The primary focus of the Signal Transformation and Information Representation Group is the analysis and design of building blocks for practical compression systems. We tend to work at a level of abstraction where our parts fit in many applications, but we also sometimes follow through to final applications. Being practical means that we emphasize structured signal transformations and scalar and lattice quantization. Beyond just compression, we are interested in whole communication systems, including channel coding, networking, and congestion control.

One area of particularly strong interest is oversampling. Though it is not obvious on the surface, the power of oversampled representations is central to the digitization that surrounds us in this digital age. For scientific processing but also for most communication and storage, acquired signals are quantized to discrete values in the process of analog-to-digital conversion (ADC). ADC is made orders of magnitude cheaper by having very coarse (e.g., one bit) discretization of a highly oversampled version of a signal; it is much cheaper to run fast than to be accurate in analog electronics. The ubiquity of these techniques in audio processing is evidenced by the obscure “1-bit DAC” imprint on CD players, yet the full power of oversampled representations for higher-dimensional signals remains to be exploited.

Another area of emphasis is nonlinear signal processing. For reasons of both computational complexity and mathematical elegance, linear transformations are central to the theory and practice of signal processing. But there are many nonlinear operations that are not too difficult to describe or implement that provide very valuable properties. Examples include sorting, as in the Burrows-Wheeler Transform or permutation coding; thresholding, which is prominent in denoising; and pseudolinear integer-to-integer transforms, which are promising for conventional lossy source coding and multiple description coding. We are interested in developing tools based on tractable nonlinearities.

Publications

Journal Articles, Published

Journal Articles, Accepted for Publication

International Standards

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley.
Meeting Papers, Published
