Hunting Cyclic Energy Wasters
Jim Paris, John Donnal, Robert Cox, and Steven Leeb

Abstract—Many useful electromechanical systems operate periodically. These systems may be configured to maintain a physical setpoint for temperature, pressure, or another environmental variable. Pathologies in these systems can result in significant energy waste. Non-intrusive power monitoring can find these energy wasters with a minimum of installed sensors.

Index Terms—Smart Grid, Cycling Systems

I. INTRODUCTION

A variety of electromechanical loads, important both for their commercial and industrial utility and also because of their energy consumption, run cyclically. These systems operate under some form of closed loop control intended to regulate an environmental set point. For example, a motor may run periodically to create liquid refrigerant in an HVAC system for cooling (temperature control), or to compress air for pneumatic tools (pressure control). In pathological situations, which arise all too often in the field, closed-loop control can lead to difficult-to-detect energy waste.

For example, vapor-compression refrigeration and air-conditioning systems typically employ a hysteretic control to operate a compressor cyclically, generating compressed working fluid in the condenser when cooling is needed. Unfortunately, a wide range of fault conditions can leave the system operating, but at reduced efficiency. Reference [1] conducted a survey of 6000 distinct faults over a six year period, indicating that many faults, including 82% of evaporator fouling faults and 86% of condenser fouling faults, failed to result in a “loss of comfort.” This means that the faulted systems continued to operate at reduced efficiency, consuming extra electrical energy with no obvious sign of trouble to building occupants, who continue to observe an acceptable room temperature with easily ignored increases in electrical bills. In mission-critical environments, e.g., in oil refineries or warships, we have observed that closed-loop control in cycling systems can put an order of magnitude more wear on a system than would be normally expected, leading to early and expensive equipment failures that produce mission cripples.

II. NILM AND CYCLING SYSTEMS

Hunting energy wasters in cycling systems with inexpensive electrical monitoring is fun and rewarding. The periodic actuation of a pump, vacuum, or compressor creates a cycling system in which electrical power usage follows a regular cycle based on the characteristics of the monitored mechanical variable (pressure, temperature, etc.). Even non-electrical equipment, like boilers, can often be monitored using power signature techniques because most such systems include ancillary electrical devices like circulation fans which indicate equipment operation. Patterns of power consumption for electromechanical devices can be used to infer operating health of the cycling system plant and to detect a variety of fault conditions.

The Non-Intrusive Load Monitor (NILM) can serve as a platform for cycling system diagnostics with a minimum of installed sensors [2]–[4]. NILM rapidly samples the current and voltage in an electrical power system to calculate harmonic envelopes of power consumption. These harmonic envelopes can be used to identify when a given load turns on and off. Patterns and parameters of cycling system transients can be extracted to perform fault detection and diagnostics (FDD).

A typical modern NILM installation requires conventional computing capabilities, e.g., essentially any modest performance Linux system can host a NILM. However, a NILM capable of detecting line harmonics and performing parameter estimation might produce over 320MB of data per hour, recording 4 billion measurements per day. The recent development of an efficient distributed database system, NilmDB [5], for non-intrusive monitoring has changed the calculus of information access bandwidth to perform remote FDD on cycling systems. NilmDB stores data as streams in local storage which can be queried and extracted over an HTTP interface. NilmDB also stores decimated copies of each stream as min/mean/max tuples so requesting a days worth of samples or a millisecond of samples returns a similar amount of data.

NilmManager, a cloud-based web application, provides access to all deployed NilmDBs through a sophisticated GUI. Through NilmManager, users can quickly view power signature data from anywhere in the world just as if the data were stored on their local machine. NilmManager further aids cycling system analysis by providing a graphic transient identification interface shown in Fig. 1. Users select a representative transient from the data and NilmManager saves the signature as an exemplar for the load. Systems with ON/OFF control have step waveform transients usually with some amount of inrush current as in Fig. 2.
Fig. 2. Cycling events of a standard shop air compressor automatically detected by NilmManager. The turn on transient shows a characteristic step and inrush surge.

