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Abstract—This paper describes the system design of a com-
pressed sensing (CS) based source encoding system for data
compression in wireless sensor applications. We examine the
trade-off between the required transmission energy (compres-
sion performance) and desired recovered signal quality in the
presence of practical non-idealities such as quantization noise,
input signal noise and channel errors. The end-to-end system
evaluation framework was designed to analyze CS performance
under practical sensor settings. The evaluation shows that CS
compression can enable over 10X in transmission energy savings
while preserving the recovered signal quality to roughly 8 bits
of precision. We further present low complexity error control
schemes tailored to CS that further reduce the energy costs by 4X
as well as diversity scheme to protect against burst errors. Results
on a real electrocardiography (EKG) signal demonstrate 10X in
energy reduction and corroborate the system analysis.

Index Terms—Compressed sensing, error correction codes,
source coding, wireless sensors, energy efficiency.

I. INTRODUCTION

VER THE PAST few decades, CMOS scaling and

advancements in IC design have progressively reduced
the cost of computing, signal processing, and communication.
Wireless sensors have been one of the many applications
enabled by the miniaturization of CMOS, and now have
reemerged as a vital “green” technology to enable efficiency
across a variety of industries including building management,
agriculture, transportation, and healthcare [1].

Most of the technical obstacles to wider adoption of wireless
sensor technology, such as data reliability and node lifetime, can
be linked to the stringent energy constraints of each sensor node
[2]. As Fig. 1 shows, the energy cost to wirelessly transmit data
is typically orders of magnitude greater than any other function
that is common within a wireless sensor. Thus, in order to ad-
dress sensor lifetime it is paramount to minimize the amount
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Fig. 1. Common functional blocks within a wireless sensor node and their as-
sociated energy costs from state-of-the-art publications [3]-[13].

of transmitted data. Consequently there have been many efforts
across a variety of applications to find low-cost, low-energy data
compression schemes that can be implemented locally at the
sensor node [13]-[15]. For each scheme, there is a trade-off be-
tween data reduction, information integrity, and implementation
cost, where the goal is to minimize the total amount of energy
required to preserve the desired information.

Based on recent research, compressed sensing (CS) shows
promise as a potential data compression scheme for wireless
sensors. Unlike Shannon sampling theory that explains signal
acquisition rates with respect to bandwidth, CS techniques are
developed to capture data at approximately the information rate
[16]. Furthermore, the compressed samples (or measurements)
in CS can be randomly captured, enabling universal data com-
pression for sparse signals [17]. In our previous work, we high-
lighted the applicability of CS techniques for data compression
in wireless sensors by demonstrating an energy-efficient hard-
ware realization of the CS data encoder [18], [19].

Having shown that the implementation cost for CS can be
minimal, our focus here is to discuss the design of the CS system
under a practical, wireless sensor environment. In particular, we
explore how impairments from sensor noise, signal quantization
and channel noise impact the required transmitted signal energy
needed to meet the desired signal fidelity at the receiver. As we
will show, CS can not only lower the transmission energy for
a given fidelity, but can simultaneously improve the attainable
signal fidelity when in the presence of sensor noise. We also
show that the degradation in reconstruction performance due
to channel errors is gradual for CS, whereas standard lossless
source coding algorithms such as Huffman [20] and Lempel-Ziv
(LZ) [21] are susceptible to error propagation when decoding
corrupted compressed data [22]. Although CS does not require
additional layers of coding protocols to insure data integrity, as
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is typical with LZ and Huffman [22], channel coding is gener-
ally desirable, and we show how CS is specifically amenable to
simpler error detection schemes that perform on par with more
complex error correction schemes.

The remainder of the paper is organized as follows. Section I1
first briefly reviews background on CS and sets the terminology
used in this paper. In Section I1I, we describe the framework, pa-
rameters, and metrics under which the design space is explored.
Section IV quantifies the energy cost of channel errors in a CS
system while Section V discusses the impact of different error
coding strategies and proposes a couple of coding schemes spe-
cific to CS. Section VI, describes the results in the context of a
real EKG signal, and finally we offer conclusions in Section VII.

II. COMPRESSED SENSING BACKGROUND

CS is based on the following key concepts which will be dis-
cussed hereafter: signal sparsity, signal reconstruction, and in-
coherent sampling.

A. Signal Sparsity

CS theory first and foremost assumes that the signal
of interest, f, has a sparse representation in some basis
W = [y 92 ... Y] where f = ¥z or equivalently:!

