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Processors scaling to manycore systems

64-tile system (64-256 cores)
- 4-way SIMD FMACs @ 2.5 – 5 GHz

- 5-10 TFlops on one chip 

- Need 5-10 TB/s of off-chip I/O

- Even larger bisection bandwidth

2 cm

2 cm

Intel 48 core -Xeon
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Bandwidth, pin count and power scaling
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8 Flops/core

@ 5GHz

Need 16k signal pins 

in 2017 for HPC

1 Byte/Flop

256 cores

2 TFlop/s signal pins

2,4 cores
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Supercomputers

Monolithic CMOS-Photonics in Computer Systems

Embedded apps

Si-photonics in advanced 

bulk CMOS, thin BOX SOI 

and DRAM process

NO costly process changes

Bandwidth density – need dense WDM

Energy-efficiency – need monolithic integration 5



CMOS photonics density and energy advantage

Metric
Energy 

(pJ/b)

Bandwidth 

density (Gb/s/μ)

Global on-chip photonic link 0.25 160-320

Global on-chip optimally repeated electrical link 1 5

Off-chip photonic link (100 μ coupler pitch) 0.25 6-13

Off-chip electrical SERDES (100 μ pitch) 5 0.1
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But, need to keep links fully utilized …
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Fixed and static energy increase at low link utilization !
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Core-to-Memory network: Electrical baseline

Mesh

Router

Router and

Access Point

C = Core, DM = DRAM Module

 Both cross-chip and I/O costly
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Aggregation with Optical LMGS* network

* Local Meshes to Global Switches

Ci = Core in Group i, DM = DRAM Module, S = Crossbar switch

 Shorten cross-chip electrical

 Photonic both part cross-chip and off-chip
9



Photonic LMGS: Physical Mapping

64-tile system w/ 

16 groups, 16 

DRAM Modules, 

320 Gbps bi-di tile-

DRAM module BW

[Joshi et al – PICA 2009]

Network layout optimization significantly affects

the component requirements
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Photonic LMGS - U-shape
64-tile system w/ 

16 groups, 16 

DRAM Modules, 

320 Gbps bi-di tile-

DRAM module BW
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Photonic LMGS - U-shape
64-tile system w/ 

16 groups, 16 

DRAM Modules, 

320 Gbps bi-di tile-

DRAM module BW
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Photonic LMGS - U-shape
64-tile system w/ 

16 groups, 16 

DRAM Modules, 

320 Gbps bi-di tile-

DRAM module BW
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• 64 tiles

• 64 waveguides (for tile throughput = 128 b/cyc)

• 256 modulators per group

• 256 ring filters per group

• Total rings > 16K  0.32W (thermal tuning)

Photonic LMGS - U-shape
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Photonic device requirements in LMGS - U-shape

Waveguide loss and Through loss limits for 2 W optical laser power

Optical Laser Power Die Area Overhead
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Photonic LMGS – ring matrix vs u-shape

 0.64 W power for thermal 

tuning circuits

 2 W optical laser power

 Waveguide loss < 0.2 dB/cm

 Through loss < 0.002 dB/ring

 0.32 W power for thermal 

tuning circuits

 2 W optical laser power

 Waveguide loss < 1.5 dB/cm

 Through loss < 0.02 dB/ring

LMGS – ring matrix LMGS – u-shape

[Batten et al – Micro 2009] [Joshi et al – PICA 2009] 16



Power-bandwidth tradeoff

1 group, OPF = 4

4 group, OPF = 2

16 group, OPF = 1

1 group, OPF = 1

4 group, OPF = 1

16 group, OPF = 1

Electrical with grouping Electrical with grouping 

and over-provisioning

Optical with grouping 

and over-provisioning

2-3x better 8-10x better

17



Landscape of on-chip photonic networks

[Shacham’07]

[Petracca’08]

[Vantrease’08]

[Psota’07]

[Kirman’06]

[Joshi’09a]

[Pan’09]

Mesh CMesh Clos Crossbar
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Clos with electrical interconnects

8-ary 3-stage Clos

 10-15 mm channels

 Pipelined Repeaters

Physical mapping Logical topology
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Centralized Multiplexer Crossbar

Electrical design Photonic design
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Clos network using point-to-point channels

Photonic design

Electrical design
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Photonic Clos for a 64-tile system
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Photonic Clos for a 64-tile system
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Photonic Clos for a 64-tile system
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Photonic Clos for a 64-tile system
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Photonic Clos for a 64-tile system

• 64 tiles

• 56 waveguides (for tile throughput = 128 b/cyc)

• 128 modulators per cluster

• 128 ring filters per cluster

• Total rings ≈ 28K  0.56W (Thermal tuning)
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Photonic device requirements in a Clos

Waveguide loss and Through loss limits for 2 W 

optical laser power constraint
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Optical laser power (W) Percent die area for photonic devices



Photonic device requirements in a Clos

Optical laser power (W) Percent die area for photonic devices

Optical loss tolerance for Clos

Optical loss tolerance for Crossbar
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2 W optical power contours
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Photonic Crossbar vs Photonic Clos

 10 W power for thermal 

tuning circuits 

 For 2 W optical laser power

 Waveguide loss < 1 dB/cm

 Through loss < 0.002 dB/ring

 0.56 W power for thermal 

tuning circuits

 For 2 W optical laser power

 Waveguide loss < 2dB/cm

 Through loss < 0.05 dB/ring

Crossbar Clos
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Power-Bandwidth tradeoff

CMeshX2

128b

4kb/cycle

Clos

64b

4kb/cycle

Clos

128b

8kb/cycle

EClos

PClos

EClos

PClos
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Comparable 

on-chip 

power for 

local traffic

2-3x on-chip power savings

for global traffic 



Conclusion

 Computer interconnects are very complex micro-

communication systems

 Cross-layer design approach is needed to solve the 

on-chip and off-chip interconnect problem

 Most important metrics

 Bandwidth-density (Gb/s/um)

 Energy-efficiency (mW/Gb/s)

 Monolithic CMOS-photonics can improve the throughput 

by 10-20x

 But, need to be careful

 Optimize network design (electrical switching, optical transport)

 Use aggregation to increase link utilizations

 Optimize physical mapping (layout) for low optical insertion loss