Fig. 3. A Low Pressure Air Compressor (LPAC) with load/unload control. Transients detected by NilmManager indicate change in operation state.

with LOAD/UNLOAD control run continuously but consume different amounts of power depending on their state as in Fig. 3. Regardless of the type of load, once the characteristic transients are identified, the Manager issues commands to the remote NILM to automatically identify future transients of the load. This derived waveform, when processed with an appropriate model, provides a powerful diagnostic tool for cycling system analysis.

III. MODELING CYCLING SYSTEMS

Actuators in cycling systems can suffer from a wide range of problems, and non-intrusive electrical monitors can quickly and efficiently acquire the data needed to detect these problems without requiring the installation of additional sensors. Consider, for example, the vacuum pumps in a vacuum-assisted waste disposal system. These systems are commonly used for sewage collection aboard ships and aircraft and in many municipalities with flat terrain and high groundwater tables. Many cities, including New York, have recently started to deploy such systems for solid-waste collection since they reduce the emissions and costs associated with trucks. Figure 4 includes data from an example installation designed to collect sewage aboard one of the US Coast Guard’s “Famous”-class cutters. Under normal conditions, two vacuum pumps operate periodically and in alternation to create vacuum in a storage tank in the system, producing a typical pattern of pump run transients like that shown in Fig. 4a. Over time, the pressure sensor in the storage tank can become clogged. As the sensor clogs, the controller loses the ability to detect the depressurization in the tank, and the vacuum pumps are run longer and longer, drawing down the tank pressure far below normal operating levels before triggering the faulty sensor, as shown in Fig. 4b. A different pathology is illustrated in Fig. 4c, in which one of the two vacuum pumps has developed a faulty seal. In this case, the controller operates the faulted pump, observes no change in tank pressure, and automatically operates the second pump immediately in seriatim to depressurize the tank. Both the sensor clog and the seal failure produce distinctive power consumption signatures that can essentially be reduced to a figure of merit or health “score” from a single cycle of operating data as compared to a baseline case.

Other pathologies can lead to individual pump runs that betray little or no presence of a fault. For example, a modest leak in the hundreds of feet of fittings and pipe that make up the system can result in pump runs with a conventional duration and shape of power consumption, but which occur more frequently or with a different statistical distribution. In this case, non-intrusive power data can be used as base data for statistical identification of faults over longer windows of time. NilmDB and NilmManager make it easy to extract hours, days, or weeks of pump operation. This base data must be used with a carefully developed model of system behavior in order to distinguish true faults from non-pathological changes in use.

Models for non-intrusive fault identification, like most FDD models, stem from an understanding of how the system behaves under normal operating conditions, and how system behavior is affected by environmental variables. System behavior in cycling systems is driven by sources or sinks of the
controlled variable. For example, in a compressed-air system used to power various pneumatic tools, the actuator operating schedule is determined by the actions of the various tools following operator demand. The cycling of a residential heater, on the other hand, is affected by heat flow, and is impacted by system factors like insulation, outdoor temperature, and indoor occupancy. Typically, from the viewpoint of the actuator, external driving forces are unknown and control occurs based on the status of a state variable or derived quantity such as temperature, pressure, or fluid level. Algorithmic queuing theory provides a strong framework for system modeling of these cycling systems, a framework very useful for interpreting the data available from a NILM.

With appropriate models for the behavior of each of the individual sources and sinks, the complete response of the system can be predicted by simulation. If a leak is inserted into the system, for example, the effect will be to add a continuously active sink element. In order to determine the impact of the leak, it can be included into a model and simulated. An analysis of the model’s predictions under faulty and non-faulty conditions indicates how a leak can be detected using only the operating schedule of the actuator. In general, the required analysis will differ from one class of systems to the next.

To illustrate the model-building procedure, the following three subsections present the analysis required for pneumatic systems such as those used for waste disposal and air-powered tools. This analysis is provided to illustrate the process, and any specific references to any one target system are intended only for ease of illustration. The field results presented in Section IV demonstrate how the procedure can be generalized in the diagnostic context without requiring exhaustive analysis.

