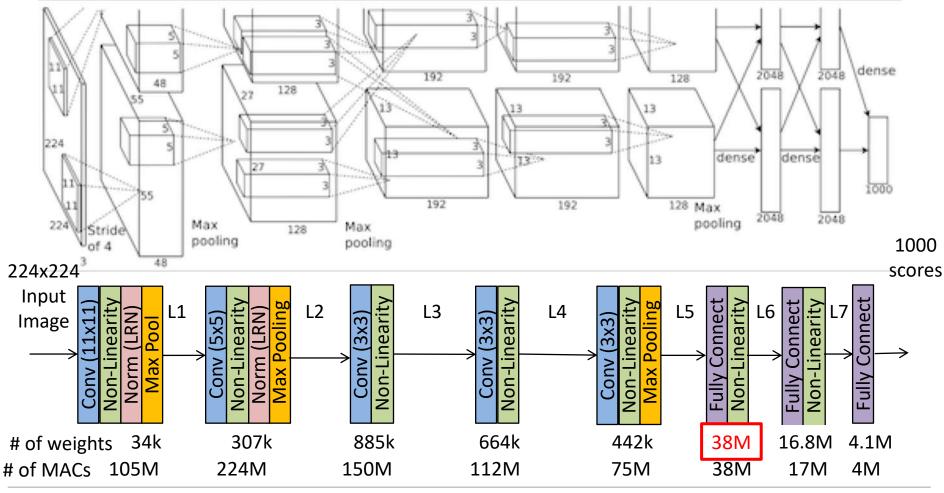
[Yu et al., CVPR 2018]

126 Simplify FC Layers

CONV Layers: 5 Fully Connected Layers: 3 Weights: 61M MACs: 724M

ILSCVR12 Winner

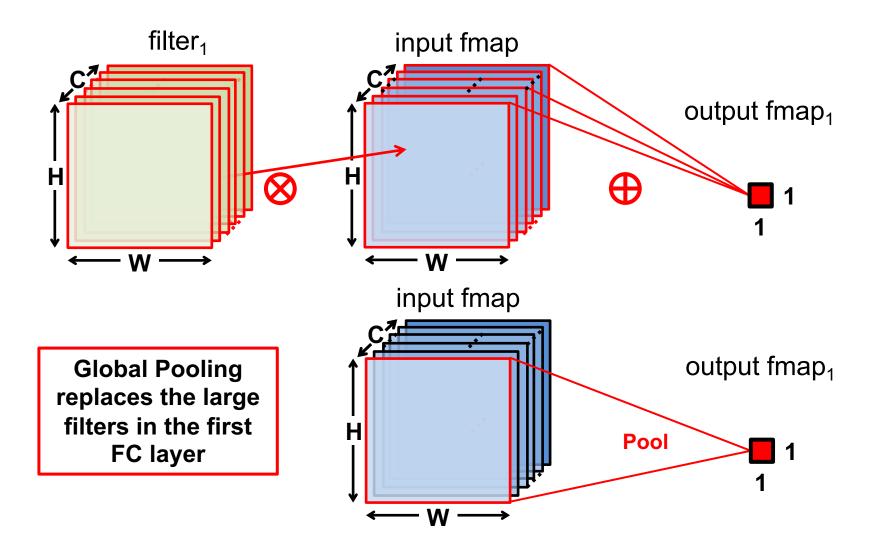
[Krizhevsky et al., NIPS 2012]



мт

tems technology laboratories

127 Simplify FC Layers



[Lin et al., ICLR 2014]

128 Knowledge Distillation



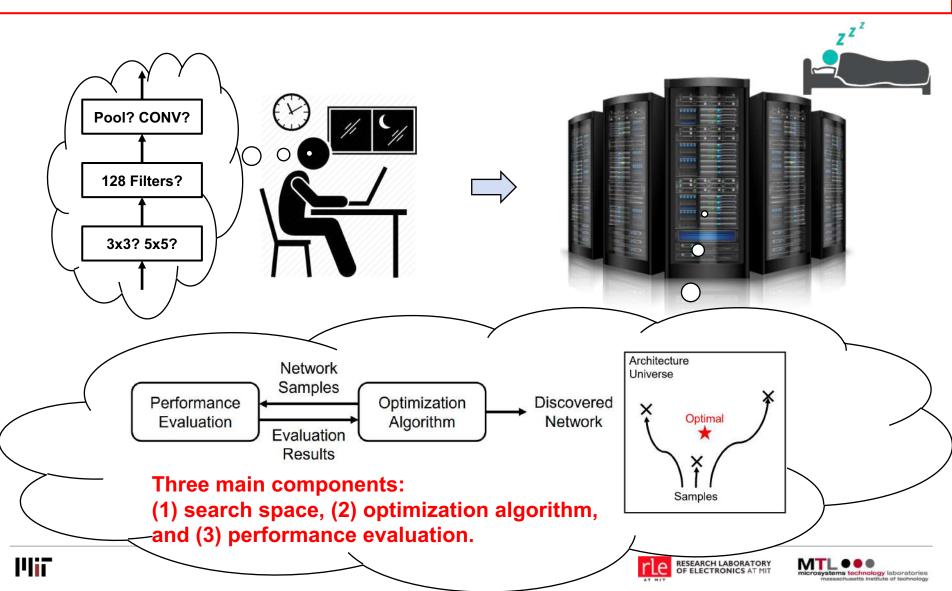
[Bucilu et al., KDD 2006], [Hinton et al., arXiv 2015]

129

Network Architecture Search (NAS)

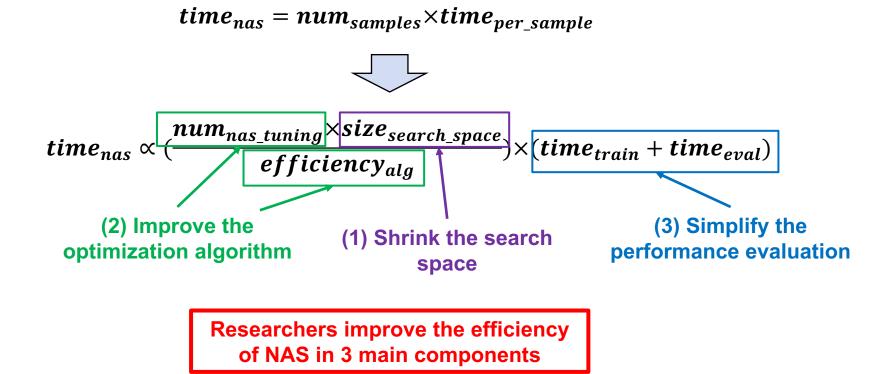
130 Learn Network Architecture

Rather than handcrafting the architecture, automatically search for it

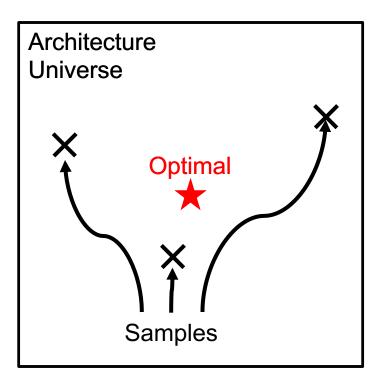


Evaluate NAS Performance 131

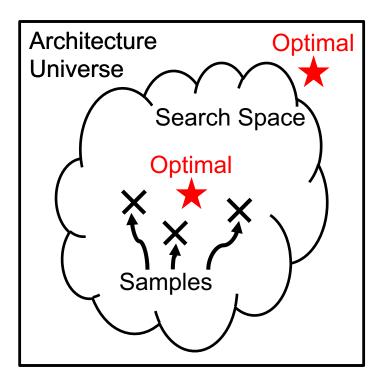
- Key Metrics
 - Achievable DNN accuracy
 - Required search time



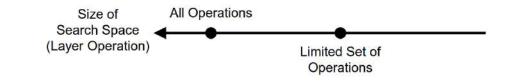
• Trade the discoverable architectures for search speed



- Trade the discoverable architectures for search speed
- May irrecoverably limit the achievable network performance
 - Domain knowledge learned in manual network design provides guidance



