Guest Editorial

In-Network Computation: Exploring the Fundamental Limits

P. R. Kumar, Eyal Kushilevitz, D. Manjunath, Muriel Médard, Alon Orlitsky and R. Srikant

Computing functions of distributed data has held a sustained interest in both electrical engineering and computer science research communities. Several new applications, e.g., sensor and social networks, are being built around this paradigm of distributed computation of functions of distributed data over a network. The network could be formed from wireless or wireline links; it could even be an overlay network like in a social network setting. The general problem is very complex in its full generality when all possible model variations are to be considered. Hence quite a bit of the research is concentrated on various simplified forms by researchers from various fields. An important aspect of this body of research is that problem formulations, and the solution techniques, intersect different disciplines—source coding and network coding, random networks, and algorithms and associated complexity theory of time, space and communication.

Some of the early work on in-network computation, a term that is being applied to this class of problems, was on the asymptotic analysis of the number of transmissions needed to compute specific functions in noisy broadcast networks. The development of geometric random graph theory and its applicability to wireless networks led to an extending of the analysis to large, multihop wireless networks. A typical problem formulation in this latter category assumes that the node locations are from a realization of a suitable random point process; hence the resulting communication graph of the network is a geometric random graph. While there are many preliminary results, there is scope for significantly advancing the state of the art.

A second approach, which in some sense predate s the preceding class of problems, considers simple, we may even say simplistic, networks with a small number of correlated sources. Much of this body of work takes the information theoretic perspective in which the objective is to find encoding rate regions for reliably communicating the desired function of the source data to one or more destination nodes. This class of work allows block coding to achieve better rates. This problem is natural in the network coding literature that consider larger and more complex networks with independent sources and the interest is in designing optimal coding schemes and obtaining the capacity for different functions and different networks.

A third approach is to analyze the communication complexity of computing functions. Early research in this framework concentrated on two-party protocols and has been followed by quite a bit of work on multi-party protocols over broadcast networks. Renewed focus considers communication over a graph rather than over a broadcast medium. A recent work in this genre considers the communication complexity of computing the equality function over a small fully connected network. Increasingly, the interest is the case where either the network or a subset of the nodes, or both are not trustworthy.

Taking yet another view, multicommodity flow formulations are being used to devise algorithms to optimally schedule computations and communication to compute a given (arbitrary) function over a given (arbitrary). The objective is to maximise the rate of delivering the function at the terminal node.

Note that in the above, both the “in-network computation” (in which a given network, possibly random, is utilized to perform the computation) and “networks for computation” (in which the network may be designed for the specific computation) have been explored.

The preceding is of course a sample of the extant literature and we launched this special issue with the hope of consolidating the area and also provide a launch-pad for new problem formulations and applications. We are happy to note that we have been reasonably successful on both counts and this special issue contains papers that advance our understanding of the fundamental limits and also develop several interesting new strands of research. And there are also papers that analyze the performance of in-network computation in specific application environments.

Zhan et al establish a duality relation between wired networks and broadcast networks and apply nested-lattice codes to reduce the wireless network problem to a wired network problem. They then use the duality relation to compute functions of discrete sources over linear deterministic networks.

P. R. Kumar is with Texas A&M University (e-mail: prk.tamu@gmail.com).
E. Kushilevitz is with the Computer Science Department of Technion (e-mail: eyalk@cs.technion.ac.il).
D. Manjunath is with the Department of Electrical Engineering of IIT Bombay (e-mail: dmanju@ee.iitb.ac.in).
M. Médard is with the Department of Electrical Engineering, MIT (e-mail: medard@mit.edu).
A. Orlitsky is with Department of Electrical and Computer Engineering of the University of California at San Diego (e-mail: alon@ucsd.edu).
R. Srikant is with the Department of Electrical and Computer Engineering of the University of Illinois at Urbana Champaign (e-mail: rsrikant@illinois.edu).
N. Vaidya is the J-SAC Board Representative for this issue of IEEE Journal on Selected Areas in Communications.
Digital Object Identifier 10.1109/JSAC.2013.130401
The distortion for sending a linear function of Gaussian sources across a class of relay networks is characterized. Kowshik and Kumar first consider the worst case computation of threshold functions, delta functions and interval functions of Boolean data over a collocated network with a finite number of nodes. They determine optimal transmission strategies for these functions. They then consider the case when the data values are drawn from Bernoulli distributions. Ramamoorthy and Langberg consider the problem of communicating the sum of independent sources to more than one destination in directed acyclic networks with error-free, capacity-constrained links. Karamchandani, Niesen, and Diggavi consider computing of a function of two sources over a multiple access channel when the channel computes a function of the variables that is not the same as the target function. Lalitha et al consider a subspace computation problem in which a receiver needs to losslessly obtain a set of s linear combinations of the m sources. The sources could be statistically dependent. Three linear encoders are described and their sum rates characterized.

