A Fractionally Spaced Linear Receive Equalizer with Voltage-to-time Conversion

Sanquan Song, Byungsub Kim, Vladimir Stojanović

EECS Department
MIT
BW limited channels challenge CDR and EQ

- Trace routing
- Manufacturing
- Temperature & humidity

Equalization and synchronization dominate link performance and power efficiency
Interaction between data and synchronization paths in conventional designs

- Problem:
 - Equalize on d_n; synchronize on e_n
 - EQ and CDR do NOT work to optimize the same performance metric
Overcoming the limitations

• Performance improvement by joint equalization and phase recovery

• Fractionally spaced equalization (FSE) can do both for mesochronous system
 – Architecture
 – Implementation
 – Measurements
FSE concept

- Phase critical for symbol spaced RX
- FSE compensates phase offset by interpolating samples
FSE robustness to phase offset

- Example
 - 4-tap 2X oversampled FSE @ 6Gbps rate

17 dB attenuation at Nyquist rate
FSE implementation challenges and options

• Challenges
 – 4~5 bit linearity for large DR
 – Two samples per symbol period: efficiency

• Options
 – CML technique
 – Voltage-time conversion technique*

 \[V2T: \text{voltage-to-time converter} \]

 \[T2V: \text{time-to-voltage converter} \]

Voltage conversion technique comparisons (1)

- **CML with source degeneration**
 - Good linearity with small input signals
 - Bad linearity given large input dynamic range

- **V2T**
 - Convert by current integration
 - Current sources determine the linearity
Voltage conversion technique comparisons (2)

- **CML with source degeneration**
 - Bad linearity when $I_1 << I_2$ & large input DR

- **V2T**
 - Timing inputs $ed_{x\pm}$ are digital
 - More headroom at V_{O+}/V_{O-}
 - >25% power saving than CML
 - 1.0V VDD & >5bit linearity
Proposed fractionally spaced equalizer structure

- 2 way interleaving
- 2X oversampling
- 2 feed forward taps
Voltage-to-time converter

\[\Delta t = a\Delta V_{in} \]
V2T — track & preset phase

![Circuit Diagram]

- **E_{1r+}**, **E_{1f+}**: Switches
- **$Sign Mux$**: Switch for sign inversion
- **V_{in+}**, **V_{in-}**: Input voltages
- **V_{1x+}**, **V_{1x-}**: Intermediate voltages
- **V_{1s+}**, **V_{1s-}**: Final voltages
- **C_S**: Capacitors
- **N_+**, **N_-**: Nodes
- **P_+**, **P_-**: Transistors

Data Diagram

- **D_0**: Data waveform
- **V_{1x+}/V_{1x-}**, **V_{1s+}/V_{1s-}**: Voltage waveforms
- **V_{th}**: Threshold voltage
- **$V_{th} \approx 300mV$**

Additional Details

- **$Φ_2$**: Timing phases
- **Tx-Rx delay**: Transmission delay

Equations

- $V_{th} \approx 300mV$
V2T — evaluation phase: sample & level shift

Data

- Φ
- Φ_2
- V_{1x+}/V_{1x-}
- V_{1s+}/V_{1s-}
- E_{1r+}/E_{1f+}
- E_{1r-}/E_{1f-}

$V_{th} \approx 300 \text{mV}$

$Tx-Rx$ delay

D_0
$\Delta t = a \Delta V_{\text{in}}$
\[\Delta V_O = \mu \Delta t I_1 = \mu \alpha \Delta V_{in} I_1 \]
T2V for one tap — preset

T2V for CH+ T2V for CH-

M_{PRE+} M_{PRE-}

V_{o+} V_{o-}

E_{r+} E_{r-}

E_{f+} E_{f-}

M_{+} M_{-}

\Phi

I_1

C_{o+} C_{o-}

Vo+/Vo-
T2V for one tap — evaluation: common pull-down

\[V_{o+} \]
\[V_{o-} \]

\[M_{PRE+} \]
\[M_{PRE-} \]

\[C_{o+} \]
\[C_{o-} \]

\[I_1 \]

\[\Phi \]

\[E_{r+} \]
\[E_{f+} \]
\[E_{r-} \]
\[E_{f-} \]

\[V_{o+/Vo-} \]
T2V for one tap — evaluation: differentiate

\[T2V \text{ for CH}^+ \quad T2V \text{ for CH}^- \]

\[E_r^+ \quad E_r^- \quad \Delta t \quad \Phi \]

\[M_{PRE+} \quad M_{PRE-} \quad \Phi \quad I_1 \quad M_+ \quad M_- \]

\[V_{o+} \quad V_{o-} \quad C_{o+} \quad C_{o-} \quad I_1 \quad I_1 \quad \Phi \quad I_1 \]

\[E_{f+} \quad E_{f-} \quad V_{o+/o-} \quad E_{r+} \quad E_{r-} \]

\[\text{T2V for CH}^+ \quad \text{T2V for CH}^- \quad \text{CO}^+ \quad \text{CO}^- \quad I_1 \quad I_1 \]

\[\Phi \quad \Delta t \]

\[E_{f+} \quad E_{f-} \quad V_{o+/o-} \]
$\Delta V_o = \mu \Delta t I_1$

$= \mu a \Delta V_{in} I_1$
• **Discharge currents are shared between even & odd ways**
• Scan-chain/snapshot for in-situ link margin characterization
Tap weight linearity measured @ 4Gbps rate

- 4.3 effective bits linearity in tap weights
 - Monotonic gain
- 8 mW power consumption w/ 1.2 V supply
 - @ 4Gbps
Phase robustness is shown @ 4Gbps rate

- ±5% eye open variation
 - Gain mismatch of factor 2 between I_1 and I_2
 - Tap weights are tuned
Conclusions

- FSE integrates EQ and phase interpolation
 - Leverage process speed vs. channel BW

- A two-tap FSE receiver is shown
 - Robust against phase offset
 - Voltage-to-time technique scales well compared to CML
 - 4.3 effective bit linearity @ ±400 mv input DR
 - 2 pJ/bit power efficiency @ 4 Gbps
Acknowledgement

• National Semiconductor Corporation
• Center for Integrated Circuits and Systems (CICS) at MIT
• Trusted Foundry for chip fabrication
• Fred Chen