• Search space = <u>layer operations</u> + connections between layers

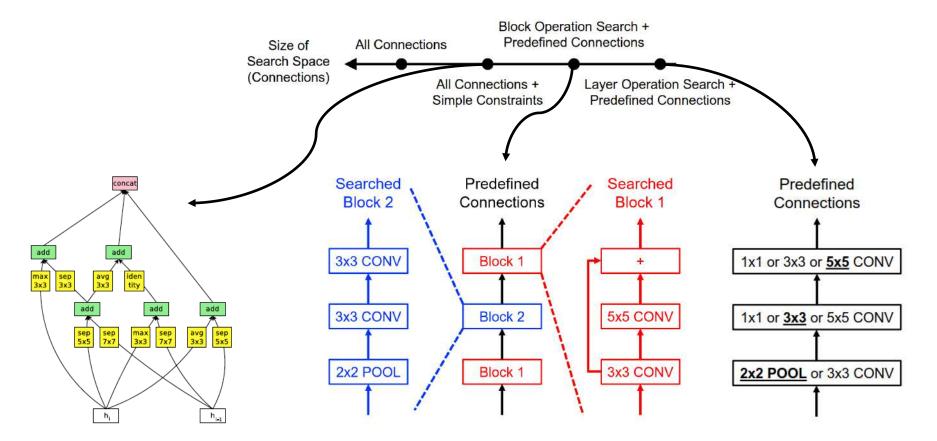


Common layer operations:

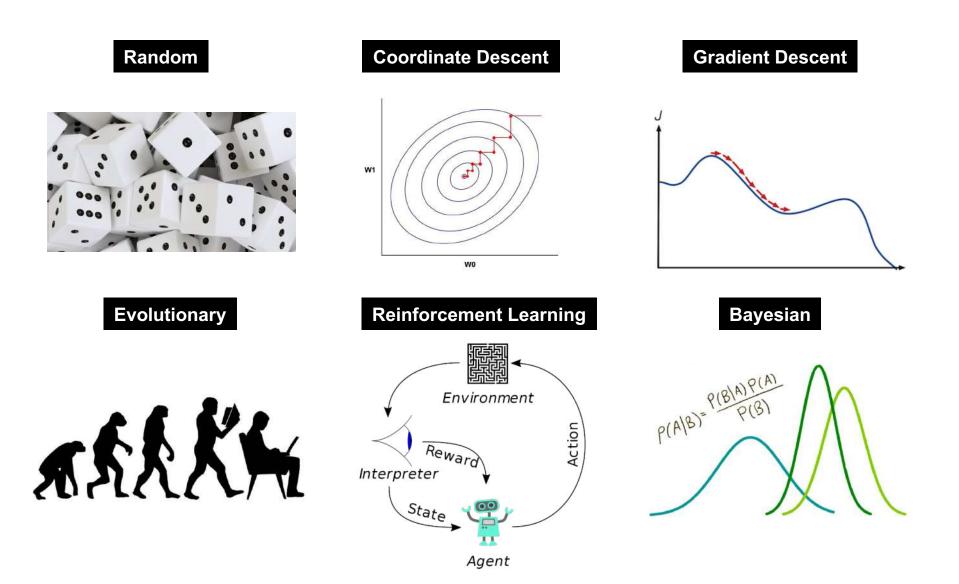
- Identity
- 1x3 then 3x1 convolution
- 1x7 then 7x1 convolution
- 3x3 dilated convolution
- 1x1 convolution
- 3x3 convolution

- 3x3 separable convolution
- 5x5 separable convolution
- 3x3 average pooling
- 3x3 max pooling
- 5x5 max pooling
- 7x7 max pooling

Search space = layer operations + <u>connections between layers</u>



(2) Improve Optimization Algorithm

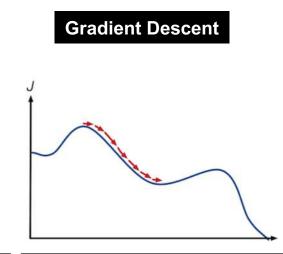


137 (2) Improve Optimization Algorithm

Random

W1

Coordinate Descent



Randomly samples the entire space

- Simple
- Does not use previous results

Starts from the previous best sample and greedily finds the best direction to move

- Uses previous results
- Simple
- Limited number of directions

Starts from the previous best sample and goes in the direction that has the largest gradient

- Explores more directions
- The metric should be differentiable

138 (2) Improve Optimization Algorithm

п Г

Starts from the previous	Learns from the previous	Models the entire surface
best sample and goes in	samples and infers the	of the search space and
the best randomly-	best sample	picks the best sample
sampled direction	Better uses the	Gets rid of the iterative
The metric does not	previous samples	process
need to be differentiable	 Needs to design and train the agent 	Hard to model a large search space
More complicated		
Evolutionary	Reinforcement Learning	Bayesian
AKKK	Environment	$P(A B)^{2} \frac{P(B A)P(A)}{P(B)}$

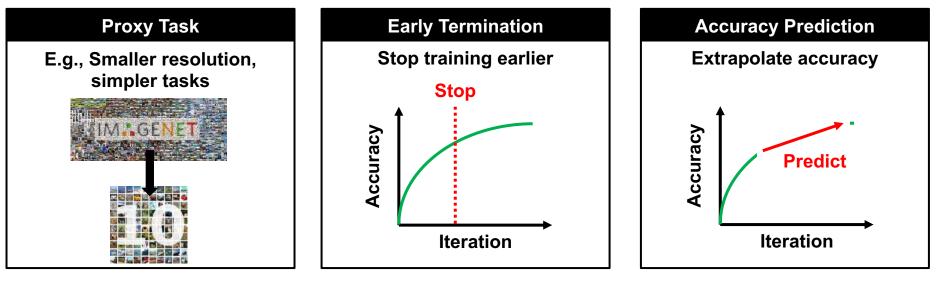
Г

MTL • • •

microsystems technology laboratories massachusetts institute of technology

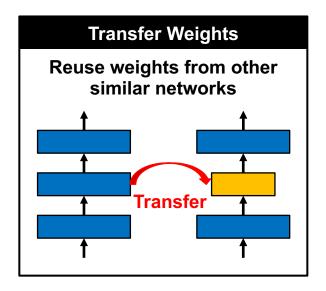
- NAS needs only the <u>rank</u> of the performance values
- Method 1: approximate accuracy
- Method 2: approximate weights
- Method 3: approximate metrics (e.g., latency, energy)

- NAS needs only the <u>rank</u> of the performance values
- Method 1: approximate accuracy

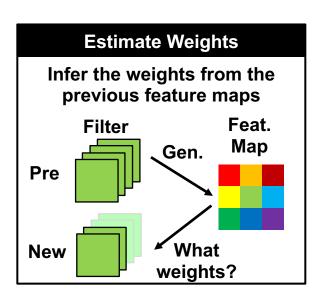


- Method 2: approximate weights
- Method 3: approximate metrics

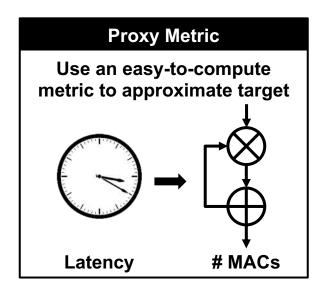
- NAS needs only the <u>rank</u> of the performance values
- Method 1: approximate accuracy
- Method 2: approximate weights

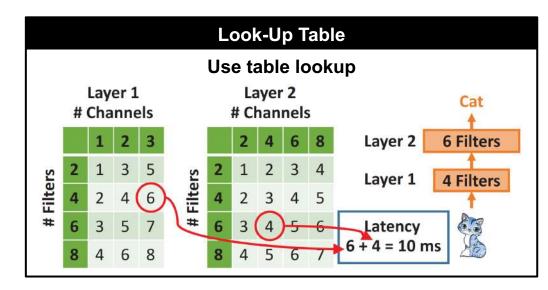


Method 3: approximate metrics



- NAS needs only the <u>rank</u> of the performance values
- Method 1: approximate accuracy
- Method 2: approximate weights
- Method 3: approximate metrics (e.g., latency, energy)





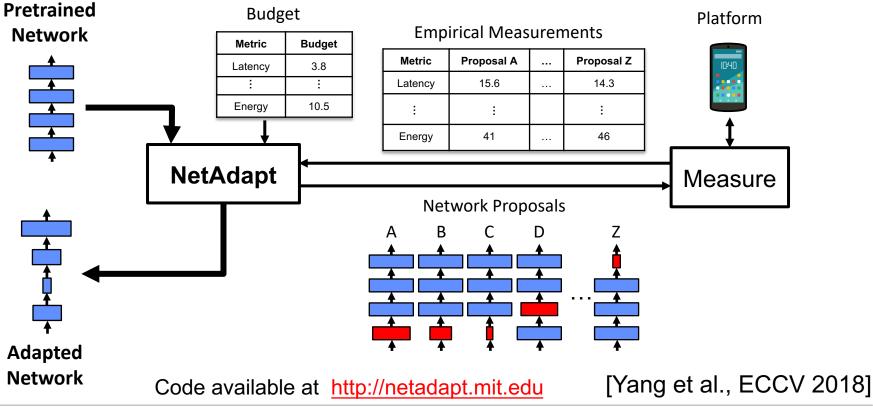
143 Other Things to Know

- The components may not be chosen individually
 - Some optimization algorithms limit the search space
 - Using direct hardware metrics may limit the selection of the optimization algorithms

