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Thermostat algorithms in a molecular dynamics simulation maintain an average temperature of a
system by regulating the atomic velocities rather than the internal degrees of freedom. Herein, we
present a “phonostat” algorithm that can regulate the total energy in a given internal degree of free-
dom. In this algorithm, the modal energies are computed at each time step using a mode-tracking
scheme and then the system is driven by an external driving force of desired frequency and ampli-
tude. The rate and amount of energy exchange between the phonostat and the system is controlled
by two distinct damping parameters. Two different schemes for controlling the external driving force
amplitude are also presented. In order to test our algorithm, the method is applied initially to a simple
anharmonic oscillator for which the role of various phonostat parameters can be carefully tested. We
then apply the phonostat to a more realistic (10,0) carbon nanotube system and show how such an
approach can be used to regulate energy of highly anharmonic modes. © 2011 American Institute of
Physics. [doi:10.1063/1.3597605]

I. INTRODUCTION

Molecular dynamics (MD) simulations are often per-
formed within the canonical ensemble (keeping the number
of particles (N), volume (V), and the temperature (T) of the
system conserved) in order to mimic experimental condi-
tions. For constant temperature MD simulations, a number
of thermostat algorithms have been developed to maintain an
average desired temperature. These thermostats range from
the most simple (and unphysical) velocity scaling algorithm,
to more sophisticated velocity scaling methods such as that
proposed by Berendsen,1 to algorithms that are capable of
reproducing the correct canonical ensemble (although not
without drawbacks) such as Nose-Hoover2 and Langevin3

thermostats. All these thermostats are designed for regulating
the average temperature of the system during the simulation,
by controlling the atomic velocities rather than the more
meaningful internal degrees of freedom.4 A traditional
thermostat can also be used to excite a single atom; however,
a single atom does not represent a thermodynamic ensemble,
and the purpose of using a thermostat for a single atom
while quite functionally acceptable is not the intended goal of
thermostats.5 It should also be noted that thermosttating a sin-
gle atom which has 3 degrees of freedom, is still very different
from regulating a single vibrational eigenmode in which
the kinetic energy must go identically to zero twice every
oscillation.

The idea to develop a phonostat algorithm is motivated
by a number of physical processes that involve excitation of
only one or several vibrational degrees of freedom, as op-
posed to the full Boltzmann distribution, thereby creating an
unequal energy distribution among various vibrational modes.
These phenomena, such as in the excitation of vibrational
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modes of molecules, are increasingly accessible experimen-
tally, e.g., in microwave heating, the recently demonstrated
carbon nanotube (CNT) radio, and induced surface waves in
nanoelectromechanical systems.6–8 In order to access and fur-
ther understand such processes it is desirable to be able to
regulate a single vibrational mode in a system rather than a
collective energy of a multitude of modes. Since the usual
thermostat algorithms in MD couple to all degrees of free-
dom equally, the internal modes are highly coupled and the
energy is always distributed among various vibrational de-
grees of freedom. Hence, a new approach that can excite a
given mode with frequency ω and regulate its total energy to
some Etarget is needed.

Of course, without any thermostat, it is possible to excite
a mode to an energy Etarget by assigning initial atomic veloci-
ties along the eigen direction. The decay of the excited mode
can then be studied by projecting the instantaneous atomic
velocities and displacements onto the normal modes of the
system.9–12 This method is necessarily transient; once per-
turbed, the mode under investigation receives no additional
external excitation. It is also possible to drive a mode by
using a velocity scaling technique.13 Here, the mode is ex-
cited to some energy Etarget by assigning initial atomic ve-
locities along the eigen direction and the mode velocity is
rescaled every time step until equilibrated. Similar to the con-
ventional velocity scaling technique, this method also needs
to be turned off once the system is equilibrated. In contrast,
many physical processes are continuously driven and there-
fore require that the mode is driven while simultaneously
studying the dissipation of the excited mode. Hence, we seek
an algorithm that will allow continuous excitation or driv-
ing of one or more vibrational modes. This algorithm could
not only be used as a thermostat for a given degree of free-
dom, but also can provide a method of constraint within the
MD simulation to study non-equilibrium phenomena, by reg-
ulating an athermal phonon population, quenching activity of
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particular modes, or for heating soft directions in accelerated
dynamics.