A. Load Dynamics

To ensure instant availability and to provide for short periods of high demand, pneumatic systems typically have an air receiver or vacuum tank that is periodically charged by a compressor or pump. As loads draw from the pressurized reservoir, system pressure decreases. Once a certain low-pressure set point has been reached, the controller transmits a start command to the pump or compressor, causing the device to begin charging the system. Once the pressure has reached the predetermined high set point, the pump motor is either de-energized or the pumps are directed to enter a re-circulation mode. In vacuum-assisted waste-disposal systems, there are two relevant types of vacuum reducing events. The first of these are what are termed system usage events, and they result from the operation of typical system loads, such as drains. In general, these loads cause sharp drops in vacuum pressure. In addition, there are also leaks, which typically result in a persistent vacuum loss.

Figure 5 shows both pressure and pump power in a representative cycling system aboard the USCGC SENECA. Any time that a system usage event (SUE) removes vacuum from the system, a sharp drop is observed in the measured vacuum pressure. Note that as the number of SUEs increases, the discharge period shortens and the number of pump runs increases. By comparison, the development of a leak, which causes the persistent loss shown in Fig. 5, also increases the number of pump runs and decreases the average length of a discharge period.

Assuming that the system can be accurately modeled using lumped-element approximations, the pressure loss due to a leak, which is denoted as $P_{\text{leak}}(t)$, is the solution to the first-order differential equation

$$\frac{dP}{dt} = -cP,$$ \hspace{1cm} (1)

where c is a constant whose value depends upon the parameters of the system (i.e. capacity, etc.).

Assuming that N usage events have occurred during the current discharge period2, the reservoir pressure, $P(t)$ can be approximated as

$$P(t) = P_{\text{high}} - (\Delta P_1 + \cdots + \Delta P_N) + P_{\text{leak}}(t),$$ \hspace{1cm} (2)

where P_{high} is the high pressure set point, ΔP_k is the pressure removed by the k-th SUE, $P_{\text{leak}}(t)$ is a functional description of the leak, and $t = 0$ is defined to be the time at which the current discharge period began. In order for the pumps to energize, the total pressure loss must be sufficient to cause $P(t)$ to fall below the controller’s low-pressure set point, P_{low}. Equivalently, the pumps will operate as soon as the total pressure loss, ΔP_{loss}, is greater than the difference between P_{high} and P_{low}. Thus, mathematically, the pump trigger condition can be written as

$$P_{\text{high}} - P_{\text{low}} \leq \Delta P_{\text{loss}} \leq (\Delta P_1 + \cdots + \Delta P_N) + P_{\text{leak}}(t).$$ \hspace{1cm} (3)

1For convenience, the terms “pressure” and “vacuum pressure” are used interchangeably in this section.

2As indicated in Fig. 5, the term “discharge period” refers to the interval when the pump is not operating.
B. System Usage Process

The rate at which individual usage events affect the system has a strong impact on the operating schedule of the pumps. In general, however, these events occur at random intervals, as human users typically operate the drains when needed.

The determination of the usage process in a cycling system amounts to the selection of an appropriate queueing model. These models originated in the early 1900s, when they were investigated by A. K. Erlang for purposes of developing automatic telephone exchanges. Just as in the case of the telephone problem, cycling systems have a community of users that both request service at random intervals and require service for random lengths of time. The selection of an appropriate model requires consideration of the statistics of the arrival process, the statistics of the service times, and the number of servers [6].

In the waste-disposal example, the system usage process is approximated as an M/D/∞ queue. The name of this standard queueing model, written in Kendall’s notation, makes reference to the way in which the model addresses each of the three considerations listed previously. In this nomenclature, the first character describes the arrival process, the second character describes the service time distribution, and the third character lists the number of servers. In terms of the M/D/∞ queue, this means that the arrival process is Poisson, the service times are deterministic, and the number of servers is infinitely large [6]. Field data has shown that the Poisson process reasonably approximates the arrivals in a waste-disposal system. Second, given that usage events have been shown to occur almost instantaneously, one can approximate the distribution for the service times using one deterministic value, namely zero. Third, the claim that the number of servers approaches infinity is effectively true, at least as long as the system has enough toilets and drains to guarantee that patrons will rarely, if ever, have to wait.