- Commonly overlooked properties
 - The complexity of implementation and usage
 - The ease of tuning
 - The probability of convergence to a good architecture

144 NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- An example of coordinate descent NAS



IIII In collaboration with Google's Mobile Vision Team

ms technology laboratories

Problem Formulation

 $\max_{Net} Acc(Net) \text{ subject to } Res_j(Net) \leq Bud_j, j = 1, \cdots, m$

Break into a set of simpler problems and solve iteratively

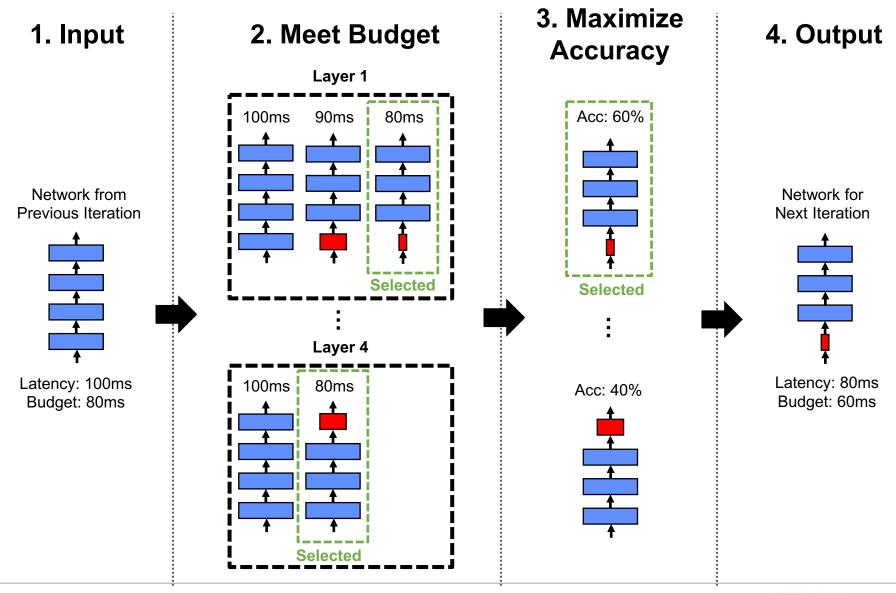
 $\max_{Net_i} Acc(Net_i) \text{ subject to } Res_j(Net_i) \leq Res_j(Net_{i-1}) - \Delta R_{i,j}, j = 1, \cdots, m$

**Acc*: accuracy function, *Res*: resource evaluation function, *ΔR*: resource reduction, *Bud*: given budget

Advantages

- Supports multiple resource budgets at the same time
- Guarantees that the budgets will be satisfied because the resource consumption decreases monotonically
- Generates a family of networks (from each iteration) with different resource versus accuracy trade-offs

¹⁴⁶ Simplified Example of One Iteration

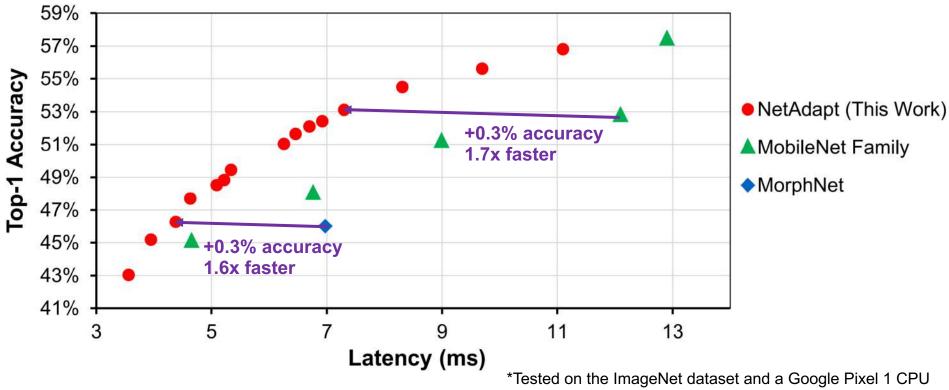


Code available at http://netadapt.mit.edu

ns technology laboratories

147 Improved Latency vs. Accuracy Tradeoff

 NetAdapt boosts the real inference speed of MobileNet by up to 1.7x with higher accuracy

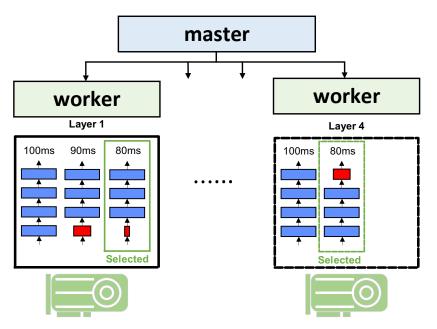


Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks", CVPR 2018

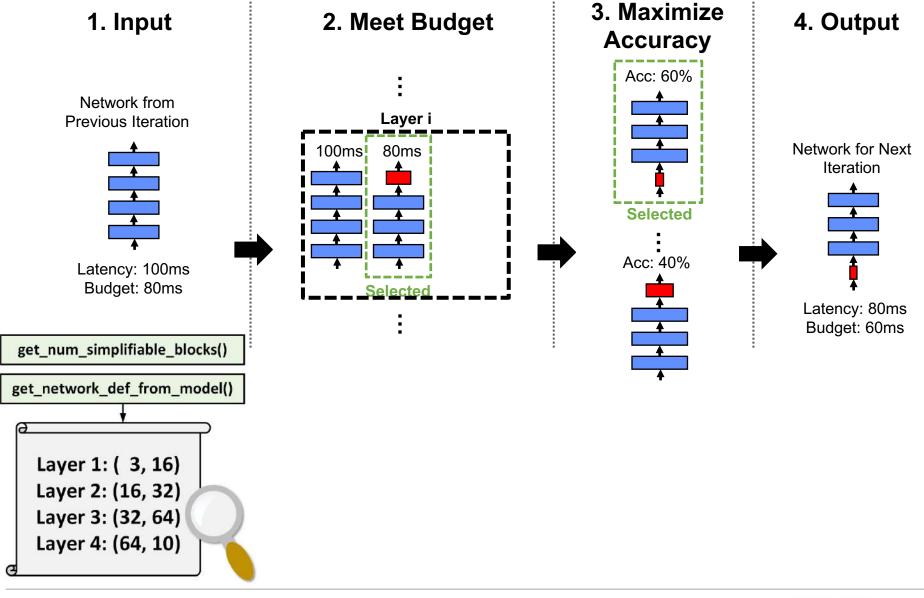
[Yang et al., ECCV 2018]

- Reimplemented framework on PyTorch
- Flexible: can support different networks and tasks
- Scalable: spawn multiple workers to simplify networks in parallel

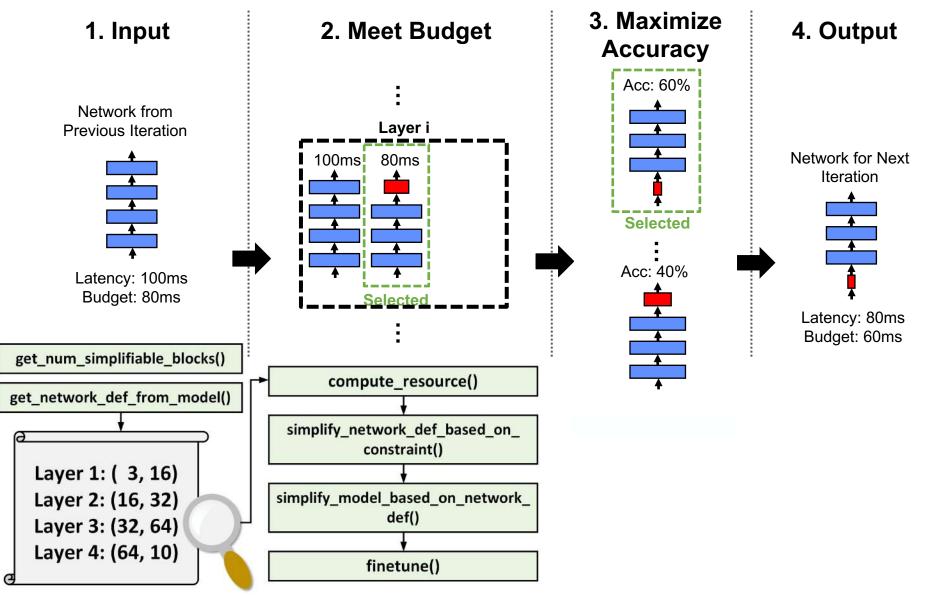


• Easy-to-use: require implementing only one file (8 functions)