In this paper, we present a phonostat algorithm to reg-
ulate the total energy in a chosen vibrational mode of fre-
quency ω. The phonostat relies on two distinct parts: a mode-
projecting scheme that projects the atomic displacements
and velocities onto the normal modes to obtain mode ve-
locities and amplitudes, and an energy regulating scheme
that regulates the total energy of one or more chosen vibra-
tional modes. In Sec. II we discuss these steps and exam-
ine two schemes for regulating the energy based on a driven
damped harmonic oscillator. The algorithms are demonstrated
by phonostatting a test system of an oscillator coupled to a
heat bath. In Sec. III, the use of the phonostat in a more com-
plex MD simulation in which the radial breathing mode of
a CNT is driven, while simultaneously measuring its quality
factor.

One important feature of the energy regulating part that
makes it stand apart from conventional thermostats is that one
is regulating a single oscillator rather than an ensemble of os-
cillators, and as such a different approach is required. Typ-
ically thermostats measure and respond to the instantaneous
temperature of a group of atoms. For a single oscillator the
instantaneous kinetic energy does not provide a good estimate
of the average vibrational energy. On the other hand, an ap-
proach that regulates the total energy of the mode will drive
the system in a controlled manner, without fighting the natural
oscillations of the system.

II. METHODOLOGY

Our approach to phonostatting a vibrational mode con-
sists of three steps (Fig. 1): (1) obtaining the normal modes of
the system, (2) tracking the total vibrational energy in a given
mode during the course of the MD simulation, and (3) driving
a mode of frequency ω and simultaneously regulating its total
energy, which we refer to as the phonostat (Fig. 1). The first
step is a preprocessing step, that is, the normal modes are ob-
tained for the ground state geometry. There is no reason why
mode projection cannot be computed with instantaneously
computed normal modes, with the Hessian continuously up-
dated using Hessian inference.14, 15 The only limitation would
be additional computational expense. Similarly it is not nec-

essary to drive normal modes of the system. Steps 2 and 3 are
carried out sequentially at every time step during the MD run.

A. Computing normal modes

In step 1, we compute the normal modes of the system
by constructing the 3N × 3N Hessian or the force constant
matrix, for the ground state geometry by the frozen phonon
method,

ki j = − fi (qi + he j ) − fi (qi − he j )

2h
, (1)

where, ki j is the Hessian matrix element, ê j is the unit vector
along the direction j , h is the magnitude of displacement, i
is the atom index, and q corresponds to the x , y, and z direc-
tions. The force fi in the above equation is given by

fi = −∂V

∂qi
, (2)

where, V is the interatomic potential. The Hessian matrix
is transformed into mass-weighted coordinates and then di-
agonalized to obtain the normal modes (η) and their corre-
sponding frequencies ν. While for molecules such as water or
methane these eigenmodes correspond to the normal modes
of vibration, for extended systems such as carbon nanotubes
and solids these correspond to the various phonon modes.

B. Mode tracking

In step 2 of our phonostat algorithm, we track the energy
of each vibrational mode in the system using a mode-tracking
scheme developed previously.16 In this approach, the energy
in the nth vibrational mode at any given instant t is given by

En(t) = 1

2
κna2

n(t) + 1

2
ȧ2

n(t), (3)

where, κn is the stiffness of the nth vibrational mode, an(t)
and ȧn(t) are its instantaneous modal displacement and veloc-
ity, respectively. The instantaneous displacement and velocity
of mode n are obtained by projecting the atomic positions (qi )
and velocities (q̇i ) onto the eigenvectors of mode ηn after care-
fully mapping the system onto the reference frame in which
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FIG. 1. Schematic of methodology of the phonostat algorithm. Obtaining phonon modes of the system is a separate MD simulation and is performed prior to
phonostatting. Steps represented within the rectangle constitute the phonostat and are performed during the course of the simulation.
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the phonon modes were obtained in step 1 (Eq. (4)),

an(t) =
N∑

i=1

∑
q=xyz

(qi (t) − qi (0)) · η
q
ni ,

ȧn(t) =
N∑

i=1

∑
q=xyz

qi (t) · η
q
ni . (4)

In our earlier implementation of this mode-tracking
scheme, these quantities were computed after the full MD
simulation, as a post-processing technique.16 However, for
the phonostat algorithm, we now require modal displacements
and velocities to be computed on the fly so that the total en-
ergy can be regulated. For consistency, the instantaneous ki-
netic energies of all the modes thus obtained are averaged
over the degrees of freedom and verified against the instanta-
neous temperature of the system at each time step of the MD
simulation.