Tyagi considers secure computation in which m trustworthy nodes observe correlated data and compute different functions by communicating over a noiseless untrusted network. Conditions in which the functions are securely computable are derived.

Kannan and Viswanath consider computation of multiple functions specified by computation trees over an undirected capacitated network. Achievable rates are characterized by connecting approximation algorithms for Steiner cuts to the function computation problem. Shah, Dey and Manjunath also consider optimal computation of a function of multiple sources over an undirected capacitated network. The capacity to be allocated to different overlays of the function graph on the network graph are obtained and that is then used to determine communication and computation schemes to achieve the optimal computation rate. Sappidi, Rosenberg and Girard consider the problem of computing moments of the data over a given capacitated network. Linear programs to characterize the computation rate are determined. Lu et al also consider computation of a function specified by a computation tree but consider one overlay and optimal placement of computational operations to minimize computation costs.

Kanoria and Tamuz consider a social network that is a tree and have the agents receive independent private signals from their neighbors and can also see the actions of their neighbors. Algorithms to learn the ‘state of the world’ are developed.

Leblanc et al consider the problem of achieving consensus in a network in which some of the nodes may misbehave. They characterize network topologies where local information based algorithms can succeed. Both time invariant and time varying networks are considered. They also examine properties of robust digraphs and describe a construction method for such robust networks.

There are three papers on applications of in-network computation. Takine and Sasabe consider the interesting problem of achieving consensus for clock synchronization when the network has nodes that are mobile. Pajic et al study a wireless control network that uses in-network computation to stabilize a dynamical system. Finally, Wei et al consider the problem of target tracking using in-network computation. Specifically, they characterize the mean square error in the location estimated when the network performs in-network aggregation.

We have enjoyed putting together this issue. We owe a debt of gratitude to several people that helped along the way. Firstly, we thank all the authors that submitted their work for consideration to this special issue and have made this a memorable issue for us. We also thank the reviewers for the comprehensive reviews. We are grateful to Martha Steenstrup, Laurel Greenidge and the JSAC editorial board for efficient handling of our proposal. We are also very grateful to Sue Lange for the excellent support during the final submissions. Finally, thanks to Santhana Krishnan for help with EDAS and the associated support.

P. R. Kumar (Fellow, IEEE) received the B.Tech. degree in electrical engineering (electronics) from the Indian Institute of Technology (IIT), Madras, India, in 1973 and the M.S. and D.Sc. degrees in systems science and mathematics from Washington University at St. Louis, St. Louis, MO, in 1975 and 1977, respectively.

From 1977 to 1984, he was a faculty member in the Department of Mathematics, University of Maryland Baltimore County, and from 1985 to 2011, in the Department of Electrical and Computer Engineering and the Coordinated Science Laboratory at the University of Illinois. He is currently at Texas A & M University, College Station, where he holds the College of Engineering Chair in Computer Engineering. He has worked on problems in game theory, adaptive control, stochastic systems, simulated annealing, neural networks, machine learning, queuing networks, manufacturing systems, scheduling, wafer fabrication plants, and information theory. His research is currently focused on wireless networks, sensor networks, cyber-physical systems, and the convergence of control, communication, and computation.

Dr. Kumar is a member of the National Academy of Engineering of the USA, as well as the Academy of Sciences of the Developing World. He was awarded an honorary doctorate by the Swiss Federal Institute of Technology (Eidgenössische Technische Hochschule), Zürich, Switzerland. He received the IEEE Field Award for Control Systems, the Donald P. Eckman Award of the American Automatic Control Council, and the Fred W. Ellersick Prize of the IEEE Communications Society. He is a Guest Chair Professor and Leader of the Guest Chair Professor Group on Wireless Communication and Networking at Tsinghua University, Beijing, China. He is also an Honorary Professor at IIT Hyderabad. He was awarded the Daniel C. Drucker Eminent Faculty Award from the College of Engineering at the University of Illinois, the Alumni Achievement Award from Washington University in St. Louis, and the Distinguished Alumni Award from IIT Madras.