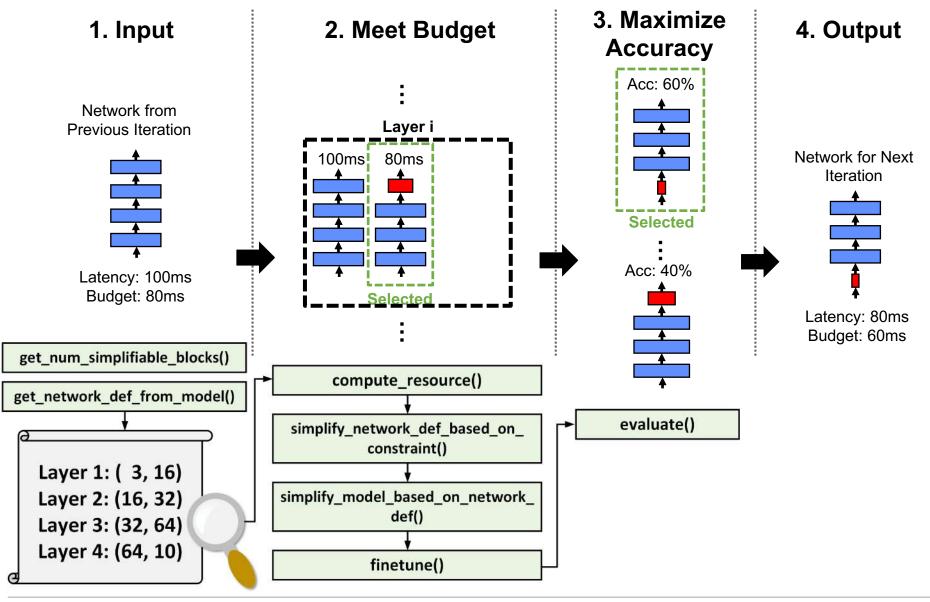
Code available at https://github.com/denru01/netadapt



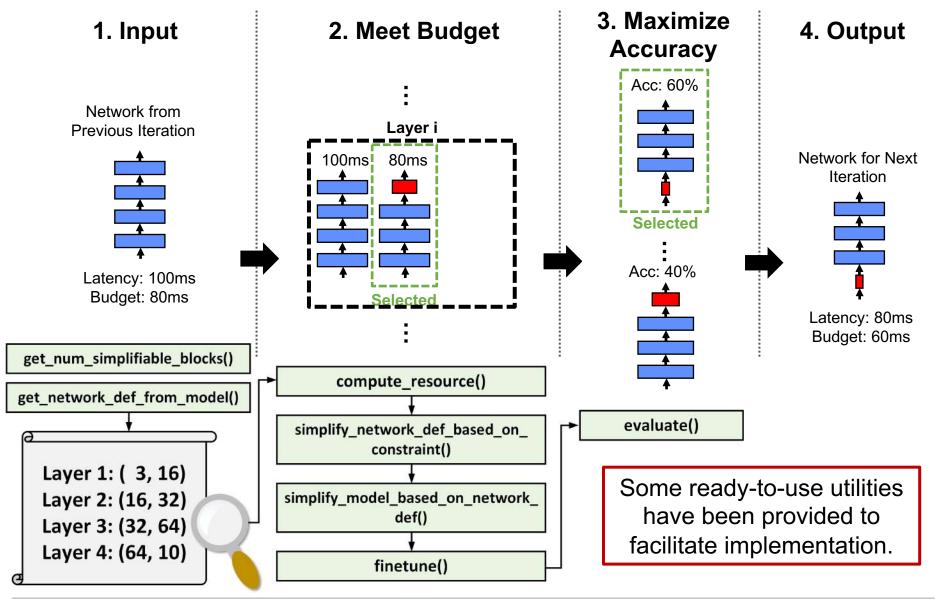
RESEARCH LABORATORY OF ELECTRONICS AT MIT



|'||iT



|'||iT

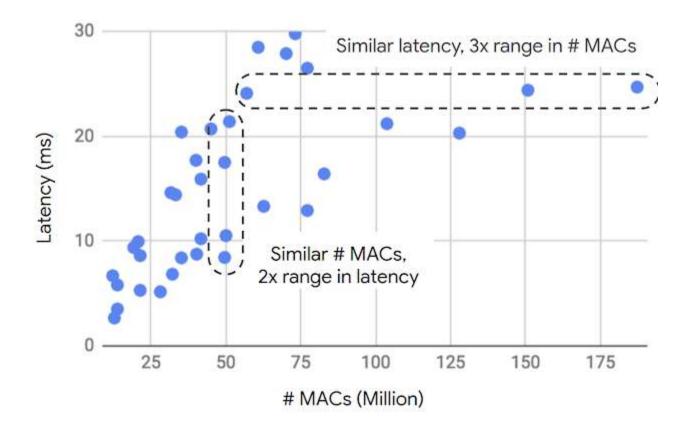


1411

Hardware In the Loop

¹⁵⁴ # of Operations vs. Latency

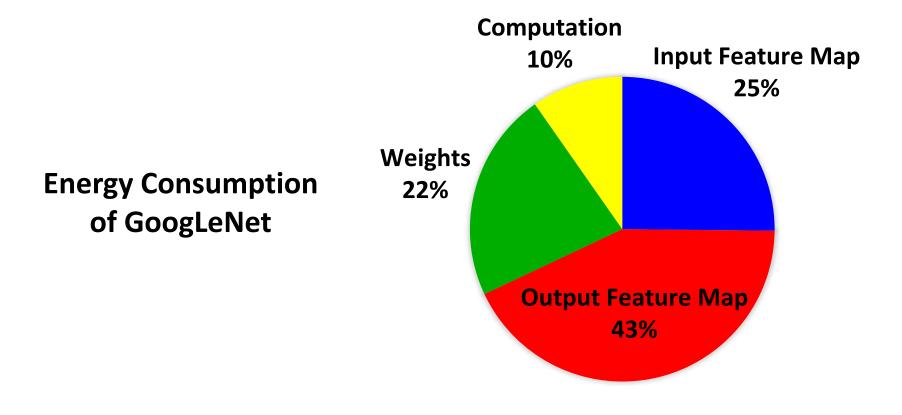
• # of operations (MACs) does not approximate latency well



Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

¹⁵⁵ # of Weights vs. Energy

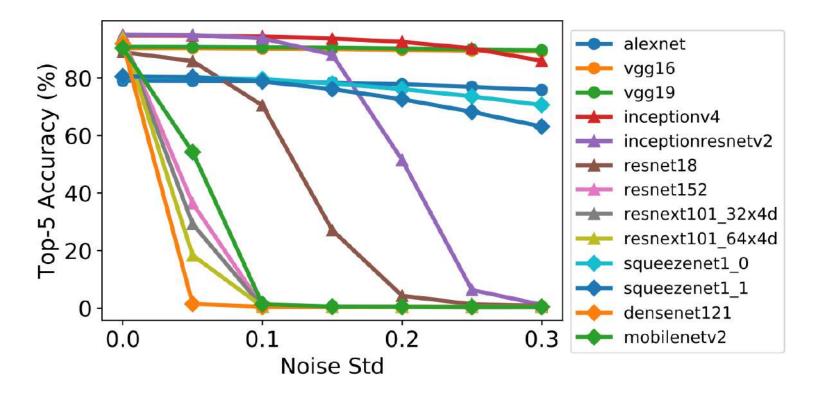
- Number of weights *alone* is not a good metric for energy
- All data types should be considered



[Yang et al., CVPR 2017]