In the special case that the service times are zero, the combined operating schedule of the individual pneumatic loads is governed exclusively by the statistics of the Poisson arrival process, which is denoted as \(N(t) \). In this model, each new arrival increases the value of \(N(t) \) to the next largest integer. Assuming that the arrival rate \(\lambda \) does not change as a function of time, this process can be defined as follows. The process starts at \(t = 0 \), i.e. \(N(0) = 0 \), and for any times \(t \) and \(s \) such that \(t > s \geq 0 \), the increment \(N(t) - N(s) \) is independent of \(N(\tau) \) for all \(\tau \leq s \). This increment has the following Poisson distribution [7]:

\[
Pr[N(t) - N(s) = k|N(\tau), \tau \leq s] = \frac{[\lambda (t-s)]^k e^{-\lambda (t-s)}}{k!}.
\]

Since \(N(0) = 0 \), this becomes

\[
Pr[N(t) = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}.
\]

(4)

Physically, Eq. 4 expresses the probability that \(N(t) \) is equal to a given integer value.

For purposes of modeling the system usage process in a cycling system, it is important to be able to predict more than just the number of arrivals in a given interval. Specifically, it is also necessary to be able to predict the time between individual arrivals. To derive the distribution for this quantity, consider each inter-arrival period to be a random variable \(T \). For a moment, focus on the time to the first arrival. The probability that this event occurs during the interval \([0, t]\) is a quantity known as the cumulative distribution function (CDF) of \(T \). Thus, by definition, this function is

\[
F_T(t) = Pr[T \leq t].
\]

(5)

Using both Eq. 5 and the total probability law [8], Eq. 5 can be rewritten as follows

\[
F_T(t) = Pr[T \leq t] = 1 - Pr[T > t] = 1 - Pr[N(t) = 0] = 1 - e^{-\lambda t}.
\]

(6)

From the above result, it is possible to determine the probability distribution function (PDF) for \(T \). This function, which is denoted as \(f_T(t) \), is the derivative of the corresponding CDF, \(F_T(t) \). Thus, the PDF is

\[
f_T(t) = \frac{dF_T(t)}{dt} = \lambda e^{-\lambda t}.
\]

(7)

The Poisson process is memoryless, meaning that the behavior of the arrivals after any time \(t \geq 0 \) is itself a Poisson process that is independent of the behavior prior to that time [8]. Thus, Eq. 7 is the PDF for the time between any two arrivals.

C. Ideal Behavior of the Pump Operating Schedule

In order to predict the operating schedule of the actuator in a cycling system, the usage and load models must be combined. In this case, it is convenient to begin by first considering the following set of idealized operating conditions:

- Each SUE reduces the reservoir pressure by an amount \(\Delta P \)
- System usage is a homogeneous Poisson process, i.e. \(\lambda \) is not a function of time
- The system usage process resets at the beginning of each discharge period

In this situation, the control relation presented in Eq. 2 simplifies as follows

\[
P(t) = P_{\text{high}} - (\Delta P_1 + \cdots + \Delta P_N) + P_{\text{leak}}(t) = P_{\text{high}} - N \Delta P + P_{\text{leak}}(t).
\]

(8)

If no leaks are present in the system, then this result can be reduced even further. With \(P_{\text{leak}}(t) = 0 \),

\[
P(t) = P_{\text{high}} - N \Delta P.
\]

(9)

Since ordinary usage is the only source of loss in Eq. 9, it is clear that the pump will energize as soon as \(N \Delta P \) is
large enough that \(P(t) \leq P_{\text{low}} \). Given that each SUE reduces \(P(t) \) by the same amount, Eq. 9 clearly implies that there is a fixed number of usage events that must transpire before the controller will command the pump to energize. For instance, in the example system used to generate Fig. 6, it is clear that the pump will begin to operate immediately following the occurrence of the third SUE. For convenience, we define the variable \(N_{\text{max}} \), which represents the maximum number of usage events that can occur during any single discharge period. As implied by Fig. 6, the value of \(N_{\text{max}} \) is simply the smallest integer that guarantees the validity of the inequality
\[
 P_{\text{low}} \geq P_{\text{high}} - N_{\text{max}} \Delta P.
\]
Solving, it is found that
\[
 N_{\text{max}} = \left\lceil \frac{P_{\text{high}} - P_{\text{low}}}{\Delta P} \right\rceil,
\]
where \(\lceil x \rceil \) is the ceiling of \(x \).