L
F= b ey
i=1

where z; denotes the zth coefficient of signal vector z, and
consists of only a few non-zero (or significant) values. For ex-
ample, a sine wave captured in the time domain requires an in-
finite number of non-zero samples, whereas it only requires a
single non-zero coefficient in the Fourier domain. Fortunately,
many sensor signals of interest are compressible and have sparse
representations in some signal basis, such as time, frequency,
Gabor, wavelets, etc., [23]-[25]. CS techniques are designed
specifically for such sparse representations, and are therefore
applicable to many sensor systems.

B. Signal Recovery From Incomplete Measurements

When the signal is sparse, CS theory proposes that acquiring
only a small number of compressed measurements can capture
the necessary information to recover the signal. This frame-
work is shown in Fig. 2, where the /V-dimensional input signal,
[, is directly encoded into an M -dimensional set of measure-
ments y = ®f via an M x N measurement matrix, . When
M < N the linear system of equations y = @® f is underde-
termined, therefore multiple signals, f, may produce the same
measurements, g, making the problem of reconstructing f from
y ill-posed. Fortunately, the sparsest solution to y = ®f is
often unique, and the typically intractable (NP) sparse recovery
problem is well approximated by the convex relaxation

mliqn |lZ||e, subject toy = @Px 2
Y

I'We refer to ¥ as a basis in this section, but in practice ¥ does not need to
be a set of linearly independent vectors. For example, as we will show later, ¥
can be an overcomplete dictionary.
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Fig. 2. Compressed sensing framework.

where ¥ is a known N X L basis matrix and z is the coefficient
vector from (1). The recovered signal is then f = Wz where
z* is the optimal solution to (2). The problem of minimizing
the #1-norm in (2) is a linear-programming problem for which
efficient techniques have been developed [26]. In the following
experiments the signals are reconstructed by solving a modifi-
cation of (2) using the Lasso-modified LARS algorithm [27]. It
should be noted that the signal can be reconstructed using a va-
riety of different algorithms besides what we chose [28]-[33].
The main point is that these reconstruction algorithms have
practical implementations for estimating the sparse solution.
The practical feasibility of solving (2) (or similar) implies that
an /NV-dimensional signal can in essence be recovered (some-
times perfectly) from a lower number of samples, M, provided
that the signal is sparse under W. The ratio N/M is essentially
the data compression factor (CF) realized by the CS system,
and is proportional to the transmission energy saved.

C. Incoherent Sampling

In addition to signal sparseness, the conditions for sparse re-
covery also include the incoherence between the sensing ma-
trix (®) and the signal basis (¥). The coherence parameter
(P, ) measures the largest correlation between any row of
® and any column of ¥, and is defined as

p(®,¥) = rr;é}Xl(sokJ/)j)I A3

where the coherence 1i(®, ¥) ranges between 1 and N (where
@k and %; are unit vectors). The more incoherent the matrices
&P and ¥ are, the fewer the number of measurements that are
needed to recover the signal. A lower bound on M to recover
an S-sparse signal (a signal with S non-zero terms out of V in
the basis ¥) was shown to be ([34])

M>C-p*(®,®)-S-logN 4)

where C' is a small known constant (empirically ~2 — 2.5 [33])
and N is the dimensionality of the signal to be recovered. Thus,
when the normalized coherence parameter ;1/N is roughly con-
stant, an S-sparse signal can be reconstructed from approxi-
mately S - log(/N) measurements. Since S is the rate of in-
novation (or information rate) of the sparse signal, (4) indi-
cates that the required number of samples for successful re-
covery is proportional to the information content of the signal.
Random sensing matrices with independent entries are typically
incoherent with most fixed bases as the sample size becomes
large [17]. Therefore, CS sampling with random matrices can
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Fig. 3. Evaluation system models for an input signal block of [N samples: (a)
a baseline system with only quantization error, (b) a system with input noise,
quantization noise, and channel noise, and (c) a CS system with input noise,
quantization noise, compression error and channel noise.

be viewed as a universal encoder that enables good signal re-
construction without requiring a priori knowledge of the signal
basis (¥).2 In the context of wireless sensors, this enables a
generic infrastructure for data acquisition and compression that
is agnostic to the type of signals being acquired, provided that
they are sparse.

III. EVALUATION FRAMEWORK

Since most work in CS theory is focused on determining
asymptotic performance bounds, a simulation framework
must be established to evaluate the performance of a practical
CS-based wireless system when the block size (V) is finite.
Thus, in this section we describe a set of models and per-
formance metrics for comparison and choose an appropriate
signal test set to capture the salient characteristics of the CS
algorithms.

A. System Models and Performance Metrics

Fig. 3 shows three system models chosen to highlight the
main issues and challenges of designing the system. Fig. 3(a)
shows an idealized wireless sensor node infrastructure, which
assumes that the input signal to the ADC is noiseless (n; = 0),
and that the quantized data is received error-free (n.;, = 0). The
quantization resolution, J, is chosen to meet the error require-
ment of the application. Since any practical system will require
( to be finite, we treat this as the baseline performance for com-
parison with subsequent systems.

