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Problem Statement

Conventional approach for PLL jitter analysis:

PLL is modeled as continuous-time, linear, time-invariant system (s-domain)

Problem: None of these assumptions are really accurate
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Problem Statement

Issues:

Time invariance assumption:

In reality: Noise effect on jitter is cyclostationary

Time-invariant analysis cannot capture this effect

Continuous-time assumption:

In reality: 

Jitter is a discrete-time signal. 

Jitter aliasing may occur when PLL divide ratio different than 1.

Continuous-time analysis cannot capture this effect
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Previous Approaches

Discrete-time analysis:

Divide ratio N=1 [1,2] or

Divide-by-N block is modeled as 1/N [3]

Cyclostationary analysis [4]:

Circuit-specific

Limited to VCO supply/substrate noise

[1] J. P. Hein and J. W. Scott, 1988.

[2] P. K. Hanumolu, M. Brownlee et al., 2004.

[3] J. Lu, B. Grung et al., 2001.

[4] P. Heydari, 2004.
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Discrete-Time, Cyclostationary PLL Model

Discrete-Time Analysis

Cyclostationary Analysis

Upsampler-by-N: Charge pump produces current pulses 

once every N PLL periods. 



Development of PLL Model

Steps:

Discrete-time description of PLL components

Loop filter, VCO, divide-by-N

Calculation of noise spectra injected into PLL loop

Take into account cyclostationary noise behavior

Calculation of discrete-time PLL dynamics



REF

PFD Buffer
Vctrl

ICP


OUT

T
BUF0

 FB

C

R
C2

Downsampler

Upsampler

VCO

N

N


n,BUF


n,VCOi

n,CP


n,REF

PLL Components in Discrete-Time

Combination of Loop Filter & VCO modeled through impulse-invariant 

transformation.

J. P. Hein and J. W. Scott, 1988.



PLL Components in Discrete-Time
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Injected PLL Loop Noise

ISF

Noise injected into PLL loop is modulated by Impulse 

Sensitivity Function (ISF).
A. Hajimiri and T. H. Lee, 1998.



ISF Mechanism - VCO

- VCO phase impulse response is step function. 

- Analysis valid for both supply/substrate and device noise.
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ISF Mechanism - VCO

ISFs obtained for VCO with 4 differential stages @ 2 GHz.
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ISF Mechanism – Charge Pump

- Charge pump current impulse response is impulse function.

- Charge pump ISF is non-zero and almost constant during TON.
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Injected PLL Loop Noise

Calculate injected PLL loop noise at the output of PLL

components (VCO, charge pump, VCO buffer) by

filtering the supply/device noise through the ISF.

Cases of supply/device noise:
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Discrete-Time PLL Dynamics

RefClk Noise (H is the forward transfer function of the PLL):

Jitter Spectrum:
Images!

Similar expression for charge pump.
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Discrete-Time PLL Dynamics

Closed-Loop PLL Transfer Function for VCO Noise:

Jitter Spectrum:
Aliasing!

H
BUF

()N

N


n,VCO

()

Y
VCO

()
H()

H
BUF

()

Similar expression for VCO buffer.



Theory vs. Simulation - Cyclostationarity
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Transfer Functions from VCO Supply Noise to PLL Output Jitter

Impulse at max. VCO sensitivity Impulse at 40% VCO sensitivity

VCO Impulse Noise applied at two different instants:

Magnitude of noise transfer function is different.

Simulation: 3rd-order PLL implemented in Verilog-A



Theory vs. Simulation - Cyclostationarity
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Charge pump sinusoidal noise with Fnoise integer multiple of FREF:

Effects cannot be captured by time-invarant model!
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Theory vs. Simulation – Discrete-Time

RefClk Sinusoidal Jitter:
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-Images produce N-1 additional spurs.

-Agreement between theory and simulation:

~1% for main spur, ~15% for secondary spurs.



Theory vs. Simulation – Discrete-Time

Charge Pump Sinusoidal Supply Noise:
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Theory vs. Simulation – Discrete-Time

VCO Sinusoidal Supply Noise:

-Due to aliasing spur falls in-band (f4=10 MHz).

-Simulation harmonic @ 380 MHz is not predicted by theoretical 
linear model.
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Theory vs. Simulation – Discrete-Time

VCO Sinusoidal Supply Noise:

Effects cannot be captured by continuous-time model!
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Conclusions

Discrete-time, linear, cyclostationary model for PLL jitter 

was developed.

Theoretical analysis results are compared to simulation 

model of the PLL implemented in Verilog-A.

Theory agrees well with simulation and correctly predicts 

Cyclostationary behavior of PLL

Frequency aliasing & images due to discrete-time nature of jitter


