Design-Space Exploration for CMOS Photonic Processor Networks

Vladimir Stojanović¹, Ajay Joshi², Cristopher Batten³, Yong-Jin Kwon⁴, Scott Beamer⁴, Sun Chen¹ and Krste Asanović⁴

¹MIT, ²Boston University, ³Cornell University, ⁴UC Berkeley

Acknowledgments

- Rajeev Ram, Milos Popovic, Franz Kaertner, Judy Hoyt, Henry Smith, Erich Ippen
- Hanqin Li, Charles Holzwarth
- Jason Orcutt, Anatoly Khilo, Ben Moss, Jie Sun, Jonathan Leu, Michael Georgas, Imran Shamim
- Dr. Jag Shah DARPA MTO
- Texas Instruments
- Intel Corporation

Processors scaling to manycore systems

Bandwidth, pin count and power scaling

Monolithic CMOS-Photonics in Computer Systems

Bandwidth density – need dense WDM Energy-efficiency – need monolithic integration

CMOS photonics density and energy advantage

Metric	Energy (pJ/b)	Bandwidth density (Gb/s/µ)
Global on-chip photonic link	0.25	160-320
Global on-chip optimally repeated electrical link	1	5
Off-chip photonic link (100 µ coupler pitch)	0.25	6-13
Off-chip electrical SERDES (100 µ pitch)	5	0.1

But, need to keep links fully utilized ...

Core-to-Memory network: Electrical baseline

Both cross-chip and I/O costly

Aggregation with Optical LMGS* network

* Local Meshes to Global Switches

- Ci = Core in Group i, DM = DRAM Module, S = Crossbar switch
 - Shorten cross-chip electrical
 - Photonic both part cross-chip and off-chip

Photonic LMGS: Physical Mapping

Network layout optimization significantly affects the component requirements

64-tile system w/
16 groups, 16
DRAM Modules,
320 Gbps bi-di tileDRAM module BW

- 64 tiles
- 64 waveguides (for tile throughput = 128 b/cyc)
- 256 modulators per group
- 256 ring filters per group

Photonic device requirements in LMGS - U-shape

Waveguide loss and Through loss limits for 2 W optical laser power

Photonic LMGS – ring matrix vs u-shape

LMGS – ring matrix

LMGS - u-shape

- 0.64 W power for thermal tuning circuits
- 2 W optical laser power
- Waveguide loss < 0.2 dB/cm
- Through loss < 0.002 dB/ring

- 0.32 W power for thermal tuning circuits
- 2 W optical laser power
- Waveguide loss < 1.5 dB/cm
- Through loss < 0.02 dB/ring

[Batten et al – Micro 2009]

Power-bandwidth tradeoff

Electrical with grouping

Electrical with grouping and over-provisioning

Optical with grouping and over-provisioning

Landscape of on-chip photonic networks

Clos with electrical interconnects

8-ary 3-stage Clos

Physical mapping

- Two 8 x 8 Routers
- Eight 8 x 8 Routers

Logical topology

- 10-15 mm channels
- Pipelined Repeaters

Centralized Multiplexer Crossbar

Electrical design

Photonic design

Clos network using point-to-point channels

Electrical design

Photonic design

Photonic device requirements in a Clos

Waveguide loss and Through loss limits for 2 W optical laser power constraint

Photonic device requirements in a Clos

2 W optical power contours

Photonic Crossbar vs Photonic Clos

Crossbar

Clos

- 10 W power for thermal tuning circuits
- - Waveguide loss < 1 dB/cm
 - Through loss < 0.002 dB/ring

- 0.56 W power for thermal tuning circuits
- For 2 W optical laser power For 2 W optical laser power
 - Waveguide loss < 2dB/cm
 - Through loss < 0.05 dB/ring

Power-Bandwidth tradeoff

Conclusion

- Computer interconnects are very complex microcommunication systems
- Cross-layer design approach is needed to solve the on-chip and off-chip interconnect problem
 - Most important metrics
 - Bandwidth-density (Gb/s/um)
 - Energy-efficiency (mW/Gb/s)
 - Monolithic CMOS-photonics can improve the throughput by 10-20x
 - But, need to be careful
 - Optimize network design (electrical switching, optical transport)
 - Use aggregation to increase link utilizations
 - Optimize physical mapping (layout) for low optical insertion loss