C. The phonostat

The aim of the phonostat is to maintain the energy of the
oscillator at some desired target energy Etarget, different from
that of the thermal background (ET ), with some characteristic
response time, τ with which it reacts to perturbations of the
system. One important aspect of the phonostat that makes it
stand apart from ordinary thermostats is that one is regulating
a single oscillator rather than an ensemble of oscillators,
and as such a different approach is required. Conventional
thermostats measure and respond to the instantaneous
temperature of a large group of atoms. This averaging
ensures that the instantaneous kinetic energy is a reasonable
representation of the true thermal energy. The case of a single
oscillator is pathological: the instantaneous kinetic energy
must oscillate and so does not provide a good estimate of the
average vibrational energy. Any energy regulating scheme
that reacts only to the kinetic energy will fight the natural
oscillations of the system. In this regard some established
thermostatting algorithms are better than others. For example
the Nosé Hoover (NH) approach uses an inertial extended
variable which acts to smooth the response of the thermostat
to short time fluctuations. In principle such inertial extended
variable approaches could be used as the energy-regulating
component of the phonostat, provided the coupling time is
sufficiently long; however, there is a fundamental difference
in the purpose of thermostats versus the phonostat. The NH
thermostat was developed to enforce the same equilibrium
ensemble averaging as occurs in the canonical ensemble; the
phonostat in contrast is a tool for driving a system away from
equilibrium in a controlled way.

With this philosophical difference in mind we present a
different approach to regulating energy that is based on the
driven-damped-harmonic oscillator, an approach that more
closely resembles many experimental processes and which
reflects the non-equilibrium nature of the phonostat. Mimick-
ing an external oscillating driving force, we drive the chosen
mode with sinusoidal force with amplitude f A(t) at frequency
ωP . To dampen fluctuations in the vibrational energy, and to

control the response time of the energy regulating scheme we
include a fictitious drag that is parameterized by the dimen-
sionless term ζP1. Combining these two terms, the force that
the phonostat exerts on the mode it is regulating is written as

fP (x, ẋ, t) = f A(t) cos (ωP t + φP ) − 2mωPζP1 ẋ, (5)

where φP is an arbitrary phase term. The phonostat forces the
mode to vibrate with frequency ωP which need not be the
natural frequency of the driven mode. In general, we choose
ωP = ω. However by tuning ωP one can measure the fre-
quency of a mode and the anharmonic shift in the mode’s
frequency as it is excited.

In the scheme given in Eq. (5), the energy in the phonos-
tatted mode is regulated by the balance of work done by the
driving force and the energy lost due to internal drag. Select-
ing the parameters f A(t), and ζP1 such that the desired energy
in the mode is obtained, becomes the most critical task. The
steady state vibrational energy of a damped harmonic oscilla-
tor with mass m and driven at resonance (ωP = ω), is related
to the steady state driving force amplitude f A(0) by

Etarget = 1

2m

(
f A(0)

2ζω

)2

,

f A(0) = 2ζω
√

2m Etarget . (6)

This relationship would allow us to set the driving force am-
plitude required to maintain a desired target energy Etarget

where the damping term, ζ = ζP1 + ζT , is the total damping
on the driven mode and includes the damping that is inherent
in the system, ζT . This term is the natural dissipation within
the system by which fluctuations decay to equilibrium, and in
general it is unknown and not necessarily constant. The damp-
ing terms in ζ are dimensionless with a value of 0 giving no
damping and ζ = 1 being the critical damping limit beyond
which the oscillator is over damped. One way of minimizing
the error in the target energy is to make the fictitious phono-
stat damping extremely large so that ζP1 � ζT . This means
that while the value of ζT is unknown it must be less than one,
and thus to be sure of making this contribution to the total
damping negligible one must set ζP1 > 1, that is, setting the
phonostat to over damp the system. Over damping the system
is not desirable: in developing the phonostat we have set out
to preserve the oscillatory dynamics of a vibrational mode,
but by setting ζP1 > 1 one quashes these dynamics defeating
the aim of the phonostat and making the driven mode numb
to the rest of the molecular system.

