Design-Space Exploration for CMOS Photonic Processor Networks

Vladimir Stojanović1, Ajay Joshi², Cristopher Batten ${ }^{3}$, Yong-Jin Kwon ${ }^{4}$, Scott Beamer ${ }^{4}$,

Sun Chen ${ }^{1}$ and Krste Asanović ${ }^{4}$

${ }^{1} \mathrm{MIT}$, ${ }^{2}$ Boston University,
${ }^{3}$ Cornell University, ${ }^{4}$ UC Berkeley

Acknowledgments

- Rajeev Ram, Milos Popovic, Franz Kaertner, Judy Hoyt, Henry Smith, Erich Ippen
- Hanqin Li, Charles Holzwarth
- Jason Orcutt, Anatoly Khilo, Ben Moss, Jie Sun, Jonathan Leu, Michael Georgas, Imran Shamim
- Dr. Jag Shah - DARPA MTO
- Texas Instruments
- Intel Corporation

Processors scaling to manycore systems

Bandwidth, pin count and power scaling

Monolithic CMOS-Photonics in Computer Systems

Bandwidth density - need dense WDM
Energy-efficiency - need monolithic integration

CMOS photonics density and energy advantage

Metric	Energy $(\mathrm{pJ} / \mathbf{b})$	Bandwidth density $(\mathbf{G b} / \mathbf{s} / \boldsymbol{\mu})$
Global on-chip photonic link	0.25	$160-320$
Global on-chip optimally repeated electrical link	1	5
Off-chip photonic link (100 μ coupler pitch $)$	0.25	$6-13$
Off-chip electrical SERDES $(100 \mu$ pitch $)$	5	0.1

But, need to keep links fully utilized ...

Fixed and static energy increase at low link utilization!

Core-to-Memory network: Electrical baseline

C = Core, DM = DRAM Module

- Both cross-chip and I/O costly

Aggregation with Optical LMGS* network

* Local Meshes to Global Switches

$\mathrm{Ci}=$ Core in Group i, DM = DRAM Module, $\mathrm{S}=$ Crossbar switch
- Shorten cross-chip electrical
\square_{9} Photonic both part cross-chip and off-chip

Photonic LMGS: Physical Mapping

Network layout optimization significantly affects the component requirements

64 -tile system w/ 16 groups, 16 DRAM Modules, 320 Gbps bi-di tileDRAM module BW

[Joshi et al - PICA 2009]

Photonic LMGS - U-shape

Photonic LMGS - U-shape

Photonic LMGS - U-shape

Photonic LMGS - U-shape

- 64 tiles
- 64 waveguides (for tile throughput = $128 \mathrm{~b} / \mathrm{cyc}$)
- 256 modulators per group

Photonic Receiver Block

Photonic device requirements in LMGS - U-shape

\square Waveguide loss and Through loss limits for 2 W optical laser power

Photonic LMGS - ring matrix vs u-shape

LMGS - ring matrix

- 0.64 W power for thermal tuning circuits
- 2 W optical laser power
- Waveguide loss < $0.2 \mathrm{~dB} / \mathrm{cm}$
- Through loss < $0.002 \mathrm{~dB} /$ ring
[Batten et al - Micro 2009]

LMGS - u-shape

- 0.32 W power for thermal tuning circuits
- 2 W optical laser power
- Waveguide loss $<1.5 \mathrm{~dB} / \mathrm{cm}$
- Through loss $<0.02 \mathrm{~dB} /$ ring
[Joshi et al - PICA 2009]

Power-bandwidth tradeoff

Electrical with grouping

Electrical with grouping and over-provisioning

Optical with grouping and over-provisioning 17

Landscape of on-chip photonic networks

Mesh

[Shacham'07]
[Petracca'08]
[Shacham'07]
[Petracca'08]

[Joshi'09a] [Pan'09]

Clos

CMesh

Clos with electrical interconnects

8-ary 3-stage Clos

Physical mapping

\square Two 8×8 Routers
\square Eight 8×8 Routers

Logical topology

- 10-15 mm channels
- Pipelined Repeaters

Centralized Multiplexer Crossbar

Electrical design
Photonic design

Clos network using point-to-point channels

Electrical design

Photonic Clos for a 64-tile system

Photonic Clos for a 64-tile system

- 64 tiles
- 56 waveguides (for tile throughput $=128 \mathrm{~b} / \mathrm{cyc}$)
- 128 modulators per cluster
- 128 ring filters per cluster
- Total rings $\approx 28 \mathrm{~K} \rightarrow 0.56 \mathrm{~W}$ (Thermal tuning)

Photonic device requirements in a Clos

Optical laser power (W)

Percent die area for photonic devices
\square Waveguide loss and Through loss limits for 2 W optical laser power constraint

Photonic device requirements in a Clos

Percent die area for photonic devices

Optical loss tolerance for Crossbar
Optical loss tolerance for Clos
2 W optical power contours

Photonic Crossbar vs Photonic Clos

Crossbar

- 10 W power for thermal tuning circuits
- For 2 W optical laser power
- Waveguide loss < 1 dB/cm
- Through loss < $0.002 \mathrm{~dB} /$ ring

Clos

- 0.56 W power for thermal tuning circuits
- For 2 W optical laser power
- Waveguide loss < 2dB/cm
- Through loss < $0.05 \mathrm{~dB} /$ ring

Power-Bandwidth tradeoff

Conclusion

- Computer interconnects are very complex microcommunication systems
- Cross-layer design approach is needed to solve the on-chip and off-chip interconnect problem
- Most important metrics
- Bandwidth-density (Gb/s/um)
- Energy-efficiency (mW/Gb/s)
- Monolithic CMOS-photonics can improve the throughput by 10-20x
- But, need to be careful
- Optimize network design (electrical switching, optical transport)
- Use aggregation to increase link utilizations
- Optimize physical mapping (layout) for low optical insertion loss