Fig. 3(b) shows a more complete model that includes signal
noise (ns) and channel noise (7.5). The last system model
shown in Fig. 3(c) includes the effects of compression with
CS. Although the CS framework does not necessarily require
the input to be quantized, it does require the dynamic range
of the input to be preserved. So for Fig. 3(c), cs represents
the number of bits that correspond to the input dynamic range.
To compare the systems shown in Fig. 3, we adopt the percent
root-mean-square difference (PRD) metric, which is commonly

2t should be noted that while ¥ does not need to be known at the sensor/
encoder, it does need to be known in order to recover the original signal. If ¥
is not known, a practical approach to determining ¥ is to train ¥ based on
captured uncompressed data first as described in [19].

used in quantifying information loss in biomedical signals [37].
This metric is defined as

Yon [fl0] — fln]l?

PRD = 100, X
Zn:l ‘f[n]|2

)

where [ is the estimate (fo, for, fcs) of the input signal f.

B. Reconstruction Error and Quantization Error in CS

To better understand the performance comparison of CS to
more traditional systems, we first discuss the noiseless (n., =
ny = 0) signal recovery performance of CS. CS is generally
a lossy compression scheme whose reconstruction performance
is dependent on the number of significant features (S) in the
signal, the block size (N} of signal samples to compress, the
resolution of each signal sample (Q¢s), the number of com-
pressed measurements (M), and the resolution of each mea-
surement (73). For any random combination of a measurement
matrix, ®, and an input signal, f, there is some non-zero prob-
ability that there will be an ill-conditioned pair of f and ® that
results in poor reconstruction error.

To illustrate these dependencies, we constructed random
4-sparse input signals of length N = 1000 from an over-com-
plete dictionary of a sample-shifted Gaussian pulses (used as
W) to pass through the noiseless CS system. The signals were
generated by drawing on a uniform random distribution over
[-1,1] to assign the sign and magnitude, and over [1, 1000]
to assign the position of each pulse in the 4-pulse signal. This
signal dictionary was chosen as an example to provide a simple
signal model to understand, similar to an N x N identity matrix,
yet better representing signals acquired in an over-sampled
system. Also, as we will demonstrate later, it enables reasonably
good reconstruction of real EKG signals.

For each randomly generated signal, the resolution of each
compressed measurement (13) is allowed to be as large as
needed to accommodate the measurement range, but at a min-
imum resolution equivalent to the input quantization (Q¢g). So
for example, if QJ¢g consists of 4 fractional bits (i.e., Qcg = 5
bits, which includes 1 sign bit), then the resolution of each
measurement (3) will also have only 4 fractional bits, but will
extend the number of integer bits as needed to handle the addi-
tional range from random accumulation of NV input samples. To
maintain the hardware simplicity described in [19], the mea-
surement matrix, ®, is chosen to be a random Bernoulli matrix
(+£1 entries) generated from a randomly seeded pseudo-random
bit sequence (PRBS) generator.

Fig. 4 shows example PRD distributions (in dB) for 10
000 different input signals for system configurations of
M = 50,100 and Q¢g = 8, 12. Fig. 4 also shows the PRD cor-
responding to the net PRD (PRD,,..), average PRD (PRD,.,)
and the PRD from just quantizing the inputs to (¢ = Qg bits
(PRDg). The net PRD is defined as

feln] = filn]l?

N
et [fe[n]?

AT
n=1

K
Zk:l

PRD,¢ = 100, =
Zk:l

(6)
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Fig. 4. Distribution of PRD over 10000 input signals of length 1000 (V)
where M = 50,100 and Qcs = 8,12.

where K is the total number of input signal blocks (10000 in
this example), and is equivalent to the PRD if all K input blocks
were considered as a single input signal. The distributions high-
light the fact that a small subset of signal blocks can result in
errors many orders of magnitude greater than the majority of
signal blocks, and that these signals largely dictate the value of
PRD,,:. The distributions also show that for a 4-sparse signal,
the inherent net reconstruction error, from taking less than 100
measurements, is greater than the error due to quantization to
8 bits, as PRD,,¢ is largely independent of signal resolution
above 8§ bits.

Meanwhile, the average PRD represents what the expected
PRD for one block of an S-sparse, N sample signal would be

Spey [ fsln] = fuln]?
Sy | fuln] 2

To distinguish the importance of these two measures,
PRD,,, is equivalent to the time-averaged error performance,
whereas PRD,,. is the accumulated error performance. These
results are consistent with the discrepancy shown between the
worst case and average case analysis of CS reconstruction error
in [35]. Depending on the application, one metric may be more
important than the other.

