Inside the Box:
A New Hope for Optics?

Vladimir Stojanović

Integrated Systems Group
Massachusetts Institute of Technology
High-speed links needed everywhere

Backbone Router Rack

PC or Console

Integrated Systems Group
What makes it challenging

- Requires sophisticated equalization circuits

![Channel response graph]

source: Rambus
Chip-to-chip I/O scaling problem

- Bandwidth need grows faster than energy/bit drops
- Creates exponentially increasing I/O power consumption
 - In power constrained systems (like processors and anything inside the box) – this limits the available bandwidth
Parallel off-chip links

- Often share clock generation and synch
- Limited equalization (few taps)
- Most power burned to drive the 50 Ω line
 - Current-mode – 200 mV swing (4 mW off 1 V supply,
 - Data rate independent
 - With receiver and pre-driver, at 10 Gb/s energy budget 500 fJ/bit
 - Voltage-mode – (2 pJ/bit state-of-the-art, dynamic power)
 - Can possibly scale to 500 fJ/bit, but not much further
Convergence of platforms

Only way to meet future system feature set, design cost, power, and performance requirements is by programming a processor array:
- Multiple parallel general-purpose processors (GPPs)
- Multiple application-specific processors (ASPs)

Intel Network Processor
- 1 GPP Core
- 16 ASPs (128 threads)

IBM Cell
- 1 GPP (2 threads)
- 8 ASPs

Sun Niagara
- 8 GPP cores (32 threads)

Picochip DSP
- 1 GPP core
- 248 ASPs

Cisco CSR-1
- 188 Tensilica GPPs

Intel 4004 (1971):
- 4-bit processor,
- 2312 transistors,
- ~100 KIPS,
- 10 micron PMOS,
- 11 mm² chip

“The Processor is the new Transistor”
[Rowen]
On-chip network opportunities

- Multiple cores on chip need to communicate
 - On and off-chip
 - Need short latency and large bandwidth
 - Current throughputs up to 1-2Tb/s
 - Need to be extremely energy-efficient since CPU power limited
 - Need to be area efficient as well
Example – 90nm CMOS, 10mm wire

- Conventional repeaters ~ 2-5pJ/bit
- Equalized point-to-point links ~ 0.2-0.5pJ/bit (10x better)
 - Latency < 1 clock cycle for 20 mm x 20 mm die and <10 GHz clocks
 - Sets the on-chip photonic link budget to <100 fJ/bit
Si-photonics may be more efficient

- Modulation speeds approaching 10Gb/s
- Energy-efficiency 1-2pJ/bit
- Potential for high-density WDM

- Off-chip
 - Great if coupled into optical backplanes
- On-chip
 - Need to improve energy-efficiency by 10-100x
- Big challenges:
 - Impact of thermal control
 - Process variation
 - Coupling to external waveguides
Target system - year 2010

- 32 x 32 core chip
 - Each core has a GPU+vector unit+local storage
 - Optional L2 cache slice
- 45 nm CMOS technology
- 30 Tb/s available data throughput
 - 60 waveguides, 50 wavelengths per waveguide, 10 Gb/s per wavelength
 - 3000 addressable DRAM banks (total >200 GB)
- 0.1 mm waveguide pitch for I/O
 - A single pad
Link 1: Fixed L2 slice-to-DRAM channel

- Tile-to-off-chip-DRAM link with dedicated photonic network
- The core-to-core network is electrical
 - Message/packet routing network
Link 2: Multiple-access L1 slice-to-DRAM network

- Tile-to-off-chip-DRAM with multiple-access photonic network
 - Network has to resolve multiple access problem
 - Many cores to same DRAM bank (wavelength channel)
- Remove L2 cache (hit rate only 50%)
 - Add more cores
- On-chip and off-chip networks are aggregated into one
Photonic DRAM interface

- 1 single-mode fiber per DIMM
 - 50 wavelengths per DIMM (50 DRAM banks)
- Hope to spread the traffic uniformly to get maximum from dedicated links
Density comparison

- **On-chip**
 - Assume 10µm pitch per modulated waveguide
 - 2µm for waveguide, 8um for modulator/add-drop filter
 - Maximum 10Gb/s channel data rate (avoid SerDes)
 - Photonic link data rate density 1Gb/s/um x WDM factor
 - Photonic links have higher density by the WDM factor (number of wavelengths per waveguide)
 - **Example – aggregate throughput 30 Tb/s**
 - From 1000 cores to I/O or shared L2 cache
 - Requires 30 mm of electrical wiring (1 Gb/s/um density)
 - Almost two full metal layers
 - Requires 0.6 mm of photonic bus (with 50 wavelengths per waveguide) – Link 1
 - 9 mm for Link 2,3
 - **Off-chip**
 - Fiber V-groove pitch 0.1mm – same as wirebond pad
 - Best density improvement WDM factor
 - Less with C4 balls – but still > 10x with 50 wavelengths per waveguide
Summary

- Inside the box battle
- All about density and energy-efficiency
- Discrete photonics does not stand a chance
- Si-photonics is the biggest hope
 - Need to see if it can be scaled
Perspective

- Path to a 30 Tb/s, 200 GB+ kiloprocessor on-a-chip interconnect system
 - Density and throughput advantage over electrical
- Circuit-switched vs. packet switched trade-offs
 - Network topology tied to device performance
- Device designs show promise to scale
 - 100-500 fJ/bit energy budgets at 10 Gb/s/channel
 - Device design driven by process information
- Critical to adopt a mainstream process for high-volume applications
 - Processors and DRAM