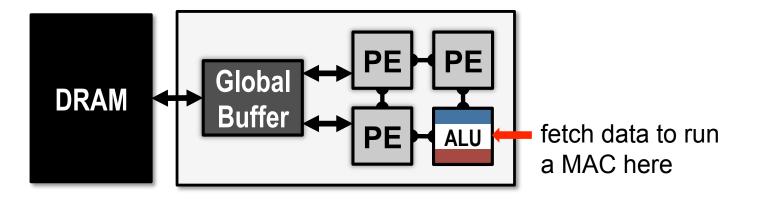
156 Other Hardware Metrics

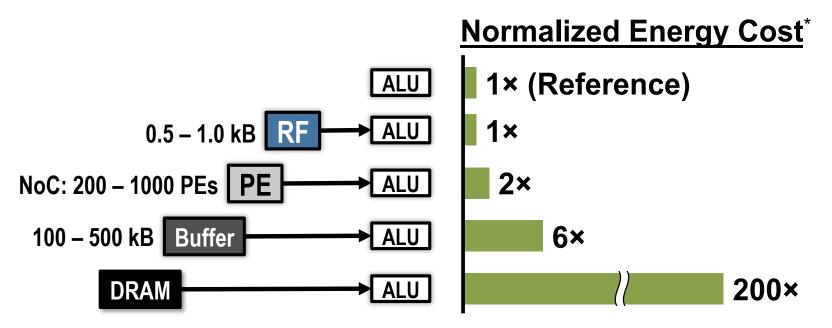
• E.g., noise resilience in analog accelerators



DNN model that gives highest accuracy on a digital processor may not be the best for an analog processor

¹⁵⁷ Data Movement is Expensive



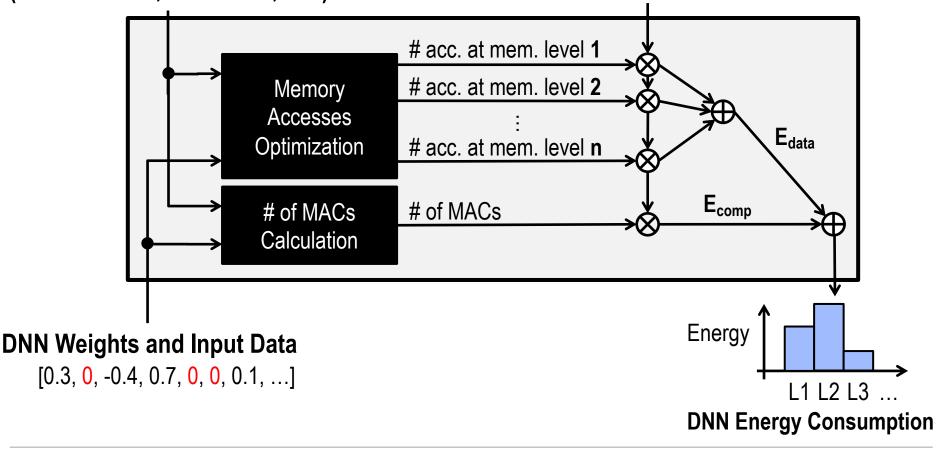


* measured from a commercial 65nm process

Energy of weight depends on **memory hierarchy** and **dataflow**

158 Energy Estimation Methodology

Hardware Energy Costs of each MAC and Memory Access



Phir

159 Energy Estimation Tool V1

Website: https://energyestimation.mit.edu/

Deep Neural Network Energy Estimation Tool

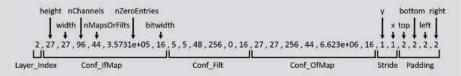
Overview

This Deep Neural Network Energy Estimation Tool is used for evaluating and designing energy-efficient deep neural networks that are critical for embedded deep learning processing. Energy estimation was used in the development of the energy-aware pruning method (Yang et al., CVPR 2017), which reduced the energy consumption of AlexNet and GoogLeNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified version of the energy estimation tool for shorter runtime (around 10 seconds).

Input

14117

To support the variety of toolboxes, this tool takes a single network configuration file. The network configuration file is a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is:



- · Layer Index; the index of the layer, from 1 to the number of layers. It should be the same as the line number.
- <u>Conf IfMap, Conf Filt, Conf OfMap</u>: the configuration of the input feature maps, the filters and the output feature maps. The configuration of each of the three data types is in the format of "height width number_of_channels number_of_maps_or_filts number_of_zero_entries bitwidth_in_bits".
- <u>Stride</u>: the stride of this layer. It is in the format of "stride_y stride_x".
- <u>Pad:</u> the amount of input padding. It is in the format of "pad_top pad_bottom pad_left pad_right".

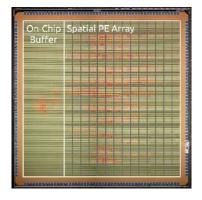
Therefore, there will be 25 entries separated by commas in each line.

Running the Estimation Model

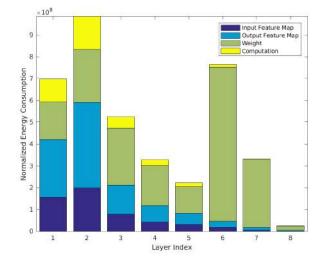
After creating your text file, follow these steps to upload your text file and run the estimation model:

- 1. Check the "I am not a robot" checkbox and complete the Google reCAPTCHA challenge. Heip us prevent spam.
- 2. Click the "Choose File" button below to choose your text file from your computer.
- 3. Click the "Run Estimation Model" button below to upload your text file and run the estimation model.

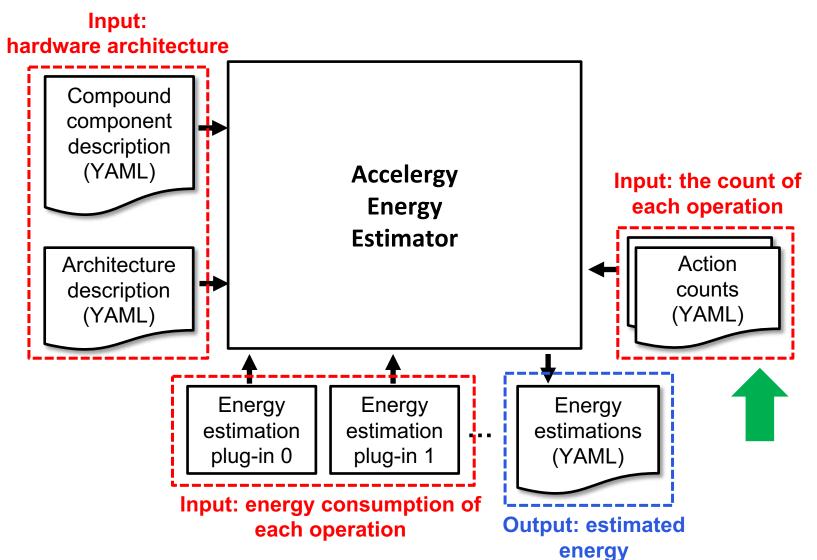
Eyeriss V1



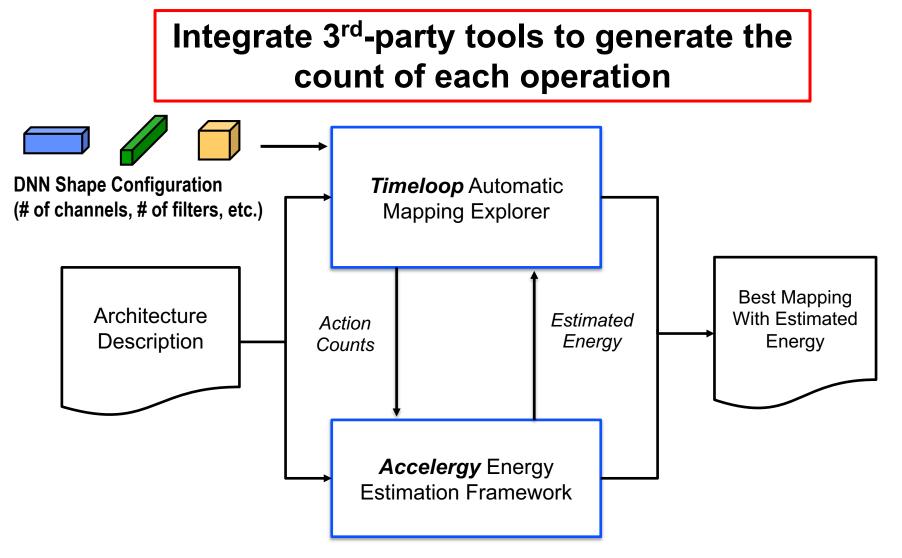
Output DNN energy breakdown across layers



160 Energy Estimation Tool V2 - Accelergy



161 Energy Estimation Tool V2 - Accelergy



Tutorial at MICRO 2019: http://accelergy.mit.edu/tutorial.html

162 Energy Estimation Tool V2 - Accelergy

Website: https://accelergy.mit.edu/

Code 🕕 Issues 0 11	Pull requests 0 🛛 🕅 Project	s 0 📧 Wiki 🕕 Secu	irity 🔟 Insights			
o description, website, or top	pics provided.					
D 22 commits		🛇 1 release	2 contributors		s <u>t</u> s MIT	
Branch: master 👻 New pull requ	uest		Create new file	Upload files	Find File	Clone or download
nelliewu95 Delete ERT_generate	or_old.py				Latest com	mit Fb37b81 2 days ag
accelergy	Delete ERT_generator_old.py					2 days ag
examples	v0.2 initial milestone		2 days ago			
share	compound class v0.2 parsing					3 days ag
gitignore	v0.2 initial milestone			2 days ago		
	initial commit		3 months ago			
README.md	v0.2 initial milestone		2 days ago			
setup.py	separation of v0	1				3 days ago