Rather than setting the phonostat damping to be large
from the start and then not adjusting it, one could make an
initial guess for the force amplitude for a given ζP1 and then
fine tune the force amplitude as the simulation progresses,
based on the deviation of the oscillator’s energy from the
target energy, E(t) − Etarget. The problem is now one of a
feedback control system for which many robust procedures
have been developed for regulating systems as diverse as fur-
nace thermostats to ships’ rudder angles. The most ubiquitous
approach is the well known proportional-integral-derivative
control where the change in control parameters is dependent
on the size of the error (P), how long the error has been this
way (I), and how quickly the error is changing (D). For tuning
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the phonostat parameters in MD simulations proportional-
integral-derivative control is not the most suitable form of
feedback as the integral term requires the computer to store
the thermal history of the mode in memory and breaks time
reversal symmetry of the dynamics. Moreover, the strength
of proportional-integral-derivative control is that the system
may be treated as a “black box”; however, doing so would
throw away what we know about vibrational modes in MD.
Instead, our approach is to use a less sophisticated feedback
control scheme that is specific to vibrating systems. There
are many ways that this can be done; here we present just
two schemes both of which adjust only the driving force
amplitude, f A(t). Both of these feedback mechanisms treat
f A(t) as an extended variable in the system’s dynamics, with
the simplest case (feedback scheme I) scaling the rate of
f A(t) ( ḟ A(t)) and the other (feedback scheme II) including an
inertial term of f A(t) ( f̈ A(t)).

1. Feedback scheme I

The simplest form of feedback control of f A(t) is to make
the rate of change of force amplitude proportional to the de-
viation from the target energy. An initial guess of the driving
force amplitude is chosen, which in this example is the force
that would maintain the target energy if there were no system
damping and obtained from Eq. (6),

fi = f A(0) = 2ζP1ω
√

2m Etarget . (7)

This is an underestimate of the required driving force due to
the presence of internal damping in the system. Hence, the
initial guess for the force is corrected by giving a velocity to
the force in the form of viscous drag,

ḟ A(t)dt = f A(0)(2γω)

(
Etarget − E(t)

Etarget

)
dt, (8)

where the drag coefficient γ sets how quickly the force cor-
rects itself and is a dimensionless quantity. The energy term
E(t) in this expression is the total instantaneous vibrational
energy in the mode, that is the sum of the potential and ki-
netic contributions.

The phonostat has two time scales that can be understood
by considering the limiting cases of the system dynamics.
Any driven damped harmonic oscillator has a time scale over
which transient oscillations decay as the system settles into its
steady-state motion. This transient time scale is set only by the
total damping of the mode, with τ1 = 1/ω(ζT + ζP1) being
the time for one decrement of e−1 of its initial value. This is
the time taken for the system to come back into dynamic equi-
librium with the driving force after a perturbation in the en-
ergy or phase of the driven mode. A second longer time scale,
τ2, is the time it takes for the driving force amplitude to be
tuned to bring the modal energy to the target value. Assuming
that the limiting case that the system remains in steady state
with the driving force as f A(t) is adjusted, then the time taken
for the error in the energy, (Etarget − E(t)), to be reduced is

τ I
2 = m(ζT + ζP1)

√
2A

f A(0)γ
√

m Etarget
, (9)

with A being a parameter of order unity that depends
weakly on size of the initial error in the energy. Using this
expression one can choose the drag term γ = 2(ζP1)ω/

f A(0)τg
√

2m/Etarget , so that the rise time depends on the
guessed rise time τg and the ratio of the imposed drag, and

the system damping rζ = ζT /ζP1, so that τ I
2 ≈ (1 + rζ )τg .

It can be seen that both the time constants are dependent
on the unknown term ζT . Moreover, if the system is perturbed
by the addition of energy into the phonostatted mode the re-
sponse time is given by τ1; on the other hand if the dissi-
pative behavior of the rest of the thermal bath changes then
the phonostat responds on the slower time scale τ I

2 . Finally

care must be taken to ensure that τ I
2 /τ1 = ζP1(rζ + 1)2 � 1,

so that the phonostat does not try to change the energy of a
mode that is out of steady state motion by changing the driv-
ing force amplitude.