The reconstruction error dependencies are summarized in
Fig. 5 where PRD,,, and PRDy,; are plotted over the M and
Qs design space. Fig. 5 highlights the performance limita-
tions imposed on CS due to the number of measurements and
the quantization of the input signal. Below a certain number
of measurements (~50) the average recovered signal error
(PRDavg) is dominated by reconstruction error. However,
for larger M, the recovered signal becomes more limited by
quantization noise. The same can be said of the net signal error
(PRDyet ), only the threshold at which this crossover occurs is
at a higher value of M. When the error is limited by M, there
is a trade-off between compression performance and fidelity
of the recovered signal. Even though V is fixed for the results
shown in Fig. 5, the impact of changing N can be inferred; in
other words, increasing M is similar to decreasing /V and vice
versa, where the relationship is roughly dictated by (4).

As a point of reference, the original input and reconstructed
waveforms corresponding to a PRD 0f 0.1% and 10% are plotted
in Fig. 6; they show that while the quantitative difference is
significant between signal recovery for a signal in the bulk of
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Fig. 5. Contours of the (a) average PRD (in dB) and (b) net PRD (in dB) for
4-sparse signals across the input quantization ()¢ ) and CS measurement (1)
design space.

the distribution and one in the tail, the perceptual difference is
small in either case. In subsequent discussion, we will refer to
the PRD,,, signal as a signal that represents the average re-
constructed PRD per block (i.e., the bulk of the distribution).
Meanwhile, the PRD,,; signal will refer to the net reconstruc-
tion error (i.e., representative of signals in the tail).

C. Compression Performance of CS

Since the purpose of adopting CS theory is for data compres-
sion, the compression performance of CS is discussed and com-
pared against the Huffman [20] and LZ [21] source encoding
algorithms. The comparisons will be limited to these lossless
compression schemes since their recovered signal error is equiv-
alent to just the quantization error. The coding efficiency of
each option is measured in bits per sample which is just the
number of transmitted bits divided by the number of input sam-
ples those bits represent. Fig. 7 plots the resulting compression
performance for the PRD,,, and PRD, signals versus their
level of quantization. For every case except CS, the signals are
each quantized to () bits before compression. For the CS system,
M and (Qcs are chosen such that the PRD of the reconstructed
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Fig. 7. Number of bits per sample corresponding to the sample entropy,
Huffman coding, and LZ coding for the 4-sparse (a) PRD . and (b) PRD...
signals when quantized to ¢} bits. For CS, the bits per sample represent
M - B/N where M and QJ¢s are chosen such that the reconstructed PRD
matches the output of the baseline system for each target () value.

signal is equal to or less than the PRD due to quantization to
@ bits. The coding efficiency of the CS system is M - B/N
where B is about 4 bits larger than (cs. Additionally, the the-
oretical entropy per sample is also calculated and plotted where
the sample entropy is defined as

N

H(X)=- Zp(mi) log, p(z:). ®)

where p is the probability mass function of X.

As Fig. 7 shows, the coding efficiency of CS roughly tracks
the sample entropy and generally outperforms Huffman and LZ
when the reconstruction error is not dominant.3 This should be
expected as CS is lossy whereas Huffman and LZ are both loss-
less algorithms. For PRD,, the coding efficiency of CS de-
grades rapidly beyond 8 bits of quantization when the recon-
struction error begins to dominate and M must be increased to
meet the reconstruction error target.

31t should be noted that the results for the Huffman coding algorithm assume
that all NV samples of the signal have been stored in order to calculate the sample
statistics. In both cases, LZ does poorly at higher resolutions since there is less
sequence repetition, thus requiring a larger, less efficient code book. Both the
Huffman and LZ algorithms would expect to perform somewhat better with
longer input sequences. However, such a choice will negatively impact the re-
quired hardware [19].

IV. COST OF TRANSMISSION ERRORS

Regardless of whether a source encoding/compression
scheme is employed [Fig. 3(c)] or not [Fig. 3(b)], there is an
energy cost associated with ensuring a certain quality of recov-
ered signal in the presence of channel noise. In this section, we
first quantify the cost of channel errors for both systems when
no additional channel coding is applied.