Accelergy infrastructure (version 0.2)

An infrastructure for architecture-level energy estimations of accelerator designs. Project website: http://accelergy.mit.edu

Get started

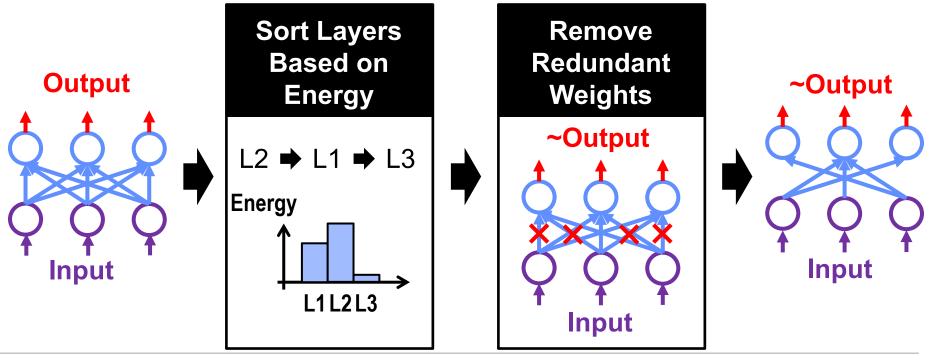
Infrastructure tested on RedHat Linuv6 WLS

Output DNN energy breakdown across components

hierarchy.PE[0].ifmap_sp: 140.0 hierarchy.PE[0].mac[0]: 70.0 hierarchy.PE[0].mac[1]: 70.0 hierarchy.PE[1].ifmap_sp: 180.0 hierarchy.PE[1].mac[0]: 70.0 hierarchy.PE[1].mac[1]: 70.0 hierarchy.weights glb: 5400.0

163 Energy-Aware Pruning

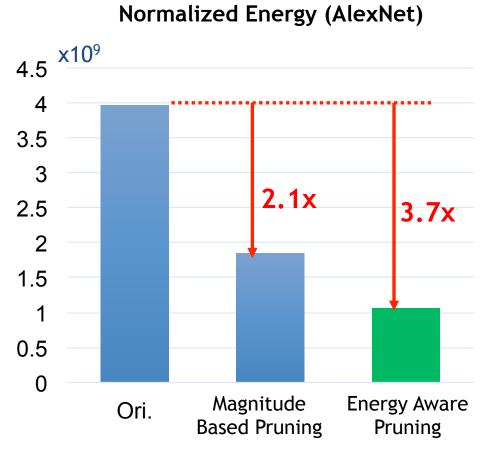
- Problem formulation: $\min_{Net} Erg(Net)$ subject to $Acc(Net) \ge Th$
- Reduces energy by removing redundant weights
- Uses estimated energy to guide the layer-by-layer pruning
 - Prunes the layer that consume the most energy first



164 Energy-Aware Pruning

Directly target energy and incorporate it into the optimization of DNNs to provide greater energy savings

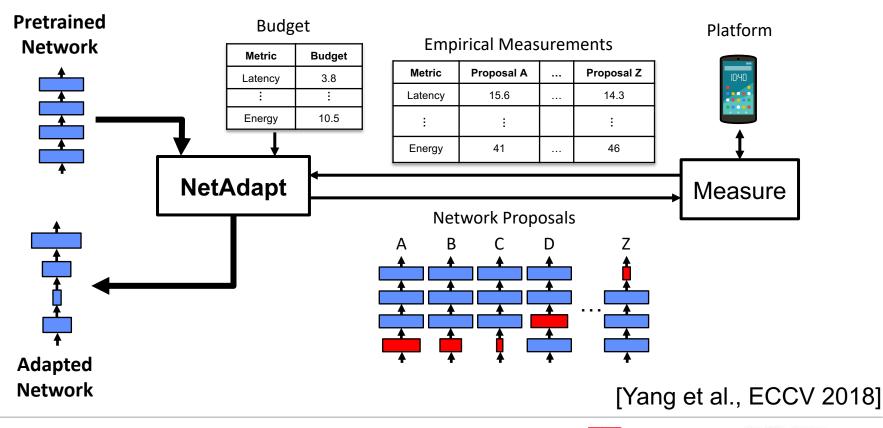
- Sort layers based on energy and prune layers that consume most energy first
- EAP reduces AlexNet energy by
 3.7x and outperforms the previous work that uses magnitude-based pruning by **1.7x**



Pruned models available at http://eyeriss.mit.edu/energy.html

¹⁶⁵ NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use **empirical measurements** to guide optimization (avoid modeling of tool chain or platform architecture)



RESEARCH LABORATORY OF ELECTRONICS AT MIT

ms technology laboratories

IIII In collaboration with Google's Mobile Vision Team

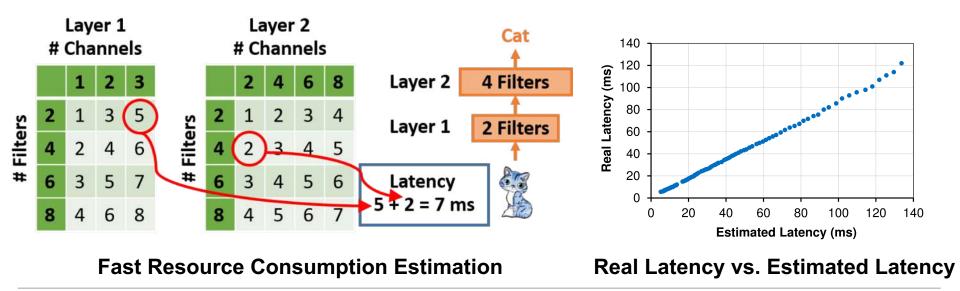
NetAdapt: Using Direct Metrics is Important

- If NetAdapt was guided by the number of MACs, it would also achieve a better accuracy-MAC trade-off
- However, it does not mean lower latency
- It is important to incorporate direct metrics rather than indirect metrics into the design of DNNs

Network	Top-1 Accuracy	# of MACs (M)	Latency (ms)
Small MobileNet V1	45.1 (+0)	13.6 (100%)	4.65 (100%)
NetAdapt	46.3 (+1.2)	11.0 (81%)	6.01 (129%)
Large MobileNet V1	68.8 (+0)	325.4 (100%)	69.3 (100%)
NetAdapt	69.1 (+0.3)	284.3 (87%)	74.9 (108%)

NetAdapt: Fast Resource Consumption Estimation

- Taking measurements can be slow due to the long turn-around time and the limited number of platforms
- Solution: use per-layer lookup tables
 - The network latency can be estimated by the sum of the latency of each layer
 - The layers with the same configuration only need to be measured once
 - The network-wise lookup table grows exponentially with the number of layers



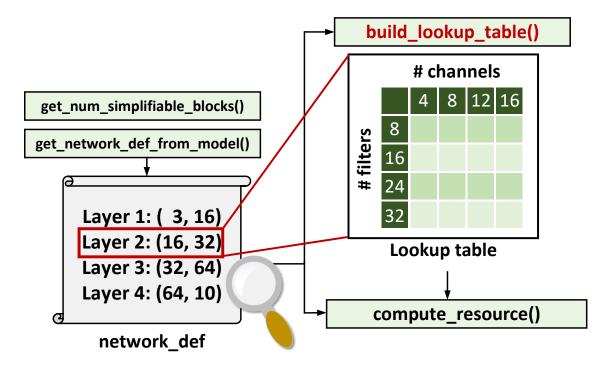
RESEARCH LABORATORY OF ELECTRONICS AT MIT

ms technology laboratories

Phir

¹⁶⁸ NetAdapt: Code

Support building and using lookup tables

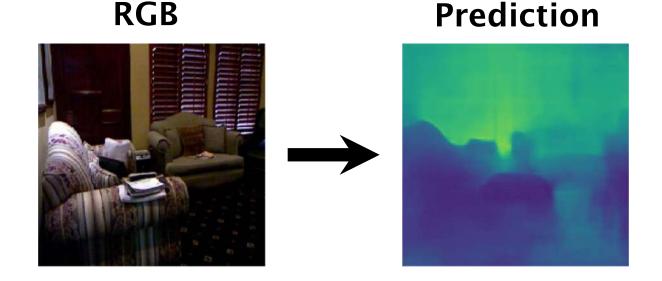


Code available at https://github.com/denru01/netadapt

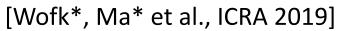
Part 3: Applications (Beyond Image Classification)

170 FastDepth: Fast Monocular Depth Estimation

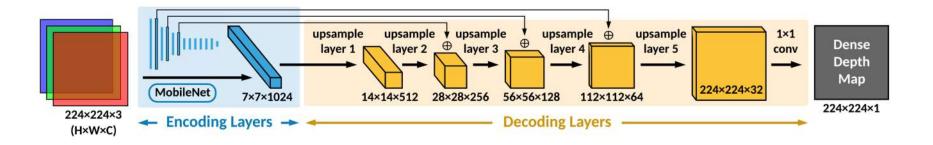
- Real-time low-power depth sensing is critical for navigation of small robotic vehicles.
- Depth estimation from a single RGB image desirable, due to the relatively low cost and size of monocular cameras.