Eyal Kushilevitz is a Professor of Computer Science at the Technion—Israel Institute of Technology, where he joined in 1993 after a Postdoc at Harvard University. He received B.A. in Mathematics and Computer Science from Bar-Ilan University in 1986, and M.Sc and D.Sc degrees in Computer Science from the Technion at 1989 and 1991, respectively. He was also a visiting Scientist in IBM T.J. Watson research lab, between 1998-2000 and in UCLA between 2009-2010. He is the co-author of the book “Communication Complexity,” published by Cambridge University Press. His research interests are cryptography and privacy, complexity and communication complexity, randomized distributed protocols and computational learning.
D. Manjunath received his BE from Mysore University, MS from IIT Madras and PhD from Rensselaer Polytechnic Institute in 1986, 1989 and 1993 respectively. He has been with the Electrical Engineering Department of IIT Bombay since July 1998 where he is now a Professor. He has previously worked in the Corporate R & D Center of GE in Schenectady NY (1990), Computer and Information Sciences Department of the University of Delaware (1992–93), Computer Science Department, University of Toronto (1993–94) and the Department of Electrical Engineering of IIT Kanpur (1994–98). His research interests are in the general areas of communication networks and performance analysis. His recent research has concentrated on in-network computation and random networks with applications in wireless and sensor networks, network pricing and queue control. He is a coauthor of two textbooks, Communication Networking: An Analytical Approach (May 2004) and Wireless Networking (Apr 2008), both of which are published by Morgan-Kaufman Publishers. He also heads the Computer Centre and is the convenor of the Bharti Centre for Communication both at IIT Bombay.

Muriel Médard is a Professor of Electrical Engineering at MIT. She was previously an Assistant Professor in the ECE Department at UIUC and a Staff Member at MIT Lincoln Laboratory. She received B.S. degrees in EECS, in Mathematics, and in Humanities, as well as M.S. and Sc D. degrees in EE, all from MIT. She has served as an Associate Editor for the Optical Communications and Networking Series of the IEEE Journal on Selected Areas in Communications, the IEEE Transactions on Information Theory and the OSA Journal of Optical Networking. She has served as a Guest Editor for the IEEE Journal of Lightwave Technology, the IEEE Transactions on Information Theory (twice), the IEEE Journal on Selected Areas in Communications and the IEEE Transactions on Information Forensic and Security. She serves as an associate editor for the IEEE/OSA Journal of Lightwave Technology. She is a member of the Board of Governors of the IEEE Information Theory Society and currently serves as First Vice-President. She has served as TPC co-chair of ISIT, WiOpt and CONEXT. She was the co-author of the 2009 IEEE William R. Bennett Prize in the Field of Communications, and the 2002 IEEE Leon K. Kirchmayer Prize Paper Award. She was co-winner of the 2004 MIT Harold E. Edgerton Faculty Achievement Award. In 2007, she was named a Gilbreth Lecturer by the National Academy of Engineering. Professor Médard’s research interests are in the areas of network coding and reliable communications, particularly for optical and wireless networks.

R. Srikant received his B.Tech. from the Indian Institute of Technology, Madras in 1985, his M.S. and Ph.D. from the University of Illinois in 1988 and 1991, respectively, all in Electrical Engineering. He was a Member of Technical Staff at AT&T Bell Laboratories from 1991 to 1995. He is currently with the University of Illinois at Urbana-Champaign, where he is the Frederick G. and Elizabeth H. Nearing Endowed Professor in the Department of Electrical and Computer Engineering, and a Research Professor in the Coordinated Science Lab. He was an associate editor of Automatica and the IEEE Transactions on Automatic Control, and is currently an associate editor of the IEEE/ACM Transactions on Networking. He has also served on the editorial boards of special issues of the IEEE Journal on Selected Areas in Communications and IEEE Transactions on Information Theory. He was the chair of the 2002 IEEE Computer Communications Workshop in Santa Fe, NM and was a program co-chair of IEEE INFOCOM, 2007. His research interests include communication networks, stochastic processes, queueing theory, information theory, and game theory.

Alon Orlitsky received the B.Sc. degrees in mathematics and electrical engineering from Ben-Gurion University, Be’er-Sheva, Israel, in 1980 and 1981, and the M.Sc. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA, in 1982 and 1986.

From 1986 to 1996, he was with the Communications Analysis Research Department of Bell Laboratories, Murray Hill, NJ. He spent the following year as a quantitative analyst at D.E. Shaw and Company, an investment firm in New York City.

In 1997, he joined the University of California, San Diego (UCSD), where he is currently a Professor of Electrical and Computer Engineering and of Computer Science and Engineering, and directs the Information Theory and Applications Center. His research concerns information theory, statistical modeling, machine learning, and speech recognition.

Prof. Orlitsky is a recipient of the 1981 IIT International Fellowship and the 1992 IEEE W.R.G. Baker Paper Award, a corecipient of the 2006 Information Theory Society Paper Award, and holds the Qualcomm Chair for Information Theory and its Applications at UCSD.