2. Feedback scheme II

An alternative feedback scheme for tuning the driving
force amplitude that incorporates an inertial term in the time
evolution of f A(t) can be used. The idea is based on a criti-
cally damped oscillator and is widely used in feedback ampli-
fiers to minimize rise time; since critical damping allows the
fastest energy decay in a damped system without overshoot.
The displacement x in a damped harmonic oscillator has the
equation of motion: ẍ = −ω2x − 2ζωẋ , which is critically
damped when ζ = 1 giving a decay time 2π/ω. Mapping the
force feedback problem onto this equation gives

f̈ A(t) = −
(

2π

τg

)2

K (
√

Etarget −
√

E(t))

−4πζP2

τG
ḟ A(t), (10)

where K is a proportionality constant that we have to choose.
The above equation has the solution,

f A(t) = ftarget − ( ftarget − f A(0))e−ζP22π t/τg

×
(

cos (νt) + ζP22π

τgν
sin (νt)

)
, (11)

with ν = 2π/τg

√
K/2(ζT + ζP1)ω − ζ 2

P2. As with feedback
scheme I, we choose the unknown proportionality constant by
setting the system damping to zero, K = 2ζP1ω

√
2m. Setting

ζP2 = 1 gives

f A(t) = ftarget − ( ftarget − f A(0))e−2π t/τg

×
{

cosh

(
2π t

τg

√
rζ

1 + rζ

)

+
√

1 + rζ

rζ

sinh

(
2π t

τg

√
rζ

1 + rζ

)}
. (12)

A response time can be estimated from the reciprocal of the
gradient in f A(t) at its steepest point, that has the approx-
imate form τ2/τg

II ≈ (1 + √
2)

√
2/π

√
2 − (1 + √

2)
√

2(3
√

2
− 2arccosh(

√
2))/8π(rζ − 1).
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FIG. 2. Plots (a) and (b) show the phonostatted heating of a harmonic oscillator that initially has energy E(0)/Etarget = 0.01 and is in equilibrium with a
thermal bath. The force tuning schemes feedback I and feedback II are used in plots (a) and (b), respectively. In both cases heating is shown for the same
damping ratio rζ = 0.1, with the coupling to the thermal bath being ζT = 0.001, 0.01, and 0.1 for the blue, red, and green plots, respectively. The inset plots
show the value of the phonostat’s driving force, f A as it is being tuned in each case. Simulations were integrated numerically using a the velocity Verlet
method with a time step of 10−3 of the oscillator’s period. Plots (c) and (d) show heating of an oscillator with the same (“unknown”) bath damping ζT = 0.01
and choices for the fictitious phonostat drag of ζP1 = 0.1, 0.01, and 0.001 for the blue, red, and green plots, respectively. Plot (e) shows the energy in the
oscillator (blue) and phonostat’s driving force (red) responding to a variety of perturbations. Initially the oscillator is only coupled to the Langevin bath. After
150 oscillations the phonostat is turned on (using feedback II). After 400 oscillations the oscillator is given and extra Etarget/2 of energy in the form of an
instantaneous velocity increase. After 650 oscillations the damping from the thermal bath, ζT , is increased. Plot (f) shows the energy of a harmonic oscillator
(blue) and an asymmetrically anharmonic oscillator (red), and a symmetrically stiffening anharmonic oscillator (green) phonostatted. It can be seen that the
harmonic approximation of the potential energy results in a small systematic offset from the target energy.

3. Testing energy regulating schemes

In order to provide a controlled test of this energy regu-
lating portion of the phonostatting algorithm and the feedback
schemes, we simulate the simple test system of a single an-
harmonic oscillator of mass, m. To mimic the strong coupling
between various vibrational modes, encountered in a complex
atomistic simulation, the oscillator is coupled to a Langevin
thermal bath. The equation of motion for the test oscillator is

mẍ = −dφ(x)

dx
− fT (x, ẋ) − fP (x, ẋ, t), (13)

with −dφ(x)/dx being the force from the oscillator poten-
tial, and fT and fP the external forces from the Langevin
thermostat and the phonostat, respectively. We define the
potential that the oscillator moves in as φ(x) = mω2(x2/2
+ αx3/3 + βx4/4), with ω being the frequency of the os-
cillator (in the low excitation limit) and α and β the first
asymmetric and symmetric anharmonicities. The thermal bath
is defined by two parameters: the temperature of the bath
ET , and the dimensionless coupling strength ζT , so that
fT (x, ẋ) = −2mωζT ẋ + 2ωζT

√
2m ET η(t) (where η(t) is an

uncorrelated random noise term 〈η(t)〉 = 0, and 〈η(t)η(t ′)〉
= δ(t − t ′)).