Our goal is to enable high accuracy, low latency, high throughput monocular depth estimation on a deployable embedded system.

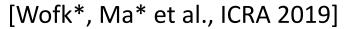


171 Efficient Network Design for FastDepth



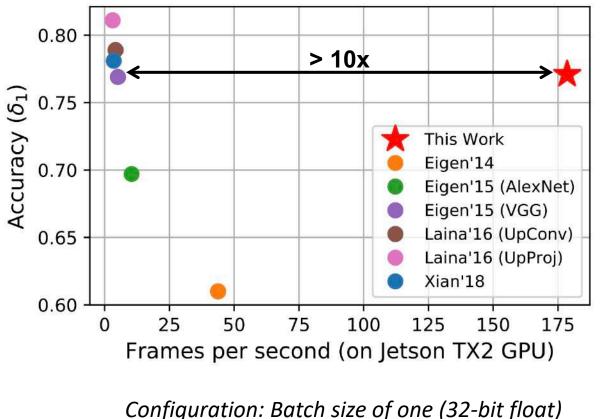
FastDepth achieves high frame rates through

- An efficient and lightweight encoder-decoder network architecture with a low-latency decoder design incorporating depthwise separable layers and additive skip connections
- Network pruning (NetAdapt) applied to whole encoder-decoder network
- Platform-specific compilation (TVM) targeting embedded systems

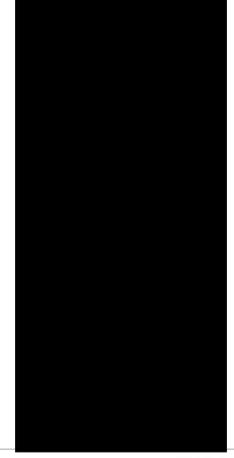


172 FastDepth: Fast Monocular Depth Estimation

Depth estimation at **high frame rates on an embedded platform** (an order of magnitude faster than previous approaches) while still maintaining accuracy



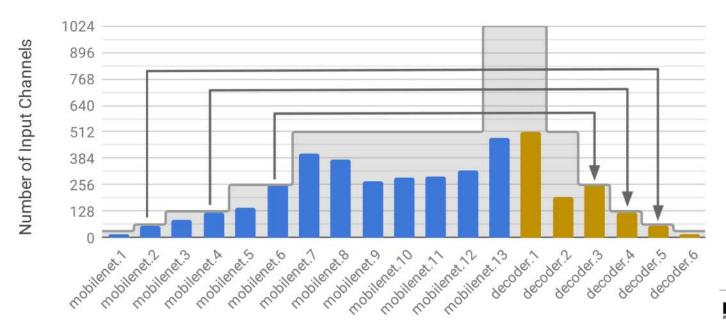
 IIIii
 Models available at http://fastdepth.mit.edu



~40fps on an iPhone

173 Simplify Network by NetAdapt

	Before Pruning	After Pruning	Reduction
Weights	3.93M	1.34M	$2.9 \times$
MACs	0.74G	0.37G	$2.0 \times$
RMSE	0.599	0.604	-
δ_1	0.775	0.771	-
CPU [ms]	66	37	$1.8 \times$
GPU [ms]	8.2	5.6	$1.5 \times$



1411

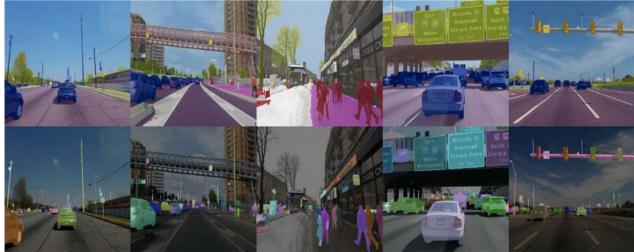
nicrosystems technology laboratories

DeeperLab: Single-Shot Image Parser

Results from Xception

technology laboratories

Joint Semantic and Instance Segmentation (high resolution input image)



One-shot parsing for efficient processing

 Fully convolutional, one-shot parsing (bottom-up approach)
 One backbone for two tasks

 http://deeperlab.mit.edu/
 Fully-Convolutional Network

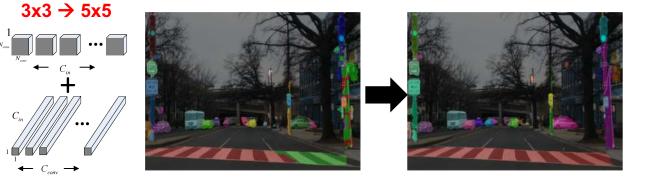
 [Yang et al., arXiv 2019]
 Image

In collaboration with Google's Mobile Vision Team

DeeperLab: Efficient Image Parsing

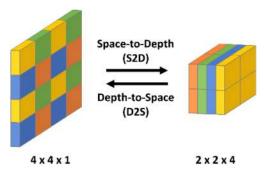
Address memory requirement for large feature map

Wide MobileNet: Increase kernel size rather than depth



2

Space-to-depth/depth-to-space: Avoid upsampling



Achieves near real-time 6.19 fps on GPU (V100) with 25.2% PQ and 49.8% PC on Mapillary Vistas dataset

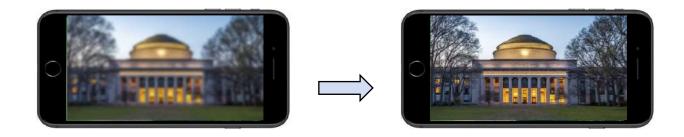
http://deeperlab.mit.edu/

Applications (Beyond DNN Acceleration)

177 Super-Resolution on Mobile Devices

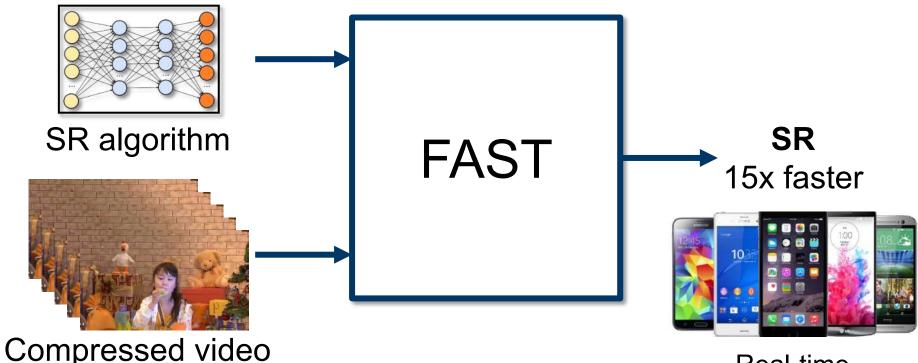
Transmit low resolution for lower bandwidth

Screens are getting larger



Use **super-resolution** to improve the viewing experience of lower-resolution content (*reduce communication bandwidth*)

IT8 FAST: A Framework to Accelerate SuperRes



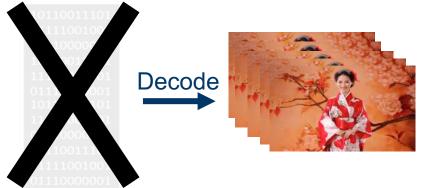
Real-time

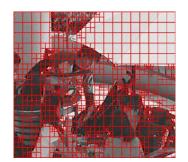
A framework that accelerates **any SR** algorithm by up to **15x** when running on compressed videos

[Zhang et al., CVPRW 2017]