When operating under the simplified conditions considered here, it is possible to predict the distribution for the time \(T_p \) that elapses during any individual discharge period. Given the fact that the number of usage events impacting the system is a fixed quantity, \(T_p \) is simply the sum of the \(N_{\text{max}} \) inter-arrival times, i.e.
\[
 T_p = T_1 + T_2 + T_3 + \cdots + T_{N_{\text{max}}}.
\]
Because \(T_p \) is the sum of a fixed number of random variables, its PDF is given by the relation
\[
 f_{T_p}(t) = f_1(t) * f_2(t) * f_3(t) * \cdots * f_{N_{\text{max}}}(t),
\]
where * is the convolution operator [8]. Given the inter-arrival model presented in Eq. 7, the PDF for \(T_p \) is
\[
 f_{T_p}(t) = \chi_{N_{\text{max}}} \frac{t^{N_{\text{max}}-1} e^{-\lambda t}}{(N_{\text{max}} - 1)!}.
\]
In general, this two-parameter distribution is known as the Erlang PDF of order \(k \) [8]. In Eq. 14, \(k = N_{\text{max}} \). Note that in the special case that \(k = 1 \), the Erlang PDF reduces to the exponential distribution.

In order to demonstrate the idealized behavior described above, a simulation was designed and executed in Simulink [3], [4], [9], [10]. In the simulation, the user can set the values of all of the relevant system parameters (i.e. \(\Delta P, P_{\text{high}}, P_{\text{low}} \) as well as the value of the Poisson parameter, \(\lambda \). Table I lists the values used to generate the simulated results presented graphically in Fig. 7. Also shown in that figure is the frequency distribution predicted by Eq. 14.

In the event that the ideal system develops a leak, its behavior will depart from that predicted above. A simple graphical explanation for this departure is presented in Fig. 8. As shown, the leak causes the reservoir pressure to decrease continuously. As a result, the number of SUEs required to initiate pump operation becomes dependent upon the time that has elapsed since the beginning of the discharge period. In the example system used to generate Fig. 8, for instance, it

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{high}})</td>
<td>17.5 inHg</td>
</tr>
<tr>
<td>(P_{\text{low}})</td>
<td>13.5 inHg</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>30 hr(^{-1})</td>
</tr>
<tr>
<td>(\Delta P)</td>
<td>1.1 inHg</td>
</tr>
</tbody>
</table>
is clear that the only way to force the pumps to re-energize during the first few minutes of the discharge period is for three usage events to occur in relatively short succession. If that does not happen, however, the leak will continue to reduce the pressure in the reservoir. Eventually, leak-induced loss will be large enough that only 2 SUEs are needed to initiate pump operation. For example, at the time t_0 shown in Fig. 8, it is clear that the pressure loss resulting from 2 SUEs will be sufficient to cause the pumps to energize.

With certain simplifying assumptions, a more rigorous foundation can be provided for the leak behavior described above. Specifically, for a lumped element system, the time dependence of the leak-induced pressure loss can be described mathematically using the solution to Eq. 1. If the controller is programmed so that it keeps the pressure within a relatively narrow range, then the exponential solution to Eq. 1 can be represented using the following first-order Taylor series expansion:

$$P_{\text{leak}}(t) = P_{\text{high}} e^{-\alpha t} \approx P_{\text{high}} - \alpha_{\text{leak}} t,$$

where $\alpha_{\text{leak}} = e \lambda_{P_{\text{high}}}$. For a system that obeys these assumptions, there are exactly N_{max} times at which the required amount of usage-induced pressure loss decreases. The procedure used to identify these times is outlined graphically in Fig. 9. As an example, consider what happens if the discharge period lasts until time τ_1. At that exact instant, the leak has reduced the pressure to the point that the pumps will operate if the usage-induced loss is exactly $(N_{\text{max}} - 1) \Delta P$. Prior to that time, however, only the occurrence of N_{max} SUEs could have forced the system pressure to fall below P_{low}. A similar procedure can be used to determine τ_2, the time at which the required usage loss drops from $(N_{\text{max}} - 1) \Delta P$ to $(N_{\text{max}} - 2) \Delta P$. In general, the values of the times τ_k are given by the formula

$$\tau_k = \frac{P_{\text{high}} - P_{\text{low}} - (N_{\text{max}} - k) \Delta P}{\alpha_{\text{leak}}},$$

for $k = 1, 2, 3, \ldots, N_{\text{max}}$. (16)