Working with this test model we first thermalize the sin-
gle oscillator system to an initial energy E(0) with the thermo-
stat and then turn on the phonostat to raise the energy of the
oscillator to Etarget . Plots of the system energy versus num-
ber of oscillations are shown in Fig. 2, with the inset plots
showing the evolution of the phonostat driving force ampli-
tude in each case. Plots (a) and (b) show phonostatting of os-
cillators with different intrinsic quality factors—that is, with
differing strength of coupling to the Langevin bath—but the
same damping ratio rζ . It can be seen that in both feedback
schemes when the fictitious phonostat damping is small τ1 be-
comes comparable to τ2 and the feedback scheme over com-
pensates the driving force before the oscillator has come into
steady-state with the driving force. The inset plots show the
feedback scheme tuning the driving force amplitude to dif-
ferent overall values to balance the different drag strengths.
Figures 2(c) and 2(d) show results of simulations with the
same internal damping ζT with differing phonostat damping.
This test represents how one might approach a real MD sim-
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ulation in which the intrinsic damping of the phonostatted
mode ζT is unknown. The three sets of data show the cases
when the phonostat damping is dominant, when the phonostat
damping and intrinsic damping are comparable, and when the
intrinsic damping dominates. In this latter case the feedback
time τ2 becomes very long, and one would have to increase the
damping of the phonostat. Plots (a)–(d) in Fig. 2 show little
advantage of one feedback mechanism than the other. In both
cases some adjustment is needed in order to set the phonos-
tat damping appropriate for the system as the two time scales
inherent in the problem are controlled separately by the total
damping and the damping ratio. This can be seen in Fig. 2(e)
in which the response of the phonostatted system to perturba-
tions is shown. After 400 oscillations extra energy is added to
the oscillator raising it above the target energy. The energy is
corrected in time scale τ1 without a change in the driving force
amplitude. After 650 oscillations the strength of the coupling
of the oscillator to the thermal bath is increased. The phono-
stat responds over time scale τ2, increasing the driving force
amplitude to match the increased damping. The last plot in
Fig. 2, plot (f), shows the results of phonostatting anharmonic
oscillators. In the feedback schemes in Eqs. (8) and (10) the
instantaneous energy E(t) is the sum of the exact kinetic en-
ergy and the harmonic approximation for the potential energy.
For an anharmonic potential this will result in a small system-
atic error in E(t) that will result in the mode being on average
shifted from the target energy. Plotted in Fig. 2(f) is the exact
total energy of the oscillator and it can be seen that average
energy of the anharmonic oscillators is subtly shifted from
that of the harmonic oscillator. This error can be simply cor-
rected by scaling the target energy by the fractional error in
the average energy estimate. Together the plots in Fig. 2 show
that the phonostat scheme works well at maintaining the os-
cillator energy at the target energy and the schemes are robust
with respect to the choice of phonostat parameters.

III. PHONOSTATTING A (10,0) CARBON NANOTUBE

Our original motivation for developing the phonostat
algorithm was to understand the large intrinsic dissipation
observed in driven CNT resonators. CNTs are remarkable
structures that due to their extreme stiffness to mass ratio
and the string-like shape make them attractive candidates
for use as the resonating members in nanoelectromechanical
devices.6, 17–20 CNT resonators can be readily integrated with
traditional electronics and the resonators can be both driven
and sensed electronically. These resonators can have frequen-
cies in the GHz range, making them useful for applications
in mass and chemical sensing, wireless communications, and
signal processing. The largest impediment to the ubiquitous
use of CNT resonators is their poor quality factor. The quality
factor (Q) is a measure of dissipation within a system and is
given by the relation,

Q = 2π × Energy stored

Energy dissipated per cycle
. (14)