Phir

¹⁷⁹ Free Information in Compressed Videos





Compressed video

Pixels

Block-structure

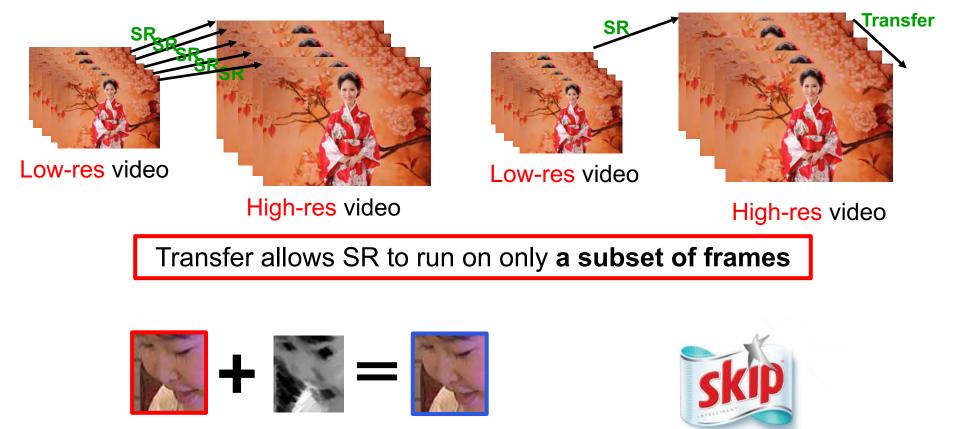
Motion-compensation

Video as a stack of pixels

Representation in compressed video

This representation can help accelerate super-resolution

180 Transfer is Lightweight



Fractional Bicubic Interpolation

Skip Flag

The complexity of the transfer is comparable to bicubic interpolation. Transfer N frames, accelerate by N

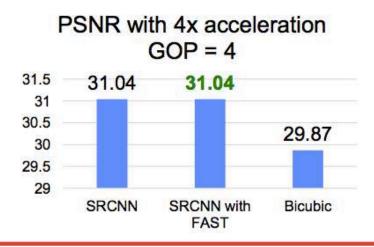
181 Evaluation: Accelerating SRCNN

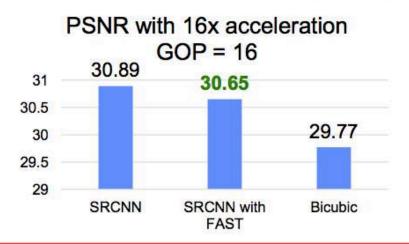
PartyScene

RaceHorse

BasketballPass

Examples of videos in the test set (20 videos for HEVC development)





 $4 \times$ acceleration with NO PSNR LOSS. $16 \times$ acceleration with 0.2 dB loss of PSNR

182 Visual Evaluation

SRCNN FAST + SRCNN

Look *beyond* the DNN accelerator for opportunities to accelerate DNN processing (e.g., structure of data and temporal correlation)

Code released at <u>www.rle.mit.edu/eems/fast</u>

|'|iT

[Zhang et al., CVPRW 2017]

Bicubic

- DNNs are a critical component in the AI revolution, delivering record breaking accuracy on many important AI tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to **evaluate with the appropriate workload** in term of both input and model, and recognize that they are **evolving rapidly**.
- It's important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, speed, energy, and cost

184 Additional Resources

Overview Paper

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, Dec. 2017 Book Coming Soon!

More info about **Tutorial on DNN Architectures** <u>http://eyeriss.mit.edu/tutorial.html</u>

Efficient Processing of Deep Neural Networks: A Tutorial and Survey System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond

Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Futur Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

MIT Professional Education Course on "Designing Efficient Deep Learning Systems" <u>http://professional-education.mit.edu/deeplearning</u>

For updates **Y** Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

• Overview on DNN and Popular DNN Models

- *Ioffe, Sergey, and Christian Szegedy.* "Batch normalization: Accelerating deep network training by reducing internal covariate shift," ICML 2015.
- LeNet: LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proc. IEEE 1998.
- AlexNet: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS. 2012.
- **VGGNet**: Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR 2015.
- **GoogleNet**: Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR 2015.
- **ResNet**: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR 2016.
- **DenseNet**: Huang, Gao, et al. "Densely connected convolutional networks." CVPR 2017
- Wide ResNet: Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." BMVC 2017.
- ResNext: Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." CVPR 2017.

• Part 1: Energy-Efficient Hardware for Deep Neural Networks

- Project website: <u>http://eyeriss.mit.edu</u>
- Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.
- Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.
- Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), June 2019.
- Eyexam: <u>https://arxiv.org/abs/1807.07928</u>
- Limitations of Existing Efficient DNN Approaches
 - Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, "Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks," SysML Conference, February 2018.
 - V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.
 - Hardware Architecture for Deep Neural Networks: <u>http://eyeriss.mit.edu/tutorial.html</u>

Transforms for processing on GPU and CPUs

- Lavin, Andrew, and Gray, Scott, "Fast Algorithms for Convolutional Neural Networks," arXiv preprint arXiv:1509.09308 (2015)
- Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through FFTs." arXiv preprint arXiv:1312.5851 (2013).
- Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural networks." International Conference on Artificial Neural Networks. Springer International Publishing, 2014.

• Part 2: Co-Design of Algorithms and Hardware for Deep Neural Networks

- T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Energy estimation tool: <u>http://eyeriss.mit.edu/energy.html</u>
- T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018. <u>http://netadapt.mit.edu</u>
- T.-J. Yang, V. Sze, "Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators," IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 2019.
- Y. N. Wu, J. S. Emer, V. Sze, "Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs," International Conference on Computer Aided Design (ICCAD), November 2019. <u>http://accelergy.mit.edu</u>
- T.-J. Yang, Y.-H. Chen, J. Emer, V. Sze, "A Method to Estimate the Energy Consumption of Deep Neural Networks," Asilomar Conference on Signals, Systems and Computers, Invited Paper, October 2017.

- Reduced Precision
 - Courbariaux, Matthieu, and Yoshua Bengio. "Binarynet: Training deep neural networks with weights and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).
 - Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural networks with binary weights during propagations," NeurIPS, 2015
 - Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks," ECCV, 2016
 - Judd, Patrick, Jorge Albericio, and Andreas Moshovos. "Stripes: Bit-serial deep neural network computing." IEEE Computer Architecture Letters (2016).
 - Lee, Edward H., et al. "LogNet: Energy-efficient neural networks using logarithmic computation." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.
 - Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding," ICLR, 2016.

• Exploit Sparsity

- LeCun, Yann, et al. "Optimal brain damage," NIPS, 1989.
- Han, Song, et al. "Learning both weights and connections for efficient neural network," NeurIPS, 2015.
- T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Parashar, Angshuman, et al. "SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks." ISCA, 2017
- Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network," ISCA, 2016.
- Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), June 2019.

Manual Network Design

- Network in Network: Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014
- **MobileNet**: Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
- **ShuffleNet**: Zhang, Xiangyu, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices." arXiv preprint arXiv:1707.01083 (2017).
- Yu, Fisher, et al. "Deep layer aggregation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Neural Architecture Search

- Learning Network Architecture: Zoph, Barret, et al. "Learning Transferable Architectures for Scalable Image Recognition." arXiv preprint arXiv:1707.07012 (2017).
- T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018. <u>http://netadapt.mit.edu</u>

• Hardware In the Loop

- T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Energy estimation tool: <u>http://eyeriss.mit.edu/energy.html</u>
- T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018. <u>http://netadapt.mit.edu</u>
- T.-J. Yang, V. Sze, "Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators," IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 2019.
- Y. N. Wu, J. S. Emer, V. Sze, "Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs," International Conference on Computer Aided Design (ICCAD), November 2019. <u>http://accelergy.mit.edu</u>
- T.-J. Yang, Y.-H. Chen, J. Emer, V. Sze, "A Method to Estimate the Energy Consumption of Deep Neural Networks," Asilomar Conference on Signals, Systems and Computers, Invited Paper, October 2017.

• Part 3: Applications Beyond Image Classification

- D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, "FastDepth: Fast Monocular Depth Estimation on Embedded Systems," IEEE International Conference on Robotics and Automation (ICRA), May 2019. <u>http://fastdepth.mit.edu/</u>
- T.-J. Yang, M. D. Collins, Y. Zhu, J.-J. Hwang, T. Liu, X. Zhang, V. Sze, G. Papandreou, L.-C. Chen, "DeeperLab: Single-Shot Image Parser," arXiv, February 2019. <u>http://deeperlab.mit.edu</u>
- Z. Zhang, V. Sze, "FAST: A Framework to Accelerate Super-Resolution Processing on Compressed Videos," CVPR Workshop on New Trends in Image Restoration and Enhancement, July 2017. <u>www.rle.mit.edu/eems/fast</u>