A. Channel Model

To capture the general effect of channel errors, the wireless
channel is modeled using an additive white Gaussian noise
(AWGN) channel with a noise variance of N and signal energy
of Ey. The bit error rate (BER) equals the Gaussian Q-function
evaluated atv/SNR, where SNR is the signal-to-noise ratio,
SNR = E;/Ny. We choose this for the simplicity of correlating
SNR to BER, but our results should generally apply to other
channel models as well (e.g., Rayleigh fading) where the final
energy results will simply be shifted by their respective error
distributions. For both the quantization only and CS systems,
the modulation scheme is assumed to be such that the baud
rate matches the bit rate (i.e., there is only one bit per symbol).
Again, this is chosen for simplicity but the results are di-
rectly extendable to alternative modulation schemes. The total
number of bit errors per block will depend on how many bits are
transmitted per block of N samples. In the simple quantization
system this is N - ¢} g whereas for the CS system this is M - I3.
Likewise, the total energy cost for each system will also depend
on the number of bits transmitted per block and the required
SNR per bit. It should be noted that the channel SNR, both in
this context and in future discussion, is not rate adjusted so it
refers to the energy per transmitted bit as opposed to the energy
per transmitted information bit. This convention is chosen in
part because for CS, even with no additional channel coding,
the delineation between information bits and redundancy bits
is not clear.

B. PRD vs. Channel Noise

For the raw quantized data stream [Fig. 3(b)], channel er-
rors will degrade the PRD of the received signal. This relation-
ship between channel errors and PRD is plotted in Fig. 8 where
PRDgE is plotted against the channel SNR for varying values
of Q. The signals used to generate the plots are drawn from
the sparse set described in Section III. At high channel SNRs,
the PRDgg values converge to their respective quantization
noise limits. As Fig. 8 shows, to preserve the PRD of the system
(PRDgg = PRDy,) in the presence of any appreciable channel
noise, the resolution of the system must increase (Qg > @) to
counteract the errors due to channel noise.

For CS, a similar exercise can be performed to extract the re-
lationship between the reconstructed signal PRD (PRDc¢s) and
the channel SNR. However, for CS there are additional degrees
of freedom, such as M, N, and B that affect the reconstruction
performance. Fig. 9 plots a snapshot of this relationship for both
PRD,yg and PRDg signals when M = 50, N = 1000, and B
scales with ()¢s. The corresponding distortions from only quan-
tization (PRD¢,) are also plotted. As Fig. 9 shows, the signal
that is representative of the PRD,,, reconstruction performance
essentially has a higher noise floor. As shown in Figs. 4 and
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5(b), to improve the noise floor, the number of measurements
(and total energy) must be increased.
C. Energy Cost of Channel Errors

As seen in Figs. 8 and 9, there are many system specifica-
tions that can achieve a targeted PRD performance. However,
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Fig. 10. Minimum energy per sample (in units of channel noise Ny ) for each
required PRD performance for both the uncompressed ADC system and the CS
system for PRD,,, and PRD,,., 4-sparse signals.

they are not all equally energy-efficient. There is a trade-off be-
tween transmitting more bits at a lower SNR and transmitting
fewer bits at a higher SNR. For transmitting the raw quantized
samples, the energy cost per sample is simply Qg - SNR i B,
where SNR,,,;,,. 5 is the minimum SNR that enables the system
to meet the target PRD. For each CS configuration, the equiva-
lent energy cost per sample is: M - I3 - SNR,,.in cs /N.

Fig. 10 plots the minimum energy cost curves over a range
of target PRD performances for both systems, where the energy
is in units of channel noise (Ny). For reference, several of the
minimum energy configurations for the CS system are labeled
in addition to the PRD performance associated with error-free
quantization to 2, 8, and 15 bits of resolution. Fig. 10 shows the
incremental energy cost of additional resolution in both systems
and shows the order of magnitude energy savings that CS can
provide through data compression. However, to achieve a low
PRD (<1%) or high resolution for PRD,,. signals requires an
energy cost on par with the uncompressed quantized samples.
The reason for this is because more measurements (larger M)
are needed to improve the net reconstruction error and hence
more energy is required. In contrast, if occasional performance
degradation is acceptable over brief blocks of time, as with the
time average PRD (PRD..,), then CS can offer order of mag-
nitude energy savings over the entire range of PRD specifica-
tions when compared to transmitting the raw quantized sam-
ples. However, just as importantly, Fig. 10 shows that channel
induced bit errors in the CS measurements do not on average
result in catastrophic signal reconstruction as they might with
source encoding algorithms such as LZ or Huffman coding.

D. Effect of Signal Noise

So far, the discussion has been limited to noiseless input sig-
nals, which suggests that the energy/performance trade-offs de-
scribed so far are minimum energy scenarios. Any sensor input
signals that occur in practice will be somewhat noisy. To cap-
ture the effect of signal noise, white Gaussian noise (ns) is
added to the system inputs of Fig. 3(b) and (c). Fig. 11 shows
the minimum energy curves when the input noise variance, 7,
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10%.

is chosen to give signal SNRs of 20 dB and 40 dB, which corre-
spond to PRDs of 10% and 1% respectively. As to be expected,
when only quantizing, our recovered signal performance is lim-
ited by the PRD of the input. The CS system, however, filters
some of the input noise during reconstruction and is thus able to
achieve both lower energy and better PRD results. So, while the
achievable reconstruction performance of CS does not compare
favorably with a simple quantizer for noiseless inputs [36], the
opposite is true when it comes to more practical noisy sensor
inputs.

Another observation that can be drawn from Fig. 11 is that
the achievable PRD of the CS system is less limited by input
noise than by quantization noise (as shown in Fig. 5). The reason
for this is because the input noise is less correlated with the
signal (and signal basis) and can be filtered during reconstruc-
tion whereas the quantization noise is highly correlated as is typ-

ical of oversampled inputs [38]. This result is interesting for its
potential hardware implications; for example, an amplifier that
drives an ADC could be allowed to have a much higher noise
floor compared to the quantization noise of the ADC, which
would normally be avoided in non-CS systems.

V. PROTECTION AGAINST CHANNEL NON-IDEALITIES

Thus far we have shown that CS is relatively robust to channel
errors unlike typical source coding algorithms (e.g., Huffman or
Lempel-Ziv) which are known to be very sensitive to transmis-
sion errors and prone to error propagation [22], [39]. Despite
the graceful performance degradation in CS, channel coding
can still further improve the energy/performance trade-off of the
system. Since channel coding algorithms are typically designed
without bias towards the message bits, we expect the coding per-
formance of any existing error correction or detection schemes
to work equally well with CS measurements as they do with
raw quantized samples. However, since single bit errors in the
measurement matrix can cause relatively large reconstruction
errors, it is not necessarily clear how coding gain translates into
energy efficiency. In this section, we propose modifications to
some common existing coding strategies for use with CS and ex-
amine the energy performance gains from applying these codes.

A. Bit Errors in CS

The performance of channel coding is typically evaluated
in terms of BER versus channel SNR, where a lower SNR to
achieve the same BER indicates coding gain. However, this
type of analysis assumes that each transmitted bit carries the
same importance. Ideally, a source code would insure this con-
dition such that the signal error is proportional to the BER of the
channel. However, in the case of CS measurements, and even
the raw quantized samples, this is not the case. The binary rep-
resentation of each sample and measurement, while efficient,
means that some bits carry more information than others. To
illustrate the uneven impact of a single bit error, the average
PRD versus bit position error for both CS and the raw sam-
ples is plotted in Fig. 12, where higher bit positions indicate the
most significant bits (MSB) (highest bit is a sign bit). As Fig. 12
shows, a single bit error in the wrong bit position can result in
significant distortion of the reconstructed signal. Given, the un-
even distribution of information in the CS measurements, the
task is to find the most efficient coding strategy.

B. Error Control

Communication systems and protocols generally revolve
around two channel coding strategies or hybrids thereof: error
correction and error detection. In error correction protocols,
some form of forward error correction (FEC) is applied and sent
with the data to detect and correct any errors during transmis-
sion, while error detection schemes, such as automatic repeat
request (ARQ), rely only on detecting errors at the receiver
and communicating back to the sender what corrupted data to
resend. In both cases, there is energy overhead to offering some
data reliability. Here we examine the performance of these
coding strategies as applied to CS.

1) Error Correcting Block Codes: As seen in Fig. 12, er-
rors in the least significant bits (LSB) of the measurement ma-
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Fig. 12. PRD... versus bit position of a single bit error in the transmitted
data for: (a) a CS system and (b) a quantization only system where the input is
quantized to 8 bits (i.e., @ = Qcs = 8).

trix have little impact on the reconstruction error. Thus, if the
intention is to maximize the performance gain from error cor-
rection, it is most efficient to only protect the MSBs in the bit
matrix. To assess the effectiveness of this approach, we apply
Bose-Chaudhuri-Hocquenghen (BCH) block codes [40] across
the M measurements starting with the most significant bits of
each measurement. Fig. 13 illustrates the general idea behind the
coding scheme as well as showing the reconstructed PRD versus
channel SNR for the uncoded and BCH coded CS measurement
block when Qg = 12. Meanwhile, Fig. 14 plots the min-
imum-energy configurations for the different coding schemes
as well as the uncoded case as a function of target PRD. In
each of the plots, BCH-T refers to a BCH code with T bits of
error correction capability. The actual BCH code that is chosen
is determined by the number of bits in the measurement ma-
trix and the desired error correction capability. The most effi-
cient (lowest overhead) BCH(#n, k) code is chosen whose mes-
sage size (k) will cover as many of the message bits (M -
B) without requiring filler bits. So for the examples shown in
Fig. 13 when Q¢s = 12, BCH-5, BCH-10, and BCH-15 corre-
spond to BCH(511, 466), BCH(511, 421), and BCH(511, 376)
codes respectively. As Fig. 14 shows, there is roughly a 4X im-
provement in energy-efficiency over the uncoded data scenario.
The saturation of BCH-10 and BCH-15 energy plots indicates
that additional error correction capability yields diminishing re-
turns in energy-efficiency.

The above represents a first look on incorporating basic error-
correction codes in CS communication schemes. A natural pro-
gression of this study is to look at modern iterative coding tech-
niques, e.g., turbo and low density parity check codes [41],
[42]. These newer codes are indeed available at comparable
block/message lengths as the above BCH codes. On the other
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Fig. 13. Example of the proposed BCH based coding scheme and the resulting
PRD for a PRD.. signal after applying the error correction code to the CS
measurements when M = 75 and Qcg = 12.
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Fig. 15. Example of the proposed CRC-1 based coding scheme and the re-
sulting PRD from applying the codes to the CS measurements when () s = 12.

hand, it is well-known that modern codes only perform well
(or in other words approach the Shannon-limit) when the block
lengths grow very large. As such for modern codes, there exist
a fundamental trade-off between the length of the code, and the
packetization of the required application, which is beyond the
intended scope of this paper. However, in the next subsection
we will show that an extremely simple code can provide remark-
ably similar gains to their more complicated cousins.

2) Cyclic-Redundancy Check (CRC) Coding: CRC codes
are popular error detection codes that are easily implementable
and provide good error detection [43]. Typical application of
error detection schemes (e.g., ARQ) improves data reliability
but does not typically improve energy-efficiency since error de-
tection events trigger costly packet retransmissions. However,
CS is uniquely suited for error detection schemes since data re-
transmission may not be required. Recall from Fig. 5 that when
we are not measurement limited, decreasing the number of mea-
surements, M, will result in only a soft degradation in recon-
struction performance. In the cases where the signal sparsity is
lower than expected it is possible that there is no significant per-
formance penalty for small reductions in M. This is attributable
to the inherent redundancy of information captured in the com-
pressed measurements.

To take advantage of this characteristic, we propose to use
CRC codes to add parity bits per measurement (for every B bits)
as shown in Fig. 15. At the receiver, when an error is detected,
rather than request a retransmission we simply throw those mea-
surements away—i.e., we do not use them for the signal recon-
struction. In this scheme, detected channel errors effectively re-
duce M, which is less destructive than reconstructing the signal
with corrupted measurements and more energy-efficient than re-
transmitting the packet. The results of this coding scheme for
CRC-1 (detect odd number of bit errors), CRC-5 (detect < 2
bit errors), and CRC-6 (detect < 3 bit errors) codes are shown
in Figs. 15 and 16. Fig. 15 shows the coding gain in regards to
PRD for the coded and uncoded cases, while Fig. 16 shows the
resulting energy gains for PRD,,, and PRD,,; signals. From
Fig. 16, we see about 4X in energy savings over the uncoded
measurements with the proposed error detection scheme. Like
the BCH codes, there is a diminishing return in regards to en-
ergy-efficiency for higher order error detection. More impor-
tantly, we see that error detection schemes, which are less com-
plex and require lower implementation cost, can be just as ef-
fective and efficient as error correction schemes.
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Fig. 16. Minimum energy per sample vs. required PRD performance for coded
and uncoded measurements using the CRC error detection codes. Results are
shown for signals representative of: (a) PRD..., and (b) PRD,.., performance.

C. Diversity Schemes for Burst/Packet Loss

The error correction and error detection schemes discussed
previously are only appropriate for random bit errors within a
block of measurements. To protect against more catastrophic
error events such as longer burst errors and/or packet loss,
we borrow ideas from multiple description coding [44] and
utilize a simple diversity scheme to protect against such error
events. Fig. 17 depicts the general idea of the proposed diver-
sity scheme. Here we show a stream of measurement packets,
Y, obtained from data packets, X;, compressed via random
sampling matrices ®;. In the absence of the proposed protocol,
a catostrophically corrupted 3rd packet (Fig. 17) would result
in the irrecoverable loss of data X 5. On the other hand consider
the “2X diversity” protocol shown in Fig. 17. Here, measure-
ments are combined before transmission and the total number
of bits transmitted is essentially equivalent to when each mea-
surement is transmitted separately. When there is no packet
loss, the individual measurements can be recovered by adding
or subtracting two successive packets. In the example shown,



CHEN et al.: ENERGY-AWARE DESIGN OF COMPRESSED SENSING SYSTEMS FOR WIRELESS SENSORS

Packetl Packet2 Packet3 Packet4
No protocol| Y ‘ 14 | >’§< | 4 |

Information X3
is lost forever

==
BothX; and X;

recovered from packet4

Twice
Y, +Y Y -Y; -Y
Diversity | s l e — I

Fig. 17. Diversity protocol for protection against burst errors and dropped
packets.

1% Loss

0.1% Loss
1% Loss

0% Loss

0.1% Loss

/

0% Loss

\

-60 -40 -20 0 20 40 -60 -40 -20 0 20 40
PRD (dB) PRD (dB)
(a) (b)

Minimum Energy/sample(No)
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0.1%, and 1% packet loss for a PRD,,,, signal with: (a) no diversity protocol,
and (b) with the diversity protocol.

the loss of the 3rd packet means only the loss of the combi-
nation Y3 + Y4; both data packets X3 and X4 can be jointly
recovered from the other received combination, ¥ 3-Y 4, The
additional complexity of such a scheme requires roughly 2X
the compression hardware described in [19]. The performance
of the proposed scheme is shown in Fig. 18 for packet loss
probabilities of 0.1% and 1%. When a packet is dropped and
there is no diversity protocol in place [Fig. 18(a)], the recovered
signal quality incurs a big penalty (i.e., PRD is poor). However,
when the proposed diversity protocol is added, we can see that
we get over 10X in recovered signal performance for roughly
2X the cost. In this example, so long as two consecuitve packets
are not dropped, then the signal can be adequately recovered.
Additional diversity can be added using this scheme at the cost
of reconstruction error and additional hardware.

VI. EKG: AN EXAMPLE CS APPLICATION

In this section, we apply the analysis discussed in Section IV
on a real electrocardiogram (EKG) signal obtained from the
MIT-BIH Arrhythmia database [45]. For simplicity we do not
consider error control schemes in this section, but simply keep
in mind that the same additional energy gains described in ear-
lier sections can be had.

For this example, we are still comparing the performance of
the two system models shown in Fig. 3(b) and (c) only using
the recorded EKG signal as the input. The recorded signals are
inherently noisy so we do not artificially introduce additional
signal noise (n ;). Fig. 19(a) shows a segment of the EKG signal
used to conduct the experiment. To reconstruct the signal, we
used an overcomplete dictionary of Gaussian pulses similar to
the one used for the synthetic signals only with three different
pulse widths. Fig. 19(b) shows a sample of the reconstructed
signal for when M = 100 and N = 1000, resulting in a
PRD of 0.5%. Additional refinement of the signal basis can be
performed to improve the reconstruction error, but the results
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shown here are on par with the more optimized results described
in [46].

The resulting minimum energy vs. target PRD curves (like
Figs. 10 and 11) for the EKG signal are plotted in Fig. 20. In
general, we see similar results as with the synthetic signals.
For target PRDs above 2%, adopting CS provides about 10X
in energy gains. For lower PRDs (higher resolution), the perfor-
mance begins to diminish. In Fig. 20, it can be assumed that the
signal is less sparse than the synthetic signals described earlier,
so the amount of noise in the signal is large enough such that the
PRDgys and PRD,,; results are nearly identical (i.e., measure-
ment limited). This is consistent with the noise limited perfor-
mance predicted by Fig. 11 (where PRD,., and PRD,; con-
verge). It should be noted, however, that our “golden” signal to
which we are measuring the reconstruction performance against
is a measured signal which contains noise. We typically do not
want to reproduce the noise, so if we could fairly determine what
the desired signal should be (such that we could compare), we
would expect additional performance gains with CS. Despite
this limitation, we still see roughly an order of magnitude in en-
ergy gains across a range of acceptable PRD values.

VII. CONCLUSION

In this work we have examined the energy-performance de-
sign space for CS in the context of a practical wireless sensor
system. We have shown that, even under practical constraints
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such as finite resolution and block lengths, CS can be an efficient
and robust source encoding/compression algorithm for wireless
sensor applications where the signal of interest is sparse. For
applications requiring modest resolution performance (<8 bits,
PRD~1%), CS can enable on the order of 10X reduction in
transmission energy when compared to raw quantized data. Fur-
thermore, we have shown that CS is robust to channel errors,
and is amenable to error control schemes (e.g., CRC error de-
tection) that enable an additional 4X energy reduction and yet
have simple hardware realizations. In addition to the system pro-
tocols that may be relaxed with greater error resiliency, we have
also proposed a diversity scheme for CS that requires no addi-
tional transmission costs, provides greater than 10X improve-
ment in recovered signal quality and only requires limited hard-
ware overhead (2X). Finally we show that the design framework
and analysis presented is applicable to real world signals, such
as EKGs, with a similar order of magnitude reduction in trans-
mission energy costs.
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