Clearly, the behavior described above has an effect on the distribution $f_{T_p}(t)$. In particular, leak conditions cause the PDF to change at the times τ_k. For $0 < t < \tau_1$, the only possible set of events that can elicit pump operation is the arrival of N_{max} SUEs. Thus, the PDF in this region is still given by Eq. 14. Recall, however, that the pumps will automatically operate at $t = \tau_1$ if exactly $N_{\text{max}} - 1$ SUEs impact the system during the interval $0 < t < \tau_1$. Thus, there is a certain fixed probability that the pumps will operate at that time, and it is equal to the probability that the system experienced at least $N_{\text{max}} - 1$ but not N_{max} SUEs prior to τ_1. To determine the value of this probability, we must employ the Erlang CDF of order k, which is defined as

$$F(t; k, \lambda) = \begin{cases} \frac{\lambda^k}{(k-1)!} \int_0^t x^{k-1} e^{-\lambda x} \, dx, & t \geq 0, \\ 0, & t < 0. \end{cases}$$

For a given value of k, this equation expresses the probability that at least k arrivals occurred prior to time t. Thus, from the above arguments, the probability that the pump runs at time τ_1 can be expressed using the relation

$$F(\tau_1; N_{\text{max}} - 1, \lambda) - F(\tau_1; N_{\text{max}}, \lambda).$$

(18)

Between the times τ_1 and τ_2, only $N_{\text{max}} - 1$ SUEs are required to initiate a pump run. The PDF in this region will again be Erlang, but it will be of a reduced order. Specifically, this section of the PDF is the Erlang distribution of order $N_{\text{max}} - 1$, i.e.

$$f_{T_p}(t) = \lambda^{N_{\text{max}}-1} t^{N_{\text{max}}-2} e^{-\lambda t} \frac{(N_{\text{max}}-2)!}{(N_{\text{max}}-2)!},$$

for $\tau_1 < t < \tau_2$. (19)

In order to generalize the procedure presented above, it is useful to consider the complete CDF of the variable T_p. From the above arguments, it is clear that for the times $0 < t < \tau_1$, the CDF is Erlang with $k = N_{\text{max}}$. After $t = \tau_1$, the CDF is still Erlang, but its order is reduced by one. As a result, there is a step change in the overall CDF at $t = \tau_1$, and the height of this change is given by Eq. 18. This behavior is illustrated graphically in Fig. 10a. As shown, the CDF has similar step changes at each of the τ_k, as the number of required SUEs, and thus the order of the required Erlang, decreases by one. Furthermore, the height of the “jump” at each τ_k corresponds to the probability of observing a pump run at that time.
The complete PDF can be derived by differentiating the CDF shown in Fig. 10a. In between the \(\tau_k \), this is a straightforward operation. At the boundaries, however, the CDF has step changes, meaning that the derivative at those locations is an impulse whose area corresponds to the height of the change [11]. Thus, the complete PDF for \(T_p \) during leak conditions is

\[
f_{T_p}(t) = f(t; N_{max}, \lambda) [u(t) - u(t - \tau_1)] + \sum_{i=2}^{N_{max}} f(t; \alpha, \lambda) [u(t - \tau_{i-1}) - u(t - \tau_i)] + \sum_{i=1}^{N_{max}-1} [F(t; \alpha, \lambda) - F(t; \alpha + 1, \lambda)] \delta(t - \tau_i) + [1 - F(t; 1, \lambda)] \delta(t - \tau_{N_{max}}),
\]

where \(\alpha = N_{max} - i \).