While the phonostat by itself is insufficient to simulate
a driven resonator (one also requires a method of remov-

ing heat from the system without disturbing the dynamics of
the driven mode—a matter that will be addressed in a sepa-
rate forthcoming article), the CNT remains a good test sys-
tem to demonstrate the capability of the phonostat algorithm.
CNTs have a well understood and systematic structure, and
they are also strongly dissipative, and possess both symmet-
ric and asymmetric anharmonic modes. The CNT can be mod-
eled with the AIREBO empirical potential21 which treats both
the anharmonic C-C covalent bond, and the longer range dis-
persive interactions switching smoothly between them as a
function of spacing and local coordination. String-like res-
onators (of which the CNT is an example) become nonlin-
ear at relatively modest excitations due to the elongation in
overall length as the mode flexes. In addition to these sym-
metrically stiffening modes of the CNT there are modes, such
as the radial breathing mode that soften in one direction but
stiffen in the other. These asymmetric anharmonic modes
(where the third order term in the potential energy surface
dominates over the 4th order term) couple strongly to modes
with half the vibrational frequency.16 Using this well under-
stood system we show that we can drive the breathing mode
with the phonostat—regulating its energy—causing the heat-
ing of modes with exactly half the frequency of the breathing
mode—leading to thermalizing the tube.

There are a few added advantages of using our phonos-
tat algorithm while simulating such continuous driving con-
ditions. First, the quality factor (Q) can be computed directly
while simultaneously driving a mode. When the phonostat
and the system are in equilibrium, the work done by the
phonostat must be equal to the change in the total energy of
the phonostatted mode. Thus, Q can be obtained directly from
the power input by the phonostat (Eq. (15)) assuming that the
rate of accumulation of energy in the driven mode is negligi-
ble in comparison to that dissipated by the mode,

Q = 2πν × Energy stored

Power delivered by phonostat
. (15)

However, this approximation is not valid during the ini-
tial steps of the simulation when the mode is being brought
into equilibrium with the phonostat. Finally, the algorithm can
also be used to clamp modes by canceling the forces of atoms
along a given normal mode direction to identify pathways of
heat dissipation.

In order to phonostat a phonon mode of a carbon nan-
otube, the method is integrated into the LAMMPS molecular
dynamics code.22 Before phonostatting the radial breathing
mode of a (10,0) carbon nanotube containing 800 atoms,
the normal modes of the system and their corresponding
frequencies are obtained using the frozen phonon method, as
discussed in Sec. II A. In this system, there are 2400 normal
modes in total, of which the first four correspond to transla-
tional and rotational degrees of freedom. The remaining 2396
modes are the various phonon modes of the system. MD
simulations are performed on the relaxed structure of a (10,0)
CNT within the microcanonical ensemble using the AIREBO
force-field, with a time step of 0.2 fs and Verlet integration
scheme, for a total time of 1 ns.21 First the system is prepared
at a given background temperature TBG using a langevin
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thermostat within a microcanonical ensemble for 50 ps. This
ensures that the system is thermalized with a distribution
of energy among various phonon modes of the system. We
perform two separate simulations corresponding to two
different TBG = 600 and 300 K, respectively. In each of
these simulations, using the eigenmodes (ηn) and frequen-
cies (ωn) we first compute the total energy En(t) of each
mode at a given time t using the mode tracking algorithm
(Eqs. (3) and (4)). Since we start the simulation with the
ground state structure of the CNT, the tube expands radially
due to the thermal expansion, when the system is heated to
300 or 600 K. However, the presence of periodic boundary
conditions along the length of the tube restricts thermal
expansion in this direction. In order to obtain the correct
modal displacement ac

RBM(t) of the radial breathing mode, it
is necessary to separate out the radial thermal expansion from
the instantaneous modal displacement aRBM(t). This is done
by obtaining the exponentially weighted moving average of
the breathing mode displacements and subtracting this out
from the instantaneous displacement (Eq. (16)),

St=0 = αaRBM(t = 0)

St = αaRBM(t) + (1 − α)St−δt

ac
RBM(t) = aRBM(t) − St

}
for t > 0,

(16)

where α is a coefficient that represents the degree of weight-
ing decrease. St is the average at time t , aRBM(t) and ac

RBM(t)
are the instantaneous and the corrected breathing mode
displacements respectively at time t and δt is the molecular
dynamics simulation time step. The value of α can be set
between 0 and 1; larger values of α discounts older values
of aRBM(t) faster. The value of α is chosen such that the
modal displacements are averaged over 10 breathing mode
cycles. Then the total energy of the radial breathing mode is
obtained from ERBM = 1/2kRBMac

RBM(t) + 1/2ȧ2(t). During
the thermalization process the average total energy in the
radial breathing mode was about 0.1 meV/atom.

