Discrete-Time, Cyclostationary Phase-Locked Loop Model for Jitter Analysis

Socrates D. Vamvakos, Vladimir Stojanović, M.I.T. Borivoje Nikolić, UC Berkeley

Problem Statement

Conventional approach for PLL jitter analysis:

- PLL is modeled as continuous-time, linear, time-invariant system (s-domain)
- Problem: None of these assumptions are really accurate

Problem Statement

- Issues:
 - Time invariance assumption:
 - In reality: Noise effect on jitter is cyclostationary
 - > Time-invariant analysis cannot capture this effect

- In reality:
 - > Jitter is a discrete-time signal.
 - > Jitter aliasing may occur when PLL divide ratio different than 1.
- Continuous-time analysis cannot capture this effect

Previous Approaches

Discrete-time analysis:

- Divide ratio N=1 ^[1,2] or
- Divide-by-N block is modeled as 1/N [3]

Cyclostationary analysis [4]:

- Circuit-specific
- Limited to VCO supply/substrate noise

[1] J. P. Hein and J. W. Scott, 1988.

[2] P. K. Hanumolu, M. Brownlee et al., 2004.

[3] J. Lu, B. Grung et al., 2001.

[4] P. Heydari, 2004.

Discrete-Time, Cyclostationary PLL Model

Discrete-Time Analysis

Upsampler-by-N: Charge pump produces current pulses once every N PLL periods.

Development of PLL Model

Steps:

- Discrete-time description of PLL components
 - Loop filter, VCO, divide-by-N
- Calculation of noise spectra injected into PLL loop
 - > Take into account cyclostationary noise behavior
- Calculation of discrete-time PLL dynamics

PLL Components in Discrete-Time

Combination of Loop Filter & VCO modeled through impulse-invariant transformation.

PLL Components in Discrete-Time

$$X(\Omega) \longrightarrow \bigwedge N \longrightarrow Y(\Omega)$$

$$Y(\Omega) = \frac{1}{N} \cdot \sum_{k=0}^{N-1} X\left(\frac{\Omega - 2\pi k}{N}\right)$$

$$Y(\Omega) = \frac{1}{N} \cdot X\left(\frac{\Omega}{N}\right)$$

Injected PLL Loop Noise

Noise injected into PLL loop is modulated by Impulse Sensitivity Function (ISF).

ISF Mechanism - VCO

- VCO phase impulse response is step function.
- Analysis valid for both supply/substrate and device noise.

ISF Mechanism - VCO

ISFs obtained for VCO with 4 differential stages @ 2 GHz.

ISF Mechanism - Charge Pump

- Charge pump current impulse response is impulse function.
- Charge pump ISF is non-zero and almost constant during T_{ON} .

Injected PLL Loop Noise

- Calculate injected PLL loop noise at the output of PLL components (VCO, charge pump, VCO buffer) by filtering the supply/device noise through the ISF.
- Cases of supply/device noise:

Discrete-Time PLL Dynamics

RefClk Noise (H is the forward transfer function of the PLL):

Jitter Spectrum:

$$Y_{REF}(\Omega) = \frac{H(\Omega)}{1 + \frac{1}{N} \sum_{k=0}^{N-1} H(\Omega - \frac{2\pi k}{N})} \cdot \Phi_{n,REF}(N \cdot \Omega)$$

Similar expression for charge pump.

Discrete-Time PLL Dynamics

Closed-Loop PLL Transfer Function for VCO Noise:

Jitter Spectrum:

$$Y_{VCO}(\Omega) = \Phi_{n,VCO}(\Omega) - \frac{1}{N} \sum_{k=0}^{N-1} \Phi_{n,VCO}\left(\Omega - \frac{2\pi k}{N}\right) \times H(\Omega)$$

$$1 + \frac{1}{N} \sum_{k=0}^{N-1} H\left(\Omega - \frac{2\pi k}{N}\right)$$

Similar expression for VCO buffer.

Theory vs. Simulation - Cyclostationarity

Simulation: 3rd-order PLL implemented in Verilog-A

VCO Impulse Noise applied at two different instants: Magnitude of noise transfer function is different.

Transfer Functions from VCO Supply Noise to PLL Output Jitter

Impulse at max. VCO sensitivity

Impulse at 40% VCO sensitivity

Theory vs. Simulation - Cyclostationarity

Effects cannot be captured by time-invarant model!

Frequency (MHz)

급-8.5

Frequency (MHz)

RefClk Sinusoidal Jitter:

- -Images produce N-1 additional spurs.
- -Agreement between theory and simulation:

~1% for main spur, ~15% for secondary spurs.

Charge Pump Sinusoidal Supply Noise:

VCO Sinusoidal Supply Noise:

- -Due to aliasing spur falls in-band (f_4 =10 MHz).
- -Simulation harmonic @ 380 MHz is not predicted by theoretical linear model.

VCO Sinusoidal Supply Noise:

Effects cannot be captured by continuous-time model!

Conclusions

- Discrete-time, linear, cyclostationary model for PLL jitter was developed.
- Theoretical analysis results are compared to simulation model of the PLL implemented in Verilog-A.
- Theory agrees well with simulation and correctly predicts
 - Cyclostationary behavior of PLL
 - > Frequency aliasing & images due to discrete-time nature of jitter