For demonstration purposes, Fig. 10b shows the PDF that corresponds to the CDF presented in Fig. 10a. Figure 11 displays a simulated frequency distribution that was obtained by inserting a small leak into the ideal system characterized by the parameters presented in Table I. The actual leak rate in this case is 10 inHg/hr. Note that the additional probability of observing a pump run at the times \(\tau_k \) causes several large “pulses” to appear. For comparison purposes, Fig. 11 also shows the predicted frequency distribution.

IV. RESULTS

This section considers two specific real-world cycling systems in which the modeling techniques described above have been used to detect faults. The first is the collection, hold, and transfer (CHT) system responsible for removing waste aboard the USCGC SENECA. The second is a compressed-air system operating a shop tool.

A. Coast Guard CHT Diagnostics

A NILM system was installed on board the USCGC SENECA to monitor the operation of the CHT system. The system was first characterized in a training phase to provide a baseline model. The resulting histogram is shown in Fig. 12. Fig. 12. Normal operation pattern of CHT system onboard USCGC SENECA

During a portion of the install period, the distribution changed as the result of a large leak. The crew was not aware of the leak since no alarms or other warnings existed to alert them to the problem. Figure 13 shows the histogram generated by the leaking CHT system. This histogram includes data taken over a seventy-two hour period. Note the presence of the large discontinuities as anticipated by the model described above.

After alerting the crew to the suspected leak, maintenance technicians discovered the two check valves at the suction of the vacuum pumps to be faulty. The check valves are meant to shut after the vacuum pump de-energizes and maintain the vacuum in the system. Disassembly of the valves revealed pitted faces and loose components. Figures 14a and 14b show the condition of the valve and internals as it was disassembled. The valves were beyond repair and had to be replaced. After replacement, the distribution returned to normal.

B. Shop Air Compressor Diagnostics

Air compressors are commonly used to operate a variety of tools in machine shops. To model the effect of air tool usage, a computer-actuated valve periodically released pressure from the hydraulic line of an example compressor. The system generated usage patterns based on a statistical model using an exponential distribution (\(\lambda = 5 \text{min} \) for inter-arrival times and normally distributed service times (\(\mu = 4 \text{secs} \), \(\sigma = 1 \text{sec} \)). The system ran intermittently over the course of three weeks.
producing 122GB of current and voltage data. At the conclusion of the experiment NilmManager was used to automate transient detection, which it completed in under five minutes. During the three week field test, no faults in operation were detected; however, after generating the operational histograms it became clear that the electronic valve suffered a partial breakdown partway through the experiment. Figure 15 shows normalized histograms for normal compressor operation during the first two weeks and abnormal operation during the last week. The computer-driven actuator operated on the same statistical model throughout the experiment so the number and duration of “tool usages” is approximately the same for both histograms. This indicates that the valve itself periodically failed to open or only opened partially during the later part of the experiment.

The behavior observed in Fig. 15 is consistent with the modeling procedure described in Section III. In this case, the faulty valve causes a change in one of the primary system parameters, namely the load dynamics. The resulting change in the distribution is expected, although not in the same way predicted for the constant leak described in Section III. Although one could develop a more complete analytical model to describe the behavior observed here, it would be challenging and not necessarily rewarding. What is important to note is that one can use the basic modeling procedure to understand normal operating conditions and can then explain deviations using appropriate physical arguments. This is important, as it suggests that the model can be easily adapted as needed to the specifics of a given system without the need for excessive analysis by a subject matter expert.

V. CONCLUSION

Cycling systems, which represent a significant portion of energy consumption in residential, commercial, industrial, and military environments, commonly have energy-wasting faults that are difficult to detect since underlying system performance does not change significantly. This paper has demonstrated that non-intrusive electrical monitoring can be used to detect such faults in these systems without requiring the installation of additional sensors. By developing an appropriate model that considers both the physics of the target system and the statistics of its usage, one can develop powerful diagnostics that lend themselves to widespread adoption within the Smart Grid framework.

ACKNOWLEDGMENT

This research was funded by the BP-MIT Research Alliance, the ONR Structural Acoustics Program, the MIT Energy Initiative, and The Grainger Foundation.

REFERENCES