After 50 ps, the langevin thermostat is turned off and
the phonostat is applied on the breathing mode with Etarget

set to 0.5 meV/atom. In the phonostat step of our algorithm,
though the initial guess fi for the driving force could be
0 or f A(0), we have chosen fi = 0. The results presented
here are obtained by using feedback scheme I for the force
correction.

In Fig. 3(a) we present total energy of the radial breath-
ing mode vs. time, phonostatted to Etarget = 0.5 meV/atom,
for ζP1 = 0.15, γ = 0.001, and the two different background
temperatures TBG = 600 and 300 K. The driving force ampli-
tude of the phonostat is also plotted as a function of time in
Fig. 3(b). We see that for TBG = 600 and 300 K, the driving
force starts from 0 and increases steadily until the mode
reaches Etarget, as expected. However, the temperature of the
entire system, increases monotonically once the phonostat
is turned on (Fig. 4(a)). The radial breathing mode that is
being driven is highly anharmonic and couples strongly to
the half frequency modes and thus dissipates energy into the
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FIG. 3. (a) Total energy and (b) phonostat force amplitude plotted as a func-
tion of time of radial breathing mode phonostatted at 0.4 eV (0.5 meV/atom)
for ζP1 = 0.15, γ = 0.001. The red and blue curves correspond to TBG

= 600 K and 300 K, respectively.

background leading to rise in the total energy of the system
and a corresponding increase in the temperature of the tube in
both cases. A continuously driven mode will tend to energize
the entire system by dissipating until a steady state wherein
all the degrees of freedom come into equilibrium with the
driven mode is reached; that is, at equilibrium each degree of
freedom will have a total energy equal to the driven energy,
Etarget = 0.5 meV/atom, corresponding to a system temper-
ature of 4642 K. In our simulations, the temperature of the
whole system increased from 600 K to about 1500 K and
from 300 to 700 K for TBG = 600 and 300 K, respectively,
in 1 ns. We also notice that the system heats up faster and
becomes more dissipative as the simulation progresses. The
increase in the rate of dissipation is also complemented by a
gradual increase in the phonostat driving force amplitude. Us-
ing the power delivered by the phonostat, we also computed
the quality factor of the driven mode as a function of time for
both simulations. We have plotted the quality factor of the
mode vs. the average temperature of the nanotube in Fig. 4(b).
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FIG. 4. (a) Background temperature vs. time of the system obtained by av-
eraging kinetic energies over all degrees of freedom, (b) Quality factor of
carbon nanotube as a function of temperature with radial breathing mode un-
der continuous driving at Etarget = 0.5 meV/atom. The red and blue circles
correspond to simulations with TBG = 600 and 300 K, respectively. (c) mean
deviation of the normalized mode energies from the (classical) equilibrium
filling for TBG = 600 (red) and 300 K (blue). In effect this is the athermal
excitation of the vibrational modes.

We find that the quality factor of the radial breathing mode
decreases with increase in system temperature due to in-
creased dissipation at elevated temperatures. Also computed
is the mean deviation from equilibrium of the filling of the
vibrational modes—the athermal excitation (Fig. 4(c)). This
shows a peak from the mode being driven, but also a series
of lesser peaks, including one at half the driving frequency.
Though these peaks may look like noise, a closer inspection
reveals that there is a very strong correlation between the
peaks in simulation sets for TBG = 600 and 300 K, indicating
that the energy from the driven mode is dissipating into a
limited subset of other modes, that are distributed uniformly
across the full frequency spectrum of the tube.

IV. CONCLUSIONS

In this paper we presented a generic algorithm to regulate
energy in any given internal degree of freedom. Our approach
is based on obtaining the instantaneous modal energies using
a mode-tracking algorithm and then driving the system using
an external force of fixed frequency ωo and a time varying
force f A(t). We also identified and presented at least two dis-
tinct ways of controlling the external driving force for phonos-
tatting a mode. Our method is illustrated by a test case of a
driven damped harmonic oscillator. Our study shows that the
modal energy rise time can be controlled by two parameters,
ζP1 and γ . We then continuously drive the radially breathing
mode of a (10,0) CNT resonator at two different background
temperatures and demonstrate the robustness of the technique
even under dissipative conditions. The quality factor of the
breathing mode is also computed for different system temper-
atures from the phonostat power, in a single simulation.
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