PERFORMANCE TRADE-OFFS AND DESIGN LIMITATIONS OF ANALOG-TO-INFORMATION CONVERTER FRONT-ENDS

OMID ABDI, FRED CHEN, FABIAN LIM, VLADIMIR STOJANOVIC

Department of EECS, Massachusetts Institute of Technology, Cambridge, MA

March 28th, 2012
MOTIVATION

- High-speed sampling resolution limiter:
 - Jitter (sampling uncertainty)
 - Aperture (circuit bandwidth)

- High-speed ADCs:
 - High Power
 - Limited Resolution

- Analog-to-Information Converters (AIC):
 - Relax the frequency requirements of ADC

ADC Performance

- **FOM** (J/conv-step):
 - 6 bits: 10^{-15}
 - 5 bits: 10^{-14}
 - 10 bits: 10^{-13}

- **Sampling Rate** (samp/sec):
 - 10^6 to 10^{10}

AIC Performance

- **FOM** (J/conv-step):
 - 10^{-12}

- **Sampling Rate** (samp/sec):
 - 10^6 to 10^{10}
AIC: COMPRESSED SENSING

\[
\Phi(t) \quad f(t) \quad CS \quad \text{Sampling} \quad y_1 \quad y_M \quad f_1 \quad f_N \quad M < N
\]

\[
\text{ADC} \quad f_s/N \quad y_1 \quad f_1 \quad \cdots \quad \hat{f}_N
\]

\[
A\text{ ADC} \quad f_s/N \quad \hat{y}_1 \quad \hat{y}_2 \quad \cdots \quad \hat{y}_M
\]

\[
f(t) \quad A\text{ ADC} \quad f_s/N \quad \hat{f}_1 \quad \hat{f}_N
\]

\[
\text{High-Speed ADC} \quad \Phi_1(t) \quad \Phi_2(t) \quad \cdots \quad \Phi_M(t)
\]

\[
f(t) \quad \Phi(t) \quad \text{CS Sampling} \quad y_{1:}\end{bmatrix} \quad \text{reconstruct signal} \quad \hat{f}_{1:}\end{bmatrix}
\]

3/28/2012

ICASSP 2012
Jitter Noise:
- Jitter width: $\varepsilon \sim N(0,\sigma)$, σ is jitter RMS.
- Spatial correlation: same PLL is used across all measurements

$$n_i(t) = f(t) \cdot N_i(t)$$
Mixer Jitter affects AIC Measurements

Each measurement, y_i, is computed by:

$$y_i = \Phi_i \Psi x + n^o$$

Where:

$$\Phi_{ij} = \Phi_i(t) \big|_{t = jT_s}$$

$$n_i(t) = f(t) \cdot N_i(t)$$
APERTURE MODEL

Effects of ADC’s bandwidth and clock rise time

Sampler Transfer Function

-3dB

F_\text{M}(t)

-1/dt

dt

Time

Freq

-1/dt

1/dt

BW

Effects of mixer delay and PN sequence rise time

Real

Ideal

Error

-1

1

-1

1

-1

1

-1

1

-1

0

-Tr

Tp

ICASSP 2012

3/28/2012
Cognitive radio environment:
- Observe the entire frequency spectrum: 500MHz-20GHz
- Determine the location of used channels: N=1000 channels
- Only S << N users are “active” at any one time

Signal Model:
\[f(t) = \sum_{j=1}^{N} x_j \sin(\omega_j t) \text{ where } x \text{ is sparse} \]
As sparsity level S increases:
- ADC performance improves
- AIC performance worsens
- AIC marginally better for small number of components (S)
Aperture affects ENOB of AIC and ADC.

- Aperture and mixer delay worsen ENOB in high-speed ADC and AIC, respectively.

\[\Phi(t): \]

\[T_r, T_p \]

High-Speed ADC

\[T'_r \]

\[N=1000, M=100, S=2 \]

- ADC
 - \(T'_r=5\) ps
 - BW=128 GHz

- ADC
 - \(T'_r=10\) ps
 - BW=64 GHz

- AIC, \(T_r=5\) ps
 - BW=128 GHz

- AIC, \(T_r=10\) ps
 - BW=64 GHz
Aperture and mixer delay worsen ENOB in high-speed ADC and AIC, respectively.

- **Ideal ADC**
- **AIC, $T_r=5\text{ps}$**
- **AIC, $T_r=10\text{ps}$**
- **ADC, $T_r'=5\text{ps}$**
- **ADC, $T_r'=10\text{ps}$**

Jitter (rms) vs. ENOB

- N=1000, M=100, S=10

![Graph](image.png)
AIC & High-Speed ADC Power Model

\[P_{ADC} = \]

Tunable Parameters:
- ENOB
- \(G_A \)

\[P_{AIC} = \]

Tunable Parameters:
- ENOB
- \(G_A \)
- M
- N
Power Consumption-M

- Dominated by the integrator power, not a function of ENOB

- Increasing number of measurements, M:
 - Allows reconstruction of more components (S)
 - Increases the AIC power
System Gain (G_A) varies for different applications:

- To accommodate the input range of the ADC

Increasing G_A:
- High-speed ADC power changes very little: Single amplifier is not dominant
- AIC power increases: Amplifiers power is dominant
CONCLUSIONS

- Compared the energy cost and performance limitations of AIC and Nyquist ADC systems in the context of cognitive radio applications.

- Jitter and Aperture in the mixer stage limit the performance of the AIC system.

- No significant performance benefits over High-Speed ADC, even at low sparsities.

- AICs enable roughly a 2x reduction in power when no pre